Harnessing Microalgae and Cyanobacteria for Sustainable Pesticide Biodegradation: Advances, Challenges, and Ecological Benefits
Abstract
1. Introduction
2. The Problem of Soil Contamination with Pesticides
3. Microalgae as Pesticide Biodegraders: Mechanisms and Degradation Processes
4. Effect of Microalgae and Cyanobacteria on Soil Fertility
5. Integration of Microalgae and Cyanobacteria into Sustainable Agriculture: Biomass Production and Bioremediation
6. Economic and Environmental Benefits, Challenges, and Prospects of Using Microalgae and Cyanobacteria
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R.P.; Singla, N. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicol. Environ. Saf. 2020, 201, 110812. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com (accessed on 20 August 2025).
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting agriculturally driven global environmental change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 20 August 2025).
- Verasoundarapandian, G.; Lim, Z.S.; Radziff, S.B.M.; Taufik, S.H.; Puasa, N.A.; Shaharuddin, N.A.; Merican, F.; Wong, C.-Y.; Lalung, J.; Ahmad, S.A. Remediation of pesticides by microalgae as feasible approach in agriculture: Bibliometric strategies. Agronomy 2022, 12, 117. [Google Scholar] [CrossRef]
- Avila, R.; Peris, A.; Eljarrat, E.; Vicent, T.; Blánquez, P. Biodegradation of hydrophobic pesticides by microalgae: Transformation products and impact on algae biochemical methane potential. Sci. Total Environ. 2020, 754, 142114. [Google Scholar] [CrossRef] [PubMed]
- Nie, J.; Sun, Y.; Zhou, Y.; Kumar, M.; Usman, M.; Li, J.; Shao, J.; Wang, L.; Tsang, D.C.W. Bioremediation of water containing pesticides by microalgae: Mechanisms, methods, and prospects for future research. Sci. Total Environ. 2020, 707, 136080. [Google Scholar] [CrossRef] [PubMed]
- Megharaj, M.; Madhavi, D.R.; Sreenivasulu, C.; Rao, A.S.; Venkateswarlu, K. Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull. Environ. Contam. Toxicol. 1994, 53, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J. Nitrogen fixation in cyanobacteria. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons Ltd.: Chichester, UK, 2008; pp. 1–8. [Google Scholar] [CrossRef]
- Casanova, L.M.; Macrae, A.; de Souza, J.E.; Neves Junior, A.; Vermelho, A.B. The potential of allelochemicals from microalgae for biopesticides. Plants 2023, 12, 1896. [Google Scholar] [CrossRef]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ. Int. 2013, 51, 59–72. [Google Scholar] [CrossRef]
- Liu, D.; Chen, T.; Gong, Y.; Chen, X.; Zhang, W.; Xiao, R.; Yang, Y.; Zhang, T. Deciphering the key factors affecting pesticide residue risk in vegetable ecosystem. Environ. Res. 2024, 258, 119452. [Google Scholar] [CrossRef]
- Wu, L.F.; Chen, P.C.; Huang, A.P.; Lee, C.M. The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour. Technol. 2012, 113, 14–18. [Google Scholar] [CrossRef]
- Hillocks, R.J. Farming with fewer pesticides: EU pesticide review and resulting challenges for UK agriculture. Crop Prot. 2012, 31, 85–93. [Google Scholar] [CrossRef]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Eddleston, M.; Buckley, N.A.; Eyer, P.; Dawson, A.H. Management of acute organophosphorus pesticide poisoning. Lancet 2008, 371, 597–607. [Google Scholar] [CrossRef]
- Jaga, K.; Dharmani, C. Global surveillance of DDT and DDE levels in human tissues. Int. J. Occup. Med. Environ. Health 2003, 16, 7–20. [Google Scholar] [PubMed]
- Costa, L.G. Current issues in organophosphate toxicology. Clin. Chim. Acta 2006, 366, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Solomon, K.R.; Baker, D.; Richards, R.; Dixon, K.; Klaine, S.J.; La Point, T.W.; Kendall, R.J.; Weisskopf, C.P.; Giddings, J.M.; Giesy, J.P.; et al. Ecological risk assessment of atrazine in North American surface waters. Environ. Toxicol. Chem. 1996, 15, 31–76. [Google Scholar] [CrossRef]
- Bhatti, P.; Duhan, A.; Pal, A.; Monika; Beniwal, R.; Kumawat, P.; Yadav, D.B. Ultimate fate and possible ecological risks associated with atrazine and its principal metabolites (DIA and DEA) in soil and water environment. Ecotoxicol. Environ. Saf. 2022, 248, 114299. [Google Scholar] [CrossRef]
- Wu, J.; Laird, D.A. Abiotic transformation of chlorpyrifos to chlorpyrifos oxon in chlorinated water. Environ. Toxicol. Chem. 2003, 22, 261–264. [Google Scholar] [CrossRef]
- Mineau, P.; Tucker, K.R. Improving detection of pesticide poisoning in birds. J. Wildl. Rehabil. 2002, 25, 4–12. [Google Scholar]
- Cope, O.B. Interactions between pesticides and wildlife. Annu. Rev. Entomol. 1971, 16, 325–364. [Google Scholar] [CrossRef]
- Köhler, H.R.; Triebskorn, R. Wildlife ecotoxicology of pesticides: Can we track effects to the population level and beyond? Science 2013, 341, 759–765. [Google Scholar] [CrossRef]
- Sarojmoni, S.; Mridusmita, D.; Himadree, P.; Gunjan, J.; Jain, M. Pesticide impact on human health. Int. J. Zool. Investig. 2022, 8, 717–725. [Google Scholar] [CrossRef]
- Wester, R.C.; Maibach, H.I. In vivo percutaneous absorption and decontamination of pesticides in humans. J. Toxicol. Environ. Health 1985, 16, 25–37. [Google Scholar] [CrossRef] [PubMed]
- Blair, A.; Ritz, B.; Wesseling, C.; Freeman, L.B. Pesticides and human health. Occup. Environ. Med. 2014, 72, 81–82. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Iyaniwura, T.T. Non-target and environmental hazards of pesticides. Rev. Environ. Health 1991, 9, 161–176. [Google Scholar] [CrossRef]
- Kaur, R.; Choudhary, D.; Bali, S.; Bandral, S.S.; Singh, V.; Ahmad, M.A.; Rani, N.; Singh, T.G.; Chandrasekaran, B. Pesticides: An alarming detrimental to health and environment. Sci. Total Environ. 2024, 915, 170113. [Google Scholar] [CrossRef]
- PAN International. Available online: https://pan-international.org/ (accessed on 4 August 2025).
