The Role of Infrastructural and Psychological Factors in Sustainable Transportation Mode Choices
Abstract
:1. Introduction
2. Methods
2.1. Survey Description
2.2. Survey Content
2.2.1. General Transportation Mode Use
2.2.2. Infrastructural Variables
2.2.3. Psychological Variables
3. Results
3.1. Descriptive Statistics
3.2. Effects of Spatial Factors and Psychological Variables on Mobility Behavior
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ecke, L.; Vallee, J.; Chlond, B.; Vortisch, P. Deutsches Mobilitätspanel (MOP)—Wissenschaftliche Begleitung und Auswertungen Bericht 2022/2023: Alltagsmobilität und Fahrleistung; Karlsruher Institut für Technologie (KIT): Karlsruhe, Germany, 2023. [Google Scholar]
- United Nations. The Paris Agreement: United Nations Framework Convention on Climate Change. In Proceedings of the 21st Conference of the Parties, Paris, France, 30 November–12 December 2015.
- Canzler, W.; Wittowsky, D. The impact of Germany’s Energiewende on the transport sector—Unsolved problems and conflicts. Util. Policy 2016, 41, 246–251. [Google Scholar] [CrossRef]
- Shah, K.J.; Pan, S.-Y.; Lee, I.; Kim, H.; You, Z.; Zheng, J.-M.; Chiang, P.-C. Green transportation for sustainability: Review of current barriers, strategies, and innovative technologies. J. Clean. Prod. 2021, 326, 129392. [Google Scholar] [CrossRef]
- Manderscheid, K. Antriebs-, Verkehrs- oder Mobilitätswende: Zur Elektrifizierung des Automobilitätsdispositivs. In Baustelle Elektromobilität; Brunnengräber, A., Haas, T., Eds.; transcript Verlag: Bielefeld, Germany, 2020; pp. 37–67. [Google Scholar]
- Devika, R.; Harikrishna, M.; Anjaneyulu, M.V.L.R. Influence of psychological factors in mode choice decision making: A structural equation modeling approach. Transp. Res. Procedia 2020, 48, 2821–2830. [Google Scholar] [CrossRef]
- Donald, I.J.; Cooper, S.R.; Conchie, S.M. An extended theory of planned behaviour model of the psychological factors affecting commuters’ transport mode use. J. Environ. Psychol. 2014, 40, 39–48. [Google Scholar] [CrossRef]
- Manca, S.; Tirotto, F.A.; Mura, N.; Fornara, F. Socio-Psychological and Design Features Related to Transport Choices: A Focus Group Research in the Metropolitan Area of Cagliari (Sardinia, Italy). Front. Psychol. 2021, 12, 808509. [Google Scholar] [CrossRef]
- Shahin, M.; Ghasri, M.; Abbasi, A. Exploring the psychological drivers of sustainable transport consumption: The role of Big-Two personality traits. Int. J. Sustain. Transp. 2024, 18, 547–561. [Google Scholar] [CrossRef]
- Göransson, J.; Andersson, H. Factors that make public transport systems attractive: A review of travel preferences and travel mode choices. Eur. Transp. Res. Rev. 2023, 15, 32. [Google Scholar] [CrossRef]
- Abrahamse, W.; Steg, L.; Gifford, R.; Vlek, C. Factors influencing car use for commuting and the intention to reduce it: A question of self-interest or morality? Transp. Res. Part F Traffic Psychol. Behav. 2009, 12, 317–324. [Google Scholar] [CrossRef]
- Bamberg, S.; Ajzen, I.; Schmidt, P. Choice of Travel Mode in the Theory of Planned Behavior: The Roles of Past Behavior, Habit, and Reasoned Action. Basic Appl. Soc. Psychol. 2003, 25, 175–187. [Google Scholar] [CrossRef]
- Haustein, S.; Hunecke, M. Reduced Use of Environmentally Friendly Modes of Transportation Caused by Perceived Mobility Necessities: An Extension of the Theory of Planned Behavior1. J. Appl. Soc. Psychol. 2007, 37, 1856–1883. [Google Scholar] [CrossRef]
- Park, S.; Park, S. Employee adaptive performance and its antecedents: Review and synthesis. Hum. Resour. Dev. Rev. 2019, 18, 294–324. [Google Scholar] [CrossRef]
- Apa Dictionary of Psychology, 2nd ed.; VandenBos, G.R., Ed.; American Psychological Association: Washington, DC, USA, 2015. [Google Scholar]
- Bohle Carbonell, K.; Stalmeijer, R.E.; Könings, K.D.; Segers, M.; van Merriënboer, J.J.G. How experts deal with novel situations: A review of adaptive expertise. Educ. Res. Rev. 2014, 12, 14–29. [Google Scholar] [CrossRef]
- van Valkengoed, A.M.; Steg, L.; Perlaviciute, G. Development and validation of a climate change perceptions scale. J. Environ. Psychol. 2021, 76, 101652. [Google Scholar] [CrossRef]
- Harris, B.S.; Howe, P.D. What factors are associated with public support for climate change adaptation policy in the U.S.? Environ. Res. Commun. 2023, 5, 091003. [Google Scholar] [CrossRef]
