Combined Effects of Isokinetic Training and Botulinum Toxin Type A on Spastic Equinus Foot in Patients with Chronic Stroke: A Pilot, Single-blind, Randomized Controlled Trial
Abstract
1. Introduction
2. Results
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Outcome Measures
5.2. Interventions
5.3. Statistical Analysis
Author Contributions
Funding
Conflicts of Interest
References
- Schinwelsk, M.; Sławek, J. Prevalence of spasticity following stroke and its impact on quality of life with emphasis on disability in activities of daily living. Systematic review. Neurol. Neurochir. 2010, 44, 404–411. [Google Scholar] [CrossRef]
- Lamontagne, A.; Malouin, F.; Richards, C.L. Locomotor-specific measure of spasticity of plantarflexor muscles after stroke. Arch. Phys. Med. Rehabil. 2001, 82, 1696–1704. [Google Scholar] [CrossRef] [PubMed]
- Verdie, C.; Daviet, J.C.; Borie, M.J.; Popielarz, S.; Munoz, M.; Salle, J.Y.; Rebeyrotte, I.; Dudognon, P. Épidémiologie des pieds varus et/ou équin un an après un premier accident vasculaire cérébral hémisphérique: À propos d’une cohorte de 86 patients. Ann. Réadapt. Méd. Phys. 2004, 47, 81–86, [Research Gate]. [Google Scholar] [CrossRef]
- Friedman, P.J. Gait recovery after hemiplegic stroke Int. Disabil. Stud. 1990, 12, 119–122. [Google Scholar] [CrossRef]
- Lamontagne, A.; Richards, C.L.; Malouin, F. Coactivation during gait as an adaptive behavior after stroke. J. Electromyogr. Kinesiol. 2000, 10, 407–415. [Google Scholar] [CrossRef]
- Dunne, J.W.; Gracies, J.M.; Hayes, M.; Zeman, B.; Singer, B.J.; Multicentre Study Group. A prospective, multicentre, randomized, double-blind, placebo-controlled trial of onabotulinumtoxinA to treat plantarflexor/invertor overactivity after stroke. Clin. Rehabil. 2012, 26, 787–797. [Google Scholar] [CrossRef] [PubMed]
- Santamato, A.; Ranieri, M.; Solfrizzi, V.; Lozupone, M.; Vecchio, M.; Daniele, A.; Greco, A.; Seripa, D.; Logroscino, G.; Panza, F. High doses of incobotulinumtoxinA for the treatment of post-stroke spasticity: Are they safe and effective? Expert Opin. Drug Metab. Toxicol. 2016. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pittock, S.J.; Moore, A.P.; Hardiman, O.; Ehler, E.; Kovac, M.; Bojakowski, J.; Al Khawaja, I.; Brozman, M.; Kanovský, P.; Skorometz, A.; et al. A double-blind randomised placebo-controlled evaluation of three doses of botulinum toxin type A (Dysport) in the treatment of spastic equinovarus deformity after stroke. Cerebrovasc. Dis. 2003, 15, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Gracies, J.M.; Esquenazi, A.; Brashear, A.; Banach, M.; Kocer, S.; Jech, R.; Khatkova, S.; Benetin, J.; Vecchio, M.; McAllister, P.; et al. Efficacy and safety of abobotulinumtoxinA in spastic lower limb: Randomized trial and extension. Neurology 2017, 89, 2245–2253. [Google Scholar] [CrossRef]
- Santamato, A.; Micello, M.F.; Panza, F.; Fortunato, F.; Pilotto, A.; Giustini, A.; Testa, A.; Fiore, P.; Ranieri, M.; Spidalieri, R. Efficacy and safety of higher doses of botulinum toxin type A NT 201 free from complexing proteins in the upper and lower limb spasticity after stroke. J. Neural Transm. 2013, 120, 469–476. [Google Scholar] [CrossRef]