- Soper, R. Workplace preference among farmworkers: Piece rate, pesticides, and the perspective of fruit and vegetable harvesters. Rural Sociol. 2021, 86, 728–751. [Google Scholar] [CrossRef]
- Zhengfei, G.; Lansink, A.O.; Wossink, A.; Huirne, R.B. Damage control inputs: A comparison of conventional and organic farming systems. Eur. Rev. Agric. Econ. 2005, 32, 167–189. [Google Scholar] [CrossRef]
- de la Cruz, V.Y.; Tantriani; Cheng, W.; Tawaraya, K. Yield gap between organic and conventional farming systems across climate types and sub-types: A meta-analysis. Agric. Syst. 2023, 211, 103732. [Google Scholar] [CrossRef]
- Knapp, S.; Gunst, L.; Mäder, P.; Ghiasi, S.; Mayer, J. Organic cropping systems maintain yields but have lower yield levels and yield stability than conventional systems—Results from the DOK trial in Switzerland. Field Crops Res. 2023, 294, 109072. [Google Scholar] [CrossRef]
- Feledyn-Szewczyk, B.; Kopiński, J. Productive, environmental and economic effects of organic and conventional farms—Case study from Poland. Agronomy 2024, 14, 793. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://www.pops.int/ (accessed on 2 August 2025).
- Rotterdam Convention on the Prior Informed Consent Procedure for Certain Hazardous Chemicals and Pesticides in International Trade (PIC). Available online: https://www.pic.int/ (accessed on 2 August 2025).
- Montreal Protocol—OzonAction Programme, United Nations Environment Programme (UNEP). Available online: https://www.unep.org/ozonaction/who-we-are/about-montreal-protocol (accessed on 2 August 2025).
- Food and Agriculture Organization of the United Nations (FAO). Available online: https://www.fao.org/about/about-fao/en/ (accessed on 3 August 2025).
- Donley, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environ. Health 2019, 18, 44. [Google Scholar] [CrossRef] [PubMed]
- Milner, A.M.; Boyd, I.L. Toward pesticidovigilance. Science 2017, 357, 1232–1234. [Google Scholar] [CrossRef]
- Ramírez, G.; Ibarra Muñoz, L.A.; Balagurusamy, N.; Frías Ramírez, J.E.; Alfaro Hernández, L.; Carrillo Campos, J. Microbiology and biochemistry of pesticides biodegradation. Int. J. Mol. Sci. 2023, 24, 15969. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Mukerji, K.G.; Lal, R. Molecular aspects of pesticide degradation by microorganisms. Crit. Rev. Microbiol. 1996, 22, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.L.; Melgar, G.Z.; Kasemodel, M.C.; Nitschke, M. Biodegradation of pesticides. In Pesticides in the Modern World—Pesticides Use and Management; IntechOpen: Rijeka, Croatia, 2011. [Google Scholar] [CrossRef]
- Fernandes, I.; Pinto, R.; Aguiar, R.; Correia, R. Perspective application of the circular economy in the blue biotechnology: Microalgae as sources of health-promoting compounds. Glob. J. Nutr. Food Sci. 2020, 3, 551. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, H.; Sun, L.; Wang, Q. Converting carbon dioxide to high value-added products: Microalgae-based green biomanufacturing. GCB Bioenergy 2023, 15, 386–398. [Google Scholar] [CrossRef]
- Khaligh, S.F.; Asoodeh, A. Recent advances in the bio-application of microalgae-derived biochemical metabolites and development trends of photobioreactor-based culture systems. 3 Biotech 2022, 12, 260. [Google Scholar] [CrossRef]
- Fayaz, T.; Rana, S.S.; Goyal, E.; Ratha, S.K.; Renuka, N. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. J. Environ. Manag. 2024, 357, 120723. [Google Scholar] [CrossRef]
- Kumar, N.; Banerjee, C.; Chang, J.S.; Shukla, P. Valorization of wastewater through microalgae as a prospect for generation of biofuel and high-value products. J. Clean. Prod. 2022, 362, 132114. [Google Scholar] [CrossRef]
- Milcic-Terzic, J.; López-Vidal, Y.; Vrvić, M.M.; Saval, S. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil. Bioresour. Technol. 2001, 78, 47–54. [Google Scholar] [CrossRef]
- Kuritz, T.; Wolk, C.P. Use of filamentous cyanobacteria for biodegradation of organic pollutants. Appl. Environ. Microbiol. 1995, 61, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol. Adv. 2011, 29, 896–907. [Google Scholar] [CrossRef] [PubMed]
- Touliabah, H.E.-S.; El-Sheekh, M.M.; Ismail, M.M.; El-Kassas, H. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules 2022, 27, 1141. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R.; Sethunathan, N. The impacts of environmental pollutants on microalgae and cyanobacteria. Crit. Rev. Environ. Sci. Technol. 2010, 40, 699–821. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; Ghareib, M.M.; Abou-El-Souod, G.W. Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J. Bioremed. Biodegrad. 2011, 2, 133. [Google Scholar] [CrossRef]
- Barone, V.; Puglisi, I.; Fragalà, F.; Stevanato, P.; Baglieri, A. Effect of living cells of microalgae or their extracts on soil enzyme activities. Arch. Agron. Soil Sci. 2019, 65, 712–726. [Google Scholar] [CrossRef]
- Sutherland, D.L.; Ralph, P.J. Microalgal bioremediation of emerging contaminants—Opportunities and challenges. Water Res. 2019, 164, 114921. [Google Scholar] [CrossRef]
- Hussein, M.H.; Abdullah, A.M.; Eladal, E.G.; El-Din, N.I. Phycoremediation of some pesticides by microchlorophyte alga, Chlorella sp. J. Fertil. Pestic. 2016, 7, 173. [Google Scholar] [CrossRef]
- Spain, O.; Plöhn, M.; Funk, C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant. 2021, 173, e13405. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Ghosh, P.; Ghosh, I.; Guha, A.K. Adsorption of rhodamine B on Rhizopus oryzae: Role of functional groups and cell wall components. Colloids Surf. B Biointerfaces 2008, 65, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, J.; Mohan, H.; Seralathan, K.-K. Significance of Herbaspirillum sp. in biodegradation and biodetoxification of herbicides, pesticides, hydrocarbons and heavy metals. Environ. Res. 2023, 239, 117367. [Google Scholar] [CrossRef]