- van Valkengoed, A.M.; Perlaviciute, G.; Steg, L. Relationships between climate change perceptions and climate adaptation actions: Policy support, information seeking, and behaviour. Clim. Change 2022, 171, 14. [Google Scholar] [CrossRef]
- Zhai, W.; Gao, S.; Liu, M.; Wei, D. Examining the effects of climate change perception and commuting experience on the willingness to pay for micro-transit service in Tampa, FL. Humanit. Soc. Sci. Commun. 2023, 10, 821. [Google Scholar] [CrossRef]
- Fletcher, J.; Higham, J.; Longnecker, N. Climate change risk perception in the USA and alignment with sustainable travel behaviours. PLoS ONE 2021, 16, e0244545. [Google Scholar] [CrossRef]
- De Vos, J. Do people travel with their preferred travel mode? Analysing the extent of travel mode dissonance and its effect on travel satisfaction. Transp. Res. Part A Policy Pract. 2018, 117, 261–274. [Google Scholar] [CrossRef]
- Hunecke, M.; Heppner, H.; Groth, S. Fragebogen zu psychologischen Einflussfaktoren der Nutzung von Pkw, ÖPNV und Fahrrad (PsyVKN). Diagnostica 2021, 68, 3–13. [Google Scholar] [CrossRef]
- Hunecke, M.; Haustein, S.; Böhler, S.; Grischkat, S. Attitude-Based Target Groups to Reduce the Ecological Impact of Daily Mobility Behavior. Environ. Behav. 2008, 42, 3–43. [Google Scholar] [CrossRef]
- Kollmuss, A.; Agyeman, J. Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environ. Educ. Res. 2002, 8, 239–260. [Google Scholar] [CrossRef]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control: From Cognition to Behavior; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. [Google Scholar]
- Olde Kalter, M.-J.; La Paix Puello, L.; Geurs, K.T. Do changes in travellers’ attitudes towards car use and ownership over time affect travel mode choice? A latent transition approach in the Netherlands. Transp. Res. Part A Policy Pract. 2020, 132, 1–17. [Google Scholar] [CrossRef]
- Lanzini, P.; Khan, S.A. Shedding light on the psychological and behavioral determinants of travel mode choice: A meta-analysis. Transp. Res. Part F Traffic Psychol. Behav. 2017, 48, 13–27. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the Built Environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Naess, P. Urban Structure Matters: Residential Location, Car Dependence and Travel Behaviour, 1st ed.; Routledge: London, UK, 2006. [Google Scholar]
- Siedentop, S.; Roos, S.; Fina, S. Ist die „Autoabhängigkeit “von Bewohnern städtischer und ländlicher Siedlungsgebiete messbar? Entwicklung und Anwendung eines Indikatorenkonzepts in der Region Stuttgart. Raumforsch. und Raumordn.|Spat. Res. Plan. 2013, 71, 329–341. [Google Scholar]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Brons, M.; Givoni, M.; Rietveld, P. Access to railway stations and its potential in increasing rail use. Transp. Res. Part A Policy Pract. 2009, 43, 136–149. [Google Scholar] [CrossRef]
- Daniels, R.; Mulley, C. Explaining walking distance to public transport: The dominance of public transport supply. J. Transp. Land Use 2013, 6, 5–20. [Google Scholar] [CrossRef]
- O’Sullivan, S.; Morrall, J. Walking Distances to and from Light-Rail Transit Stations. Transp. Res. Rec. J. Transp. Res. Board 1996, 1538, 19–26. [Google Scholar] [CrossRef]
- Gruyter Cd Currie, G.; Truong, L.T.; Naznin, F. A meta-analysis and synthesis of public transport customer amenity valuation research. Transp. Rev. 2019, 39, 261–283. [Google Scholar] [CrossRef]
- Iseki, H.; Taylor, B.D. Not All Transfers Are Created Equal: Towards a Framework Relating Transfer Connectivity to Travel Behaviour. Transp. Rev. 2009, 29, 777–800. [Google Scholar] [CrossRef]
- Calthorpe, P. The Next American Metropolis: Ecology, Community, and the American Dream; Princeton Architectural Press: New York, NY, USA, 1993. [Google Scholar]
- Wardman, M.; Tyler, J. Rail network accessibility and the demand for inter-urban rail travel. Transp. Rev. 2000, 20, 3–24. [Google Scholar] [CrossRef]
- Shaheen, B.R.; Hasan, A.N. Integration of Transportation Stations as Intermodal Stations. J. Eng. 2018, 24, 1–23. [Google Scholar] [CrossRef]
- Currie, G.; Delbosc, A. Exploring the trip chaining behaviour of public transport users in Melbourne. Transp. Policy 2011, 18, 204–210. [Google Scholar] [CrossRef]
- FUTURA Consult Dr. Kummer. Zentrenkonzept Der Stadt Krefeld 2014. 2013. Available online: https://www.krefeld.de/C1257CFB0035577F/html/E7358C4EBA52354FC1257C59002B6A0B/$file/Zentrenkonzept%202014%20Stand%2013.01.14.pdf (accessed on 28 May 2024).