- Deltombe, T.; Wautier, D.; De Cloedt, P.; Fostier, M.; Gustin, T. Assessment and treatment of spastic equinovarus foot after stroke: Guidance from the Mont-Godinne interdisciplinary group. J. Rehabil. Med. 2017, 28, 461–468. [Google Scholar] [CrossRef]
- Tehran, D.A.; Pirazzini, M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins 2018, 10, 190. [Google Scholar] [CrossRef]
- Simpson, D.M.; Gracies, J.M.; Graham, H.K.; Miyasaki, J.M.; Naumann, M.; Russman, B.; Simpson, L.L.; So, Y. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: Botulinum neurotoxin for the treatment of spasticity (an evidence-based review): Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 2008, 70, 1691–1698. [Google Scholar]
- Wissel, J.; Ward, A.B.; Erztgaard, P.; Bensmail, D.; Hecht, M.J.; Lejeune, T.M.; Schnider, P.; Altavista, M.C.; Cavazza, S.; Deltombe, T.; et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J. Rehabil. Med. 2009, 41, 13–25. [Google Scholar] [CrossRef]
- Ward, A.B. Managing spastic foot drop after stroke. Eur. J. Neurol. 2014, 21, 1053–1054. [Google Scholar] [CrossRef]
- Santamato, A.; Cinone, N.; Panza, F.; Letizia, S.; Santoro, L.; Lozupone, M.; Daniele, A.; Picelli, A.; Baricich, A.; Intiso, D.; et al. Botulinum Toxin Type A for the Treatment of Lower Limb Spasticity after Stroke. Drugs 2019, 79, 143–160. [Google Scholar] [CrossRef]
- Gupta, A.D.; Chu, W.H.; Howell, S.; Chakraborty, S.; Koblar, S.; Visvanathan, R.; Cameron, I.; Wilson, D. A systematic review: Efficacy of botulinum toxin in walking and quality of life in post-stroke lower limb spasticity. Syst. Rev. 2018, 7, 1. [Google Scholar] [CrossRef]
- Tao, W.; Yan, D.; Li, J.H.; Shi, Z.H. Gait improvement by low-dose botulinum toxin A injection treatment of the lower limbs in subacute stroke patients. J. Phys. Ther. Sci. 2015, 27, 759–762. [Google Scholar] [CrossRef]
- Foley, N.; Murie-Fernandez, M.; Speechley, M.; Salter, K.; Sequeira, K.; Teasell, R. Does the treatment of spastic equinovarus deformity following stroke with botulinum toxin increase gait velocity? A systematic review and meta-analysis. Eur. J. Neurol. 2010, 17, 1419–1427. [Google Scholar] [CrossRef]
- Li, S.; Francisco, G.E. New insights into the pathophysiology of post-stroke spasticity. Front. Hum. Neurosci. 2015, 9, 192. [Google Scholar] [CrossRef]
- Pooyania, S.; Semenko, B. Botulinum toxin type-A (BoNTA) and dynamic wrist-hand orthoses versus orthoses alone for the treatment of spastic-paretic upper extremity in chronic stroke patients. Open J. Ther. Rehabil. 2014, 2, 12–18. [Google Scholar] [CrossRef][Green Version]
- Roche, N.; Zory, R.; Sauthier, A.; Bonnyaud, C.; Pradon, D.; Bensmail, D. Effect of rehabilitation and botulinum toxin injection on gait in chronic stroke patients: A randomized controlled study. J. Rehabil. Med. 2015, 47, 31–37. [Google Scholar] [CrossRef]