- Dave, D.; Dikshit, A.K. Effect of different exogenous compounds on biosorption of endosulfan. Am. J. Environ. Sci. 2011, 7, 224–236. [Google Scholar] [CrossRef]
- Hussein, M.H.; Abdullah, A.M.; Badr El Din, N.I.; Mishaqa, E.S.I. Biosorption potential of the microchlorophyte Chlorella vulgaris for some pesticides. J. Fertil. Pestic. 2017, 8, 177. [Google Scholar] [CrossRef]
- Habibah, R.; Iswanto, B.H.; Rinanti, A. The significance of tropical microalgae Chlorella sorokiniana as a remediate of polluted water caused by chlorpyrifos. Int. J. Sci. Technol. Res. 2020, 9, 4460–4463. [Google Scholar]
- Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J.B. Pesticides removal using conventional and low-cost adsorbents: A review. Clean Soil Air Water 2011, 39, 1105–1119. [Google Scholar] [CrossRef]
- Olawale, S.A. Biosorption of heavy metals from aqueous solutions: Insight and review. Arch. Ind. Eng. 2020, 3, 113. [Google Scholar] [CrossRef]
- Gupta, P.; Diwan, B. Bacterial exopolysaccharide-mediated heavy metal removal: A review on biosynthesis, mechanism and remediation strategies. Biotechnol. Rep. 2016, 13, 58–71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Castellanos-Estupiñan, M.A.; Carrillo-Botello, A.M.; Rozo-Granados, L.S.; Becerra-Moreno, D.; García-Martínez, J.B.; Urbina-Suarez, N.A.; López-Barrera, G.L.; Barajas-Solano, A.F.; Bryan, S.J.; Zuorro, A. Removal of nutrients and pesticides from agricultural runoff using microalgae and cyanobacteria. Water 2022, 14, 558. [Google Scholar] [CrossRef]
- Sin Chan, S.; Shiong Khoo, K.; Wayne Chew, K.; Chuan Ling, T.; Loke Show, P. Recent advances in biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium—A review. Bioresour. Technol. 2021, 339, 126159. [Google Scholar] [CrossRef]
- Khan, A.H.; Kiyani, A.; Santiago-Herrera, M.; Ibáñez, J.; Yousaf, S.; Iqbal, M.; Martel-Martín, S.; Barros, R. Sustainability of phytoremediation: Post-harvest stratagems and economic opportunities for the produced metals contaminated biomass. J. Environ. Manag. 2022, 326, 116700. [Google Scholar] [CrossRef]
- Wilson, S.B.; Brown, R.A. In situ bioreclamation: A cost-effective technology to remediate subsurface organic contamination. Ground Water Monit. Remediat. 1989, 9, 173–179. [Google Scholar] [CrossRef]
- Usha, M.; Sarat Chandra, T.; Sarada, R.; Chauhan, V.S. Removal of nutrients and organic pollution load from pulp and paper mill effluent by microalgae in outdoor open pond. Bioresour. Technol. 2016, 214, 856–860. [Google Scholar] [CrossRef] [PubMed]
- Warren, N.; Allan, I.J.; Carter, J.E.; House, W.A.; Parker, A. Pesticides and other micro-organic contaminants in freshwater sedimentary environments—A review. Appl. Geochem. 2003, 18, 159–194. [Google Scholar] [CrossRef]
- Ibrahim, W.M.; Karam, M.A.; Elshahat, R.M.; Adway, A.A. Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed. Res. Int. 2014, 2014, 392682. [Google Scholar] [CrossRef]
- Cáceres, T.P.; Megharaj, M.; Naidu, R. Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr. Microbiol. 2008, 57, 643–646. [Google Scholar] [CrossRef]
- Singhal, M.; Jadhav, S.; Sonone, S.S.; Sankhla, M.S. Microalgae-based sustainable bioremediation of water contaminated by pesticides. Biointerface Res. Appl. Chem. 2021, 12, 149–169. [Google Scholar] [CrossRef]
- Wan, L.; Wu, Y.; Ding, H.; Zhang, W. Toxicity, biodegradation, and metabolic fate of organophosphorus pesticide trichlorfon on the freshwater algae Chlamydomonas reinhardtii. J. Agric. Food Chem. 2020, 68, 1645–1653. [Google Scholar] [CrossRef]
- Ni, Y.; Lai, J.; Wan, J.; Chen, L. Photosynthetic responses and accumulation of mesotrione in two freshwater algae. Environ. Sci. Process. Impacts 2014, 16, 2288–2294. [Google Scholar] [CrossRef]
- Yeheyo, H.A.; Ealias, A.M.; George, G.; Jagannathan, U.M. Bioremediation potential of microalgae for sustainable soil treatment in India: A comprehensive review on heavy metal and pesticide contaminant removal. J. Environ. Manag. 2024, 363, 121409. [Google Scholar] [CrossRef] [PubMed]
- Top, E.M.; Springael, D.; Boon, N. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol. Ecol. 2002, 42, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Kuritz, T. Cyanobacteria as agents for the control of pollution by pesticides and chlorinated organic compounds. J. Appl. Microbiol. 1998, 85 (Suppl. 1), 186S–192S. [Google Scholar] [CrossRef] [PubMed]
- Guío, J.; Fillat, M.F.; Peleato, M.L.; Sevilla, E. Responses of Anabaena sp. PCC7120 to lindane: Physiological effects and differential expression of potential lin genes. Microbiol. Open 2023, 12, e1355. [Google Scholar] [CrossRef]
- Kuritz, T.; Bocanera, L.V.; Rivera, N. Dechlorination of lindane by the cyanobacterium Anabaena sp. strain PCC7120 depends on the function of the nir operon. J. Bacteriol. 1997, 179, 3368–3370. [Google Scholar] [CrossRef]
- Park, B.; Lee, S. Biotransformation of aldrin and chlorpyrifos-methyl by Anabaena sp. PCC 7120. Korean J. Environ. Agric. 2010, 29, 184–188. [Google Scholar] [CrossRef]
- Tang, J.; Hoagland, K.D.; Siegfried, B.D. Uptake and bioconcentration of atrazine by selected freshwater algae. Environ. Toxicol. Chem. 1998, 17, 1124–1130. [Google Scholar] [CrossRef]
- Megharaj, M.; Kantachote, D.; Singleton, I.; Naidu, R. Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ. Pollut. 2000, 109, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Razek, M.A.; Abozeid, A.M.; Eltholth, M.; Abouelenien, F.A.; El-Midany, S.A.; Moustafa, N.Y.; Mohamed, R.A. Bioremediation of a pesticide and selected heavy metals in wastewater from various sources using a consortium of microalgae and cyanobacteria. Slov. Vet. Res. 2019, 56, 744. [Google Scholar] [CrossRef]