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 72, 199–219. [Google Scholar] [CrossRef]
- Geurs, K.T.; van Wee, B. Accessibility evaluation of land-use and transport strategies: Review and research directions. J. Transp. Geogr. 2004, 12, 127–140. [Google Scholar] [CrossRef]
- van Dam, K.; Meulders, M. The Adaptability Scale: Development, internal consistency, and initial validity evidence. Eur. J. Psychol. Assess. 2021, 37, 123–134. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis. Curr. Dir. Psychol. Sci. 1992, 1, 98–101. [Google Scholar] [CrossRef]
- Wang, S.; Hurlstone, M.J.; Leviston, Z.; Walker, I.; Lawrence, C. Construal-level theory and psychological distancing: Implications for grand environmental challenges. One Earth 2021, 4, 482–486. [Google Scholar] [CrossRef]
- Magginas, V.; Karatsoli, M.; Adamos, G.; Nathanail, E. Campaigns and Awareness-Raising Strategies on Sustainable Urban Mobility. In Data Analytics: Paving the Way to Sustainable Urban Mobility: Proceedings of 4th Conference on Sustainable Urban Mobility (CSUM2018), 24-25 May, Skiathos Island, Greece; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Aravind, A.; Mishra, S.; Meservy, M. Nudging towards sustainable urban mobility: Exploring behavioral interventions for promoting public transit. Transp. Res. Part D Transp. Environ. 2024, 129, 104130. [Google Scholar] [CrossRef]
- Pritchard, J. MaaS to pull us out of a car-centric orbit: Principles for sustainable Mobility-as-a-Service in the context of unsustainable car dependency. Case Stud. Transp. Policy 2022, 10, 1483–1493. [Google Scholar] [CrossRef]
- Bohte, W.; Maat, K.; van Wee, B. Measuring Attitudes in Research on Residential Self-Selection and Travel Behaviour: A Review of Theories and Empirical Research. Transp. Rev. 2009, 29, 325–357. [Google Scholar] [CrossRef]
- Guan, X.; Wang, D.; Jason Cao, X. The role of residential self-selection in land use-travel research: A review of recent findings. Transp. Rev. 2020, 40, 267–287. [Google Scholar] [CrossRef]
- Cheng, L.; Chen, X.; Wei, M.; Wu, J.; Hou, X. Modeling mode choice behavior incorporating household and individual sociodemographics and travel attributes based on rough sets theory. Comput. Intell. Neurosci. 2014, 2014, 560919. [Google Scholar] [CrossRef]
- Koszowski, C.; Gerike, R.; Hubrich, S.; Götschi, T.; Pohle, M.; Wittwer, R. Active Mobility: Bringing Together Transport Planning, Urban Planning, and Public Health. In Towards User-Centric Transport in Europe: Challenges, Solutions and Collaborations; Müller, B., Meyer, G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 149–171. [Google Scholar]
- Spengler, L.; Gößwein, E.; Kranefeld, I.; Liebherr, M.; Kracht, F.E.; Schramm, D.; Gennat, M. From Modeling to Optimizing Sustainable Public Transport: A New Methodological Approach. Sustainability 2023, 15, 8171. [Google Scholar] [CrossRef]
- Ployhart, R.E.; Bliese, P.D. Individual Adaptability (I-ADAPT) Theory: Conceptualizing the Antecedents, Consequences, and Measurement of Individual Differences in Adaptability. In Understanding Adaptability: A Prerequisite for Effective Performance within Complex Environments; Shawn, C., Burke, L., Pierce, G., Salas, E., Eds.; Emerald Group Publishing Limited: Leeds, UK, 2006; pp. 3–39. [Google Scholar]