- Weber, D.J.; Skidmore, E.R.; Niyonkuru, C.; Chang, C.L.; Huber, L.M.; Munin, M.C. Cyclic Functional Electrical Stimulation Does Not Enhance Gains in Hand Grasp Function When Used as an Adjunct to OnabotulinumtoxinA and Task Practice Therapy: A Single-Blind, Randomized Controlled Pilot Study. Arch. Phys. Med. Rehabil. 2010, 91, 679–686. [Google Scholar] [CrossRef]
- Picelli, A.; Santamato, A.; Chemello, E.; Cinone, N.; Cisari, C.; Gandolfi, M.; Ranieri, M.; Smania, N.; Baricich, A. Adjuvant treatments associated with botulinum toxin injection for managing spasticity: An overview of the literature. Ann. Phys. Rehabil. Med. 2018, 18. [Google Scholar] [CrossRef]
- Picelli, A.; Bacciga, M.; Melotti, C.; La Marchina, E.; Verzini, E.; Ferrari, F.; Pontillo, A.; Corradi, J.; Tamburin, S.; Saltuari, L.; et al. Combined effects of robot-assisted gait training and botulinum toxin type A on spastic equinus foot in patients with chronic stroke: A pilot, single blind, randomized controlled trial. Eur. J. Phys. Rehabil. Med. 2016, 52, 759–766. [Google Scholar]
- Prazeres, A.; Lira, M.; Aguiar, P.; Monteiro, L.; Vilasbôas, I.; Melo, A. Efficacy of physical therapy associated with botulinum toxin type A on functional performance in post-stroke spasticity: A randomized, double-blinded, placebo-controlled trial. Neurol. Int. 2018, 10, 7385. [Google Scholar] [CrossRef]
- Demetrios, M.; Khan, F.; Turner-Stokes, L.; Brand, C.; McSweeney, S. Multidisciplinary rehabilitation following botulinum toxin and other focal intramuscular treatment for post-stroke spasticity. Cochrane Database Syst. Rev. 2013, 6, 1465–1858. [Google Scholar] [CrossRef]
- Kim, C.M.; Eng, J.J.; MacIntyre, D.L.; Dawson, A.S. Effects of isokinetic strength training on walking in persons with stroke: A double-blind controlled pilot study. J. Stroke Cerebrovasc. Dis. 2001, 10, 265–273. [Google Scholar] [CrossRef]
- Hameau, S.; Bensmail, D.; Robertson, J.; Boudarham, J.; Roche, N.; Zory, R. Isokinetic assessment of the effects of botulinum toxin injection on spasticity and voluntary strength in patients with spastic hemiparesis. Eur. J Phys. Rehabil. Med. 2014, 50, 515–523. [Google Scholar]
- Uchiyama, Y.; Koyama, T.; Wada, Y.; Katsutani, M.; Kodama, N.; Domen, K. Botulinum Toxin Type A Treatment Combined with Intensive Rehabilitation for Gait Poststroke: A Preliminary Study. J. Stroke Cerebrovasc. Dis. 2018, 27, 1975–1986. [Google Scholar] [CrossRef]
- Bernuz, B.; Genet, F.; Terrat, P.; Pradon, D.; Barbot, F.; Bussel, B.; Bensmail, D. Botulinum toxin effect on voluntary and stretch reflex-related torque produced by the quadriceps: An isokinetic pilot study. Neurorehabil. Neural Repair. 2012, 26, 542–547. [Google Scholar] [CrossRef]
- Carda, S.; Invernizzi, M.; Baricich, A.; Cisari, C. Casting, taping or stretching after botulinum toxin type A for spastic equinus foot: A single-blind randomized trial on adult stroke patients. Clin. Rehabil. 2011, 25, 1119–1127. [Google Scholar] [CrossRef]