- Papazi, A.; Karamanli, M.; Kotzabasis, K. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—The biodegradation strategy of microalgae. J. Biotechnol. 2019, 296, 61–68. [Google Scholar] [CrossRef]
- Kurade, M.B.; Kim, J.R.; Govindwar, S.P.; Jeon, B.-H. Insights into microalgae-mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 2016, 20, 126–134. [Google Scholar] [CrossRef]
- Sethunathan, N.; Megharaj, M.; Chen, Z.L.; Williams, B.D.; Lewis, G.; Naidu, R. Algal degradation of a known endocrine-disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J. Agric. Food Chem. 2004, 52, 3030–3035. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Xu, Y.; Sun, C.; Zhu, L.; Sun, S.; Zhao, Y.; Hu, C. Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity. Ecotoxicol. Environ. Saf. 2021, 207, 111546. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, P.; Zhou, X.; Huang, Y.; Zhang, W.; Chen, S. Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. J. Hazard. Mater. 2021, 411, 125026. [Google Scholar] [CrossRef] [PubMed]
- Wheelock, C.E.; Shan, G.; Ottea, J.A. Overview of carboxylesterases and their role in the metabolism of insecticides. J. Pestic. Sci. 2005, 30, 75–83. [Google Scholar] [CrossRef]
- Singh, B. Review on microbial carboxylesterase: General properties and role in organophosphate pesticides degradation. Biochem. Mol. Biol. 2014, 2, 1–6. [Google Scholar] [CrossRef]
- Nanda, M.; Kumar, V.; Fatima, N.; Pruthi, V.; Verma, M.; Chauhan, P.K.; Vlaskin, M.S.; Grigorenko, A.V. Detoxification mechanism of organophosphorus pesticide via carboxylesterase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae. Aquat. Toxicol. 2019, 209, 49–55. [Google Scholar] [CrossRef]
- Dimaano, N.G.; Iwakami, S. Cytochrome P450-mediated herbicide metabolism in plants: Current understanding and prospects. Pest Manag. Sci. 2020, 76, 2674–2683. [Google Scholar] [CrossRef]
- Thies, F.; Backhaus, T.; Bossmann, B.; Grimme, L.H. Xenobiotic biotransformation in unicellular green algae (involvement of cytochrome P450 in the activation and selectivity of the pyridazinone pro-herbicide metflurazon). Plant Physiol. 1996, 112, 361–370. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, G.; Yu, Y. Immobilization of microalgae for biosorption and degradation of butyltin chlorides. Artif. Cells Blood Substit. Immobil. Biotechnol. 1998, 26, 399–410. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Hoagland, R.E.; Zablotowicz, R.M.; Hall, J.C. Pesticide metabolism in plants and microorganisms. Weed Sci. 2003, 51, 472–478. [Google Scholar] [CrossRef]
- Kreuz, K.; Martinoia, E. Herbicide metabolism in plants: Integrated pathways of detoxification. In Advances in Herbicide Metabolism; Woodhead Publishing: Cambridge, UK, 1999; pp. 279–302. [Google Scholar] [CrossRef]
- Hultberg, M.; Bodin, H.; Ardal, E.; Asp, H. Effect of microalgal treatments on pesticides in water. Environ. Technol. 2016, 37, 893–898. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Freitas, J.; Fernandes, I.; Silva, P. Microalgae as biofertilizers: A sustainable way to improve soil fertility and plant growth. Sustainability 2023, 15, 12413. [Google Scholar] [CrossRef]
- Gonçalves, A.L. The use of microalgae and cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Prasanna, R.; Ramakrishnan, B.; Simranjit, K.; Ranjan, K.; Kanchan, A.; Hossain, F.; Nain, L. Cyanobacterial and rhizobial inoculation modulates the plant physiological attributes and nodule microbial communities of chickpea. Arch. Microbiol. 2017, 199, 1311–1323. [Google Scholar] [CrossRef]
- Karthikeyan, N.; Prasanna, R.; Nain, L.; Kaushik, B.D. Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. Eur. J. Soil Biol. 2007, 43, 23–30. [Google Scholar] [CrossRef]
- Renuka, N.; Prasanna, R.; Sood, A.; Ahluwalia, A.S.; Bansal, R.; Babu, S.; Singh, R.; Shivay, Y.S.; Nain, L. Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environ. Sci. Pollut. Res. 2016, 23, 6608–6620. [Google Scholar] [CrossRef]
- Prasanna, R.; Kanchan, A.; Kaur, S.; Ramakrishnan, B.; Ranjan, K.; Singh, M.C.; Hasan, M.; Saxena, A.K.; Shivay, Y.S. Chrysanthemum growth gains from beneficial microbial interactions and fertility improvements in soil under protected cultivation. Hortic. Plant J. 2016, 2, 229–239. [Google Scholar] [CrossRef]
- Pereira, I.; Ortega, R.; Barrientos, L.; Moya, M.; Reyes, G.; Kramm, V. Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J. Appl. Phycol. 2009, 21, 135–144. [Google Scholar] [CrossRef]
- Osman, M.E.H.; El-Sheekh, M.M.; El-Naggar, A.H.; Gheda, S.F. Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol. Fertil. Soils 2010, 46, 861–875. [Google Scholar] [CrossRef]
- Swarnalakshmi, K.; Prasanna, R.; Kumar, A.; Pattnaik, S.; Chakravarty, K.; Shivay, Y.S.; Singh, R.; Saxena, A.K. Evaluating the influence of novel cyanobacterial biofilmed biofertilizers on soil fertility and plant nutrition in wheat. Eur. J. Soil Biol. 2013, 55, 107–116. [Google Scholar] [CrossRef]
- Alvarez, A.L.; Weyers, S.L.; Gardner, R.D. Cyanobacteria-based soil amendments in the soil-plant system: Effects of inoculations on soil nutrient and microbial dynamics under spring wheat growth. Algal Res. 2023, 71, 103326. [Google Scholar] [CrossRef]
- Vidal, D.A.; Benítez, R.H.; Guerrero, J.V. Efecto de la inoculación de cianobacterias en cultivos de interés comercial en zonas semiáridas de La Guajira—Colombia. Rev. Investig. Cienc. Amb. 2018, 5, 20–31. [Google Scholar] [CrossRef]
