The Value of MRI and Radiomics for the Diagnostic Evaluation of Thyroid-Associated Ophthalmopathy
Abstract
:1. Introduction
2. Updates in MRI Sequences for TAO Diagnosis and Evaluation
2.1. Conventional Sequences
2.2. T1 Mapping
2.3. T2 Mapping
2.4. Diffusion-Weighted Imaging (DWI)
2.5. Dynamic Contrast-Enhanced (DCE) MRI
2.6. Diffusion Tensor Imaging (DTI)
2.7. Magnetization Transfer Image (MTI) and IDEAL-IQ
2.8. Radiomics
3. Applications in TAO
3.1. Diagnosis of TAO
3.2. Staging of TAO Activity
3.3. Evaluation and Prediction of Efficacy
4. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADC | Apparent diffusion coefficient |
AI | Artificial intelligence |
CAS | Clinical activity score |
CT | Computed tomography |
DCE-MRI | Dynamic contrast-enhanced (DCE) MRI |
DON | Dysthyroid optic neuropathy |
DTI | Diffusion tensor imaging |
DWI | Diffusion-weighted imaging |
EOM | Extraocular muscle |
GD | Graves’ disease |
HT | Hashimoto thyroiditis |
IDEAL | Iterative Decomposition to water and fat with Echo Asymmetry and Least-squares estimation |
IQ | Intelligent quantification |
IGF-1R | Insulin-like growth factor-1 receptor |
IVGC | Intravenous glucocorticoid |
LG | Lacrimal glands |
LGH | Herniation of LG |
LPS | Levator palpebrae superioris muscle |
MRI | Magnetic resonance imaging |
MTI | Magnetization transfer image |
OFT | Orbital fat tissue |
SI | Signal intensity |
SIR | Signal intensity ratio |
STIR | Short-tau inversion recovery |
T1WI | T1-weighted imaging |
T2WI | T2-weighted imaging |
T2RT | T2 relaxation time |
TAO | Thyroid-associated ophthalmopathy |
THSR-Ab | Thyrotropic hormone receptor autoantibody |
TSH | Thyrotropic hormone |
WF | Water Fraction |
References
- Li, Z.; Luo, Y.; Feng, X.; Zhang, Q.; Zhong, Q.; Weng, C.; Chen, Z.; Shen, J. Application of Multiparameter Quantitative Magnetic Resonance Imaging in the Evaluation of Graves’ Ophthalmopathy. J. Magn. Reson. Imaging 2023, 58, 1279–1289. [Google Scholar] [CrossRef]
- Li, R.; Li, J.; Wang, Z. Quantitative assessment of the intraorbital segment of the optic nerve in patients with thyroid orbitopathy using diffusion tensor imaging. Acta Radiol. 2023, 64, 725–731. [Google Scholar] [CrossRef] [PubMed]
- Wong, N.T.Y.; Yuen, K.F.K.; Aljufairi, F.M.A.A.; Lai, K.K.H.; Hu, Z.; Chan, K.K.W.; Tham, C.C.Y.; Pang, C.P.; Chong, K.K.L. Magnetic resonance imaging parameters on lacrimal gland in thyroid eye disease: A systematic review and meta-analysis. BMC Ophthalmol. 2023, 23, 347. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, L.; Zhang, J.; Chen, W.; Chen, H.; Liu, H.; Shi, H.; Wu, F.; Xu, X. T2-Weighted MR Imaging-Derived Radiomics for Pretreatment Determination of Therapeutic Response to Glucocorticoid in Patients with Thyroid-Associated Ophthalmopathy: Comparison with Semiquantitative Evaluation. J. Magn. Reson. Imaging 2022, 56, 862–872. [Google Scholar] [CrossRef]
- Wu, D.; Zhu, H.; Hong, S.; Li, B.; Zou, M.; Ma, X.; Zhao, X.; Wan, P.; Yang, Z.; Li, Y.; et al. Utility of multi-parametric quantitative magnetic resonance imaging of the lacrimal gland for diagnosing and staging Graves’ ophthalmopathy. Eur. J. Radiol. 2021, 141, 109815. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Song, X.; Zhang, H.; Tao, X.; Yang, G.; Wang, Y.; Liu, Y.; Zhou, H.; Sun, J.; Li, Y. The combination of T2-mapping value of lacrimal gland and clinical indicators