- Lotito, G.; Bensoussan, L.; Delarque, A.; Viton, J.M. Botulinum toxin for the treatment of spastic equinovarus foot in adults: Effect on gait parameters. Comparative randomized double-blind trial versus placebo. Ann. Phys. Rehabil. Med. 2011, 54, e137–e138. [Google Scholar] [CrossRef]
- Esquenazi, A.; Mayer, N.; Lee, S.; Brashear, A.; Elovic, A.; Francisco, E.; Yablon, S.; PROS Study Group. Patient Registry of Outcomes in Spasticity Care. Am. J. Phys. Med. Rehabil. 2012, 91, 729–746. [Google Scholar] [CrossRef]
- Pinzur, M.S.; Sherman, R.; Di Monte-Levine, P.; Trimble, J. Gait changes in adult onset hemiplegia. Am. J. Phys. Med. 1987, 66, 228–237. [Google Scholar] [CrossRef]
- Cioni, M.; Esquenazi, A.; Hirai, B. Effects of Botulinum Toxin-A on Gait Velocity, Step Length, and Base of Support of Patients with Dynamic Equinovarus Foot. Am. J. Phys. Med. Rehabil. 2006, 85, 600–606. [Google Scholar] [CrossRef]
- Vér, C.; Emri, M.; Spisák, T.; Berényi, E.; Kovács, K.; Katona, P.; Balkay, L.; Menyhárt, L.; Kardos, L.; Csiba, L. The Effect of Passive Movement for Paretic Ankle-Foot and Brain Activity in Post-Stroke Patients. Eur. Neurol. 2016, 76, 132–142. [Google Scholar] [CrossRef]
- Aggarwal, D.; Walia, S.; Noohu, M.M. Effect of Plantarflexor Spasticity and Ankle Joint Range of Motion on Sit to Stand Movement in Stroke Patients. J. Phys. Occup. Ther. 2013, 6, 1. [Google Scholar]
- Takatoshi, H.; Masahiro, A.; Hiroyoshi, H.; Nobuyuki, S.; Naoki, Y.; Masachika, N.; Yusuke, S. The Effect of Repeated Botulinum Toxin A Therapy Combined with Intensive Rehabilitation on Lower Limb Spasticity in Post-Stroke Patients. Toxins 2018, 10, 349. [Google Scholar] [CrossRef]
- Olney, S.J.; Griffin, M.P.; McBride, I.D. Temporal, kinematic, and kinetic variables related to gait speed in subjects with hemiplegia: A regression approach. Phys. Ther. 1994, 74, 872–885. [Google Scholar] [CrossRef]
- Novak, A.C.; Olney, S.J.; Bagg, S.; Brouwer, B. Gait Changes Following Botulinum Toxin A Treatment in Stroke. Top. Stroke Rehabil. 2009, 16, 367–376. [Google Scholar] [CrossRef]
- Sharp, S.A.; Brouwer, B.J. Isokinetic strength training of the hemiparetic knee: Effects on function and spasticity. Arch. Phys. Med. Rehabil. 1997, 78, 1231–1236. [Google Scholar] [CrossRef]
- Büyükvural, S.; Şen; Özbudak Demir, S.; Ekiz, T.; Özgirgin, N. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke. Int. J. Clin. Exp. Med. 2015, 8, 16871–16879. [Google Scholar]
- Chen, C.L.; Chang, K.J.; Wu, P.Y.; Chi, C.H.; Chang, S.T.; Cheng, Y.Y. Comparison of the Effects between Isokinetic and Isotonic Strength Training in Subacute Stroke Patients. J. Stroke Cerebrovasc. Dis. 2015, 24, 1317–1323. [Google Scholar] [CrossRef]
- Fortuna, R.; Vaz, M.A.; Youssef, A.R.; Longino, D.; Herzog, W. Changes in contractile properties of muscles receiving repeat injections of botulinum toxin (Botox). J. Biomech. 2011, 44, 39–44. [Google Scholar] [CrossRef]
- Yaraskavitch, M.; Leonard, T.; Herzog, W. Botox produces functional weakness in non-injected muscles adjacent to the target muscle. J. Biomech. 2008, 41, 897–902. [Google Scholar] [CrossRef]