- Gheda, S.F.; Ahmed, D.A. Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rend. Lincei 2015, 26, 121–131. [Google Scholar] [CrossRef]
- Jose, S.; Renuka, N.; Ratha, S.K.; Kumari, S.; Bux, F. Microalgal bioinoculants for sustainable agriculture and their interaction with biotic and abiotic components of the soil. Pedosphere 2023, 33, 297–314. [Google Scholar] [CrossRef]
- Nyika, J.M. The use of micro-algal technologies for soil and agronomic improvements. In Handbook of Research on Microbial Remediation and Microalgal Biotechnology for Sustainable Soil; IGI Global: Hershey, PA, USA, 2021; pp. 290–312. [Google Scholar] [CrossRef]
- Abinandan, S.; Subashchandrabose, S.R.; Venkateswarlu, K.; Megharaj, M. Soil microalgae and cyanobacteria: The biotechnological potential in the maintenance of soil fertility and health. Crit. Rev. Biotechnol. 2019, 39, 981–998. [Google Scholar] [CrossRef] [PubMed]
- Righini, H.; Francioso, O.; Martel Quintana, A.; Roberti, R. Cyanobacteria: A natural source for controlling agricultural plant diseases caused by fungi and oomycetes and improving plant growth. Horticulturae 2022, 8, 58. [Google Scholar] [CrossRef]
- Metting, B. Dynamics of wet and dry aggregate stability from a three-year microalgal soil conditioning experiment in the field. Soil Sci. 1987, 143, 139–143. [Google Scholar] [CrossRef]
- Metting, B.; Rayburn, W.R. The influence of a microalgal conditioner on selected Washington soils: An empirical study. Soil Sci. Soc. Am. J. 1983, 47, 682–685. [Google Scholar] [CrossRef]
- Rahmonov, O.; Cabała, J.; Bednarek, R.; Rożek, D.; Florkiewicz, A. Role of soil algae on the initial stages of soil formation in sandy polluted areas. Ecol. Chem. Eng. S 2015, 22, 675–690. [Google Scholar] [CrossRef]
- Román, J.R.; Roncero-Ramos, B.; Chamizo, S.; Rodríguez-Caballero, E.; Cantón, Y. Restoring soil functions by means of cyanobacteria inoculation: Importance of soil conditions and species selection. Land Degrad. Dev. 2018, 29, 3184–3193. [Google Scholar] [CrossRef]
- Chamizo, S.; Mugnai, G.; Rossi, F.; Certini, G.; De Philippis, R. Cyanobacteria inoculation improves soil stability and fertility on different textured soils: Gaining insights for applicability in soil restoration. Front. Environ. Sci. 2018, 6, 49. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.R.; Zhu, J.; Ruan, R.R. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef] [PubMed]
- Marks, E.A.; Miñón, J.; Pascual, A.B.; Montero, O.; Navas, L.M.; Rad, C. Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Sci. Total Environ. 2017, 605–606, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, K.; Priya, H.; Ramakrishnan, B.; Prasanna, R.; Venkatachalam, S.; Thapa, S.; Tiwari, R.; Nain, L.; Singh, R.; Shivay, Y.S. Cyanobacterial inoculation modifies the rhizosphere microbiome of rice planted to a tropical alluvial soil. Appl. Soil Ecol. 2016, 108, 195–203. [Google Scholar] [CrossRef]
- Bharti, A.; Velmourougane, K.; Prasanna, R. Phototrophic biofilms: Diversity, ecology and applications. J. Appl. Phycol. 2017, 29, 2729–2744. [Google Scholar] [CrossRef]
- Bondoc, K.G.; Heuschele, J.; Gillard, J.; Vyverman, W.; Pohnert, G. Selective silicate-directed motility in diatoms. Nat. Commun. 2016, 7, 10540. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Yu, S.; Yu, Z.; Ma, M.; Liu, M.; Pei, H. Phycoremediation potential of salt-tolerant microalgal species: Motion, metabolic characteristics, and their application for saline–alkali soil improvement in eco-farms. Microorganisms 2024, 12, 676. [Google Scholar] [CrossRef]
- Vo, H.N.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Chen, Z.; Wang, X.C.; Chen, R.; Zhang, X. Microalgae for saline wastewater treatment: A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1224–1265. [Google Scholar] [CrossRef]
- Pei, H.; Yu, Z. Microalgae: A revolution for salt-affected soil remediation. Trends Biotechnol. 2023, 41, 147–149. [Google Scholar] [CrossRef]
- Shayesteh, H.; Jenkins, S.N.; Moheimani, N.R.; Bolan, N.; Bühlmann, C.H.; Gurung, S.K.; Vadiveloo, A.; Bahri, P.A.; Mickan, B.S. Nitrogen dynamics and biological processes in soil amended with microalgae grown in abattoir digestate to recover nutrients. J. Environ. Manag. 2023, 344, 118467. [Google Scholar] [CrossRef] [PubMed]
- Lutzu, G.A.; Turgut Dunford, N. Interactions of microalgae and other microorganisms for enhanced production of high-value compounds. Front. Biosci. 2018, 23, 1487–1504. [Google Scholar] [CrossRef]
- Choix, F.J.; Bashan, Y.; Mendoza, A.; de-Bashan, L.E. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J. Biotechnol. 2014, 177, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Isichei, A.O. The role of algae and cyanobacteria in arid lands: A review. Arid Soil Res. Rehabil. 1990, 4, 1–17. [Google Scholar] [CrossRef]
- Liu, Y.; Song, L.; Shen, Y.; Li, D.; Hu, C.; Huang, Z.; Hu, Z.; Zhu, Y. Potential of terrestrial microalgae and cyanobacteria in environmental technology. In Photosynthetic Microorganism in Environmental Biotechnology; Springer: Hong Kong, 2001. [Google Scholar]
- Park, C.; Li, X.; Zhao, Y.; Jia, R.; Hur, J. Rapid development of cyanobacterial crust in the field for combating desertification. PLoS ONE 2017, 12, e0179903. [Google Scholar] [CrossRef]
- Xiao, R.; Zheng, Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 2016, 34, 1225–1244. [Google Scholar] [CrossRef]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as multi-functional options in modern agriculture: Current trends, prospects and challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Lu, X.; Zhou, G.; Shen, H.; Li, H.; Li, S.; Pan, X.; Dao, G. Microalgae for phosphorus chemical wastewater treatment and recovery of phosphorus. Environ. Res. 2025, 276, 121511. [Google Scholar] [CrossRef]