Variable | M | SD | Range |
---|---|---|---|
Center Accessibility | 23.98 | 14.78 | 1.54–77.14 |
Railway Accessibility | 30.48 | 21.64 | 4.00–106.92 |
Adaptability | 3.22 | 0.64 | 1.10–5.00 |
Climate Change Perception | 6.00 | 0.85 | 2.20–7.00 |
Car Orientation | 2.95 | 0.91 | 1.00–5.00 |
General PT Use | 4.30 | 2.14 | 1.00–7.00 |
General MIT Use | 4.82 | 1.99 | 1.00–7.00 |
Variable | Center Accessibility | Railway Accessibility | Adaptability | Climate Change Perception | Car Orientation | General PT Use | General MIT Use |
---|---|---|---|---|---|---|---|
Center Accessibility | - | ||||||
Railway Accessibility | ρ = 0.120 | - | |||||
Adaptability | ρ = 0.125 | ρ = 0.206 ** | - | ||||
Climate Change Perception | ρ = 0.025 | ρ = 0.145 * | ρ = 0.064 | - | |||
Car Orientation | ρ = −0.008 | ρ = 0.114 | ρ = 0.035 | ρ = −0.162 * | - | ||
General PT Use | ρ = −0.107 | ρ = −0.169 * | ρ = 0.027 | ρ = 0.030 | ρ = −0.181 * | - | |
General MIT Use | ρ = 0.225 ** | ρ = 0.210 ** | ρ = −0.098 | ρ = 0.010 | ρ = 0.359 ** | ρ = −0.581 ** | - |
Predictors | Estimate | SE | p | 95% CI Bootstrap (10,000 Samples) |
---|---|---|---|---|
Constant | 681.61 | 0.004 | ||
Center Accessibility | −0.018 | 0.009 | 0.048 | [−0.037, 0.002] |
Railway Accessibility | −0.016 | 0.006 | 0.012 | [−0.026, −0.006] |
Adaptability | 0.136 | 0.206 | 0.510 | [−0.357, 0.656] |
Climate Change Perception | −0.043 | 0.157 | 0.784 | [−0.332, 0.300] |
Car Orientation | −0.375 | 0.148 | 0.011 | [−0.725, −0.037] |
Predictors | Estimate | SE | p | 95% CI Bootstrap (9797 Samples) |
---|---|---|---|---|
Constant | 561.40 | <0.001 | ||
Center Accessibility | 0.035 | 0.010 | <0.001 | [0.017, 0.055] |
Railway Accessibility | 0.020 | 0.007 | 0.002 | [0.009, 0.032] |
Adaptability | −0.551 | 0.221 | 0.013 | [−0.997, −0.128] |
Climate Change Perception | 0.090 | 0.171 | 0.598 | [−0.270, 0.489] |
Car Orientation | 0.971 | 0.167 | <0.001 | [0.639, 1.391] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gößwein, E.; Aertker, J.; Wittowsky, D.; Liebherr, M. The Role of Infrastructural and Psychological Factors in Sustainable Transportation Mode Choices. Appl. Sci. 2025, 15, 5953. https://doi.org/10.3390/app15115953
Gößwein E, Aertker J, Wittowsky D, Liebherr M. The Role of Infrastructural and Psychological Factors in Sustainable Transportation Mode Choices. Applied Sciences. 2025; 15(11):5953. https://doi.org/10.3390/app15115953
Chicago/Turabian StyleGößwein, Eva, Johannes Aertker, Dirk Wittowsky, and Magnus Liebherr. 2025. "The Role of Infrastructural and Psychological Factors in Sustainable Transportation Mode Choices" Applied Sciences 15, no. 11: 5953. https://doi.org/10.3390/app15115953
APA StyleGößwein, E., Aertker, J., Wittowsky, D., & Liebherr, M. (2025). The Role of Infrastructural and Psychological Factors in Sustainable Transportation Mode Choices. Applied Sciences, 15(11), 5953. https://doi.org/10.3390/app15115953