- Bhakta, B.B.; Cozens, J.A.; Chamberlain, M.A.; Bamford, J.M. Impact of botulinum toxin type A on disability and carer burden due to arm spasticity after stroke: A randomised double blind placebo controlled trial. J. Neurol Neurosurg. Psychiatry 2000, 69, 217–221. [Google Scholar] [CrossRef]
- Blackburn, M.; Van Vliet, P.; Mockett, S.P. Reliability of measurements obtained with the modified Ashworth scale in the lower extremities of people with stroke. Phys. Ther. 2002, 82, 25–34. [Google Scholar] [CrossRef]
- Picelli, A.; Vallies, G.; Chemello, E.; Castellazzi, P.; Brugnera, A.; Gandolfi, M.; Baricich, A.; Cisari, C.; Santamato, A.; Saltuari, L.; et al. Is spasticity always the same? An observational study comparing the features of spastic equinus foot in patients with chronic stroke and multiple sclerosis. J. Neurol. Sci. 2017, 380, 132–136. [Google Scholar] [CrossRef]
- Haugh, A.B.; Pandyan, A.D.; Johnson, G.R. A systematic review of the Tardieu Scale for the measurement of spasticity. Disabil. Rehabil. 2006, 28, 899–907. [Google Scholar] [CrossRef]
- Dunn, A.; Marsden, D.L.; Nugent, E.; Van Vliet, P.; Spratt, N.J.; Attia, J.; Callister, R. Protocol variations and six-minute walk test performance in stroke survivors: A systematic review with meta-analysis. Stroke Res. Treat. 2015, 2015, 484813. [Google Scholar] [CrossRef]
- Nagano, K.; Hori, H.; Muramatsu, K. A comparison of at-home walking and 10-meter walking test parameters of individuals with post-stroke hemiparesis. J. Phys. Ther. Sci. 2015, 27, 357–359. [Google Scholar] [CrossRef]
- The Royal College of Physicians, Spasticity in Adults: Management Using Botulinum Toxin: National Guidelines 2018. Available online: https://www.rcplondon.ac.uk/guidelines-policy/spasticity-adults-management-using-botulinum-toxin (accessed on 20 March 2018).
Variables | Experimental Group (n = 12) | Control Group (n = 13) |
---|---|---|
Age years, mean | 56.20 (8.92) | 56.40 (7.01) |
Sex, n. M/F | 8/4 | 7/6 |
Side of hemiparesis, n R/L | 5/7 | 5/8 |
Etiology, Ischaemic/Haemorragic | 9/3 | 8/5 |
Time since stroke, years, mean | 66.42 (37.83) | 43.86 (29.84) |
Injection site | Experimental Group (U) | Control Group (U) |
---|---|---|
Total dose, Triceps Surae | 107.14 (19.70) | 120.70 (18.62) |
Medial Gastrocnemius | 57.14 (18.29) | 60.28 (16.50) |
Lateral Gastrocnemius | 53.33 (14.71) | 52.24 (10.04) |
Soleus | 47.5 (14.33) | 53.50 (14.31) |
Body Structure | t0 | t1 | t2 | |||
---|---|---|---|---|---|---|
Outcome | Experimental | Control | Experimental | Control | Experimental | Control |
MAS GM | 2 | 2 | 1+ | 1+ | 1+ | 1+ |
MAS SOL | 2 | 2 | 1+ | 1+ | 1+ | 1+ |
MI | 51.67 (10.12) | 49.18 (10.25) | 54.17 (8.65) | 52.18 (10.25) | 54.17 (9.65) | 53.18 (12.09) |
TSA GM | 19.45 (5.8) | 20 (4.6) | 13.45 (4.8) * | 14.25 (6.6) * | 15.78 (5.8) | 16.45 (7.2) |
TSASOL | 13.05 (6.6) | 15 (5.9) | 9.45 (5.8) * | 10.76 (5.4) * | 9.03 (5.8) * | 11.91 (4.56) |
Activity | t0 | t1 | t2 | |||
---|---|---|---|---|---|---|