- Hinrichsen, D.; Robey, B.; Ud, U. Solutions for a water-short world. Popul. Rep. Ser. M Spec. Top. 1998, 14, 1–31. [Google Scholar] [PubMed]
- Gaonkar, G.V.; Pavan, P.S. A review on wastewater treatment techniques. J. Emerg. Technol. Innov. Res. (JETIR) 2019, 6, 102–109. [Google Scholar]
- Shemer, H.; Wald, S.; Semiat, R. Challenges and solutions for global water scarcity. Membranes 2023, 13, 612. [Google Scholar] [CrossRef] [PubMed]
- Barabash, N.A.; Orobinskaya, V.N. Using resource-saving wastewater treatment technology in an industrial city. In Proceedings of the International Scientific and Practical Conference on Sustainable Development of Regional Infrastructure ISSDRI—Volume 1, Yekaterinburg, Russia, 14–15 March 2021; pp. 81–88. [Google Scholar] [CrossRef]
- Satya, A.D.M.; Cheah, W.Y.; Yazdi, S.K.; Cheng, Y.-S.; Khoo, K.S.; Vo, D.-V.N.; Bui, X.D.; Vithanage, M.; Show, P.L. Progress on microalgae cultivation in wastewater for bioremediation and circular bioeconomy. Environ. Res. 2023, 218, 114948. [Google Scholar] [CrossRef] [PubMed]
- Guldhe, A.; Kumari, S.; Ramanna, L.; Ramsundar, P.; Singh, P.; Rawat, I.; Bux, F. Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J. Environ. Manag. 2017, 203 Pt 1, 299–315. [Google Scholar] [CrossRef]
- Pacheco, M.M.; Hoeltz, M.; Moraes, M.S.; Schneider, R.D. Microalgae: Cultivation techniques and wastewater phycoremediation. J. Environ. Sci. Health Part A 2015, 50, 585–601. [Google Scholar]
- Price, S.; Pernice, M.; Sutherland, D.L.; Kuzhiumparambil, U.; Ralph, P. Assessing the suitability of domestic wastewater as a medium for cyanobacterial PHB bioplastic production. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Cho, S.; Lee, N.; Park, S.; Yu, J.; Luong, T.T.; Oh, Y.K.; Lee, T. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresour. Technol. 2013, 131, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Cabanelas, I.T.; Ruiz, J.; Arbib, Z.; Chinalia, F.A.; Garrido-Pérez, C.; Rogalla, F.; Nascimento, I.A.; Perales, J.A. Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour. Technol. 2013, 131, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, Z.; Takala, J.; Hiltunen, E.; Qin, L.; Xu, Z.; Qin, X. Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresour. Technol. 2013, 137, 318–325. [Google Scholar] [CrossRef]
- Samorì, G.; Samorì, C.; Guerrini, F.; Pistocchi, R. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Res. 2013, 47, 791–801. [Google Scholar] [CrossRef]
- Lizzul, A.M.; Hellier, P.; Purton, S.; Baganz, F.; Ladommatos, N.; Campos, L.C. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour. Technol. 2014, 151, 12–18. [Google Scholar] [CrossRef]
- Liu, Y.; Yildiz, I. The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int. J. Energy Res. 2018, 42, 2997–3006. [Google Scholar] [CrossRef]
- Hawrot-Paw, M.; Koniuszy, A.; Gałczyńska, M.; Zając, G.; Szyszlak-Bargłowicz, J. Production of microalgal biomass using aquaculture wastewater as growth medium. Water 2019, 12, 106. [Google Scholar] [CrossRef]
- Aketo, T.; Hoshikawa, Y.; Nojima, D.; Yabu, Y.; Maeda, Y.; Yoshino, T.; Takano, H.; Tanaka, T. Selection and characterization of microalgae with potential for nutrient removal from municipal wastewater and simultaneous lipid production. J. Biosci. Bioeng. 2020, 129, 565–572. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Kuo, E.W.; Nagarajan, D.; Ho, S.H.; Dong, C.D.; Lee, D.J.; Chang, J.S. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour. Technol. 2020, 302, 122814. [Google Scholar] [CrossRef]
- Han, W.; Jin, W.; Li, Z.; Wei, Y.; He, Z.; Chen, C.; Qin, C.; Chen, Y.; Tu, R.; Zhou, X. Cultivation of microalgae for lipid production using municipal wastewater. Process Saf. Environ. Prot. 2021, 155, 155–165. [Google Scholar] [CrossRef]
- Gupta, S.; Marchetti, J.M. Co-cultivation of high-value microalgae species with filamentous microalgae for dairy wastewater treatment. NPJ Clean Water 2024, 7, 119. [Google Scholar] [CrossRef]
- Velásquez-Orta, S.B.; Yáñez-Noguez, I.; Ramírez, I.M.; Ledesma, M.T.O. Pilot-scale microalgae cultivation and wastewater treatment using high-rate ponds: A meta-analysis. Environ. Sci. Pollut. Res. Int. 2024, 31, 46994–47021. [Google Scholar] [CrossRef]
- Hajri, A.K.; Alsharif, I.; Albalawi, M.A.; Alshareef, S.A.; Albalawi, R.K.; Jamoussi, B. Utilizing mixed cultures of microalgae to up-cycle and remove nutrients from dairy wastewater. Biology 2024, 13, 591. [Google Scholar] [CrossRef]
- Baraldi, L.; Usai, L.; Torre, S.; Fais, G.; Casula, M.; Dessi, D.; Nieri, P.; Concas, A.; Lutzu, G.A. Dairy wastewaters to promote mixotrophic metabolism in Limnospira (Spirulina) platensis: Effect on biomass composition, phycocyanin content, and fatty acid methyl ester profile. Life 2025, 15, 184. [Google Scholar] [CrossRef]
- Singh, G.; Patidar, S.K. Microalgae harvesting techniques: A review. J. Environ. Manag. 2018, 217, 499–508. [Google Scholar] [CrossRef]
- Barboza-Rodríguez, R.; Rodríguez-Jasso, R.M.; Rosero-Chasoy, G.; Rosales Aguado, M.L.; Ruiz, H.A. Photobioreactor configurations in cultivating microalgae biomass for biorefinery. Bioresour. Technol. 2023, 394, 130208. [Google Scholar] [CrossRef]
- Chisti, Y. Large-scale production of algal biomass: Raceway ponds. In Handbook of Microalgal Culture; Richmond, A., Ed.; Wiley-Blackwell: Oxford, UK, 2016; pp. 77–92. [Google Scholar] [CrossRef]
- Amaral, M.S.; Loures, C.C.; Naves, F.L.; Samanamud, G.L.; Silva, M.B.; Prata, A.M. Microalgae cultivation in photobioreactors aiming at biodiesel production. In Biotechnological Applications of Biomass; IntechOpen: Rijeka, Croatia, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Madhubalaji, C.; Shekh, A.Y.; Sijil, P.V.; Mudliar, S.N.; Chauhan, V.S.; Sarada, R.; Rao, A.R.; Ravishankar, G.A. Open cultivation systems and closed photobioreactors for microalgal cultivation and biomass production. In Handbook of Algal Technologies and Phytochemicals; CRC Press: Boca Raton, FL, USA, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Yılmaz, H. Mikroalg üretimi için fotobiyoreaktör tasarımları. Ege J. Fish. Aquat. Sci. 2006, 23, 327–332. [Google Scholar]
- Asri, N.F.; Razak, M.N.; Ihsan, N.; Kamaroddin, M.F. Cultivation of marine microalgae Nannochloropsis sp. in macro-bubbles photobioreactor system. In AIP Conference Proceedings, Proceedings of the International Conference on Bioengineering and Technology (IConBET2021), Kelantan, Malaysia, 24–25 May 2021; AIP Publishing LLC: Melville, NY, USA, 2022; p. 020005. [Google Scholar] [CrossRef]
- Kunjapur, A.M.; Eldridge, R.B. Photobioreactor design for commercial biofuel production from microalgae. Ind. Eng. Chem. Res. 2010, 49, 3516–3526. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.I.; Einarsson, H. Overview and challenges of large-scale cultivation of photosynthetic microalgae and cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef] [PubMed]
- Esteves, A.F.; Almeida, C.J.; Gonçalves, A.L.; Pires, J.C. Microalgae harvesting techniques. In Advances in Microalgae-Based Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 217–240. [Google Scholar] [CrossRef]
- Show, P.L.; Tan, J.; Lee, S.Y.; Chew, K.W.; Lam, M.K.; Lim, J.; Ho, S. A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered 2020, 11, 116–129. [Google Scholar] [CrossRef] [PubMed]
- Hladíková, M.; Šulc, R. Key aspects of selection of a separation method used for harvesting of microalgae from aqueous solutions. Chem. Eng. Trans. 2021, 86, 157–162. [Google Scholar] [CrossRef]
- García-Galán, M.J.; Monllor-Alcaraz, L.S.; Postigo, C.; Uggetti, E.; López de Alda, M.; Díez-Montero, R.; García, J. Microalgae-based bioremediation of water contaminated by pesticides in peri-urban agricultural areas. Environ. Pollut. 2020, 265 Pt B, 114579. [Google Scholar] [CrossRef]
- Subramanian, G.; Sekar, S.; Sampoornam, S. Biodegradation and utilization of organophosphorus pesticides by cyanobacteria. Int. Biodeterior. Biodegrad. 1994, 33, 129–143. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Román, J.R.; Gómez-Serrano, C.; Cantón, Y.; Acién, F.G. Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J. Appl. Phycol. 2019, 31, 2217–2230. [Google Scholar] [CrossRef]
- Román, J.R.; Chamizo, S.; Roncero-Ramos, B.; Adessi, A.; De Philippis, R.; Cantón, Y. Overcoming field barriers to restore dryland soils by cyanobacteria inoculation. Soil Tillage Res. 2020, 204, 104799. [Google Scholar] [CrossRef]
- Hossain, M.A.; Hossain, M.S.; Akter, M. Challenges faced by plant growth-promoting bacteria in field-level applications and suggestions to overcome the barriers. Physiol. Mol. Plant Pathol. 2023, 123, 102029. [Google Scholar] [CrossRef]
- Malusá, E.; Berg, G.; Biere, A.; Bohr, A.; Canfora, L.; Jungblut, A.D.; Kępka, W.; Kienzle, J.; Kusstatscher, P.; Masquelier, S.; et al. A holistic approach for enhancing the efficacy of soil microbial inoculants in agriculture. Glob. J. Agric. Innov. Res. Dev. 2021, 8, 14. [Google Scholar] [CrossRef]
- Roncero-Ramos, B.; Román, J.R.; Acién, G.; Cantón, Y. Towards large scale biocrust restoration: Producing an efficient and low-cost inoculum of N-fixing cyanobacteria. Sci. Total Environ. 2022, 842, 157704. [Google Scholar] [CrossRef] [PubMed]
- Dar, M.A.; Kaushik, G.; Chiu, J.F. Pollution status and biodegradation of organophosphate pesticides in the environment. In Advances in Environmental Pollution Management; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–42. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Potential of microalgae and cyanobacteria to improve soil health and agricultural productivity: A critical view. Environ. Sci. Adv. 2023, 2, 586. [Google Scholar] [CrossRef]
- Al Khiat, S.H.; Bukhari, N.A.; Ameen, F.; Abdel Raouf, N. Comparison of the microalgae Phormidium tenue and Chlorella vulgaris as biosorbents of Cd and Zn from aqueous environments. Environ. Res. 2023, 235, 116675. [Google Scholar] [CrossRef]
- Hastings, K.L.; Smith, L.E.; Lindsey, M.L.; Blotsky, L.C.; Downing, G.R.; Zellars, D.Q.; Downing, J.; Corena-McLeod, M. Effect of microalgae application on soil algal species diversity, cation exchange capacity, and organic matter after herbicide treatments. F1000Research 2014, 3, 281. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, L.; Li, F.; Xiao, M.; Lin, D.; Long, X.; Wu, Z. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. Molecules 2018, 23, 2313. [Google Scholar] [CrossRef]
- Christenson, L.; Sims, R.C. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 2011, 29, 686–702. [Google Scholar] [CrossRef]
- González González, R.B.; Flores Contreras, E.A.; Parra Saldívar, R.; Iqbal, H.M.N. Bio-removal of emerging pollutants by advanced bioremediation techniques. Environ. Res. 2022, 214 Pt 2, 113936. [Google Scholar] [CrossRef]
- Mordor Intelligence. Available online: http://www.mordorintelligence.com (accessed on 4 August 2025).
- Aqualia. Available online: https://www.aqualia.com (accessed on 4 August 2025).
- AlgaEnergy. Available online: https://algaenergy.com (accessed on 4 August 2025).
- Microphyt. Available online: https://www.microphyt.eu (accessed on 4 August 2025).
- Phyoterra. Available online: https://phycoterra.com/ (accessed on 4 August 2025).
- Cyanotech. Available online: https://www.cyanotech.com (accessed on 4 August 2025).