Outcome | Experimental | Control | Experimental | Control | Experimental | Control |
10mWt | 0.62 (0.22) | 0.61 (0.18) | 0.69 (0.26) * | 0.64 (0.21) | 0.65 (0.24) * | 0.62 (0.12) |
6MWT | 221.33 (89.56) | 217.23(87.56) | 54.17 (8.65) | 236 (92.43) * | 236 (86.53) * | 220.63 (90.46) |
Cadence | 76.17 (16.10) | 76.24 (14.6) | 80.37 (13.4) * | 78.9 (12.6) | 78.41 (13.96) | 77.2 (14.26) |
Step NP | 31.68 (8.5) | 32.5 (9.01) | 31.10 (8.95) | 33.28 (10.12) | 32.87 (9.1) | 31.54 (10.12) |
Step P | 30.17 (9.14) | 31.75 (8.79) | 30.12 (8.96) | 31.12 (9.27) | 33.69 (8.75) | 31.82 (9.75) |
SSP NP | 1.9 (0.57) | 1.92 (0.32) | 1.75 (0.45) * | 1.89 (0.57) | 1.80 (0.58) | 1.87 (1.01) |
SSP P | 1.55 (0.8) | 1.51 (0.32) | 1.60 (0.27) | 1.53 (0.38) | 1.58 (0.57) | 1.57 (0.37) |
Isokinetic | t0 | t1 | t2 | |||
---|---|---|---|---|---|---|
Outcome | Experimental | Control | Experimental | Control | Experimental | Control |
rPT 10°/s | 2.35 (0.65) | 2.41 (0.62) | 2.31 (0.78) | 2.35 (0.54) | 2.32 (0.76) | 2.36 (0.79) |
rPT 30°/s | 3.25 (1.14) | 3.12 (1.12) | 3.24 (0.5) | 3.09 (0.95) | 3.28 (0.81) | 3.10 (0.12) |
rPT 90°/s | 9.1 (1.13) | 9.35 (1.25) | 8.31 (1.2) * | 8.75 (0.97) * | 8.5 (1.17) * | 9.2 (1.25) |
rPT 180°/s | 11.7 (1.88) | 12.1 (1.79) | 10.9 (1.59) * | 11.40 (1.35) * | 10.91 (1.12) * | 11.7 (1.12) |
PT df | 8.6 (0.15) | 8.91 (0.82) | 10.82 (1.59) * | 9.71 (0.92) * | 9.93 (1.45) * | 9.28 (0.95) |
PT pf | 10.09 (0.63) | 10.09 (0.63) | 9.73 (0.52) * | 8.6 (0.80) * | 9.85 (0.66) | 8.97 (1.0) * |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinone, N.; Letizia, S.; Santoro, L.; Facciorusso, S.; Armiento, R.; Picelli, A.; Ranieri, M.; Santamato, A. Combined Effects of Isokinetic Training and Botulinum Toxin Type A on Spastic Equinus Foot in Patients with Chronic Stroke: A Pilot, Single-blind, Randomized Controlled Trial. Toxins 2019, 11, 210. https://doi.org/10.3390/toxins11040210
Cinone N, Letizia S, Santoro L, Facciorusso S, Armiento R, Picelli A, Ranieri M, Santamato A. Combined Effects of Isokinetic Training and Botulinum Toxin Type A on Spastic Equinus Foot in Patients with Chronic Stroke: A Pilot, Single-blind, Randomized Controlled Trial. Toxins. 2019; 11(4):210. https://doi.org/10.3390/toxins11040210
Chicago/Turabian StyleCinone, Nicoletta, Sara Letizia, Luigi Santoro, Salvatore Facciorusso, Raffaella Armiento, Alessandro Picelli, Maurizio Ranieri, and Andrea Santamato. 2019. "Combined Effects of Isokinetic Training and Botulinum Toxin Type A on Spastic Equinus Foot in Patients with Chronic Stroke: A Pilot, Single-blind, Randomized Controlled Trial" Toxins 11, no. 4: 210. https://doi.org/10.3390/toxins11040210
APA StyleCinone, N., Letizia, S., Santoro, L., Facciorusso, S., Armiento, R., Picelli, A., Ranieri, M., & Santamato, A. (2019). Combined Effects of Isokinetic Training and Botulinum Toxin Type A on Spastic Equinus Foot in Patients with Chronic Stroke: A Pilot, Single-blind, Randomized Controlled Trial. Toxins, 11(4), 210. https://doi.org/10.3390/toxins11040210