- Goh, P.S.; Lau, W.J.; Ismail, A.F.; Samawati, Z.; Liang, Y.Y.; Kanakaraju, D. Microalgae-enabled wastewater treatment: A sustainable strategy for bioremediation of pesticides. Water 2022, 15, 70. [Google Scholar] [CrossRef]


| Mechanism/Pathway | Organism(s) Studied | Target Pollutant(s) | Key Enzymes/Genes/ Processes | References |
|---|---|---|---|---|
| Degradation of organophosphate pesticide (hydrolysis and transformation) | Microalgae and cyanobacteria | Methyl parathion | Hydrolysis and subsequent metabolic transformation (specific enzymes not identified) | [8] |
| Aromatic hydrocarbon degradation | Indigenous soil microbial consortia (diesel-contaminated soil) | Diesel hydrocarbons | Catabolic genes xylE, ndoB | [51] |
| Reductive dechlorination via nitrate-reduction system | Filamentous cyanobacteria | Lindane | nir operon (nitrate reduction), light-dependent, ammonium inhibition | [52] |
| Mixotrophic carbon assimilation and pollutant degradation | Mixotrophic cyanobacteria and microalgae | Aromatic hydrocarbons, pesticides | Mixotrophic growth, pollutant adsorption; potential enzymatic transformation | [11,53] |
| Phytoremediation of wastewater pollutants | Various microalgae and cyanobacteria | Organic pollutants in wastewater | Adsorption, enzymatic transformation | [54,55] |
| Degradation of phenolic and heterocyclic aromatic compounds | Lyngbya lagerlerimi, Nostoc linckia, Oscillatoria rubescens, Elkatothrix viridis, Volvox aureus | Phenols, PAHs | Phenol oxidation to catechol; further degradation observed | [56] |
| Plastic degradation potential | Microalgae, cyanobacteria | Plastics | Oxidation, enzymatic breakdown | [57] |
| Effect Category | Mechanism/Microorganisms | Observed Outcomes/ Benefits | References |
|---|---|---|---|
| Soil structure and stability | Chlamydomonas, Chlorella, Nostoc, Oscillatoria; polysaccharides | ↑ Aggregate stability (11–77%), ↓ erosion, improved pedogenesis | [119,120,121] |
| Nutrient availability and mineralization | Nitrogen-fixing cyanobacteria (Anabaena sp., Nostoc, Scytonema, Tolypothrix), microalgae | ↑ Soil N (up to 57%), ↑ total N and organic C, reduce chemical N fertilizers by 25–50% | [106,107,109,110,111,122,123] |
| Plant growth promotion | Cyanobacteria, microalgae; phytohormones (auxins, cytokinins, gibberellins) | ↑ Seed germination, ↑ yield, ↑ grain and crop nutritional value | [104,105,115] |
| Soil microbial activity and symbiosis | Microalgal suspensions, cyanobacterial biofilms; exopolysaccharides | ↑ Soil microbial activity, stable microbial communities, nutrient cycling, enhanced rhizosphere microbiota | [117,124,125,126,127,128] |
| Water retention and salinity mitigation | Chlamydomonas, salt-tolerant microalgae | ↑ Soil water retention (2–5%), ↓ salinity, ↑ yields in saline-alkaline soils | [120,129,130,131] |
| Bioactive compound production | Microalgae and cyanobacteria | Production of phytohormones, exopolymers, bioactive metabolites, carbon sequestration | [57,116,117,118,132,133,134] |
| Wastewater | Microalgae | Biomass Accumulation (DCW g/L/day) | References |
|---|---|---|---|
| Municipal wastewater | Chlorella sp. | 0.92 | [124] |
| Industrial wastewater | Chlamydomonas sp. TAI-2 | 0.134 | [13] |
| Municipal wastewater | Chlorella sp. ADE5 | 3.01 | [150] |
| Municipal wastewater | Chlorella vulgaris | 0.039–0.195 | [151] |
| Piggery wastewater | Chlorella zofingiensis | 1.314 | [152] |
| Urban wastewater | Desmodesmus communis | 0.138–0.227 | [153] |
| Municipal wastewater | Chlorella sorokiniana | 0.22 | [154] |
| Municipal wastewater | Dunaliella salina | 0.1695 | [155] |
| Aquaculture wastewater | Chlorella minutissima | 4.77 | [156] |
| Municipal wastewater | Tetraselmis sp. NKG400013 Parachlorella kessleri NKG021201 Chloroidium saccharophilum | 1.03 | [157] |
| Swine wastewater | Chlorella sorokiniana AK-1 | 5.45 | [158] |
| Municipal wastewater | Scenedesmus obliquus | 0.58 | [159] |
| Dairy wastewater | Chlorella vulgaris (C.), Scenedesmus (S.), Tribonema (T.), Lyngbya (L.) (consortium S:T) | 0.084 | [160] |
| Urban wastewater | Chlorella sp. | 0.30 | [161] |
| Dairy wastewater | Spirulina platensis Micractinium, Chlorella | 0.251 | [162] |
| Dairy wastewater | Limnospira platensis | 0.330 | [163] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akmukhanova, N.R.; Seiilbek, S.N.; Zayadan, B.K.; Bolatkhan, K.; Bakytzhan, R.A.; Domash, G.S.; Bruce, B.D. Harnessing Microalgae and Cyanobacteria for Sustainable Pesticide Biodegradation: Advances, Challenges, and Ecological Benefits. Microorganisms 2025, 13, 2404. https://doi.org/10.3390/microorganisms13102404
Akmukhanova NR, Seiilbek SN, Zayadan BK, Bolatkhan K, Bakytzhan RA, Domash GS, Bruce BD. Harnessing Microalgae and Cyanobacteria for Sustainable Pesticide Biodegradation: Advances, Challenges, and Ecological Benefits. Microorganisms. 2025; 13(10):2404. https://doi.org/10.3390/microorganisms13102404
Chicago/Turabian StyleAkmukhanova, Nurziya R., Sandugash N. Seiilbek, Bolatkhan K. Zayadan, Kenzhegul Bolatkhan, Ramina A. Bakytzhan, Gulzhaina S. Domash, and Barry D. Bruce. 2025. "Harnessing Microalgae and Cyanobacteria for Sustainable Pesticide Biodegradation: Advances, Challenges, and Ecological Benefits" Microorganisms 13, no. 10: 2404. https://doi.org/10.3390/microorganisms13102404
APA StyleAkmukhanova, N. R., Seiilbek, S. N., Zayadan, B. K., Bolatkhan, K., Bakytzhan, R. A., Domash, G. S., & Bruce, B. D. (2025). Harnessing Microalgae and Cyanobacteria for Sustainable Pesticide Biodegradation: Advances, Challenges, and Ecological Benefits. Microorganisms, 13(10), 2404. https://doi.org/10.3390/microorganisms13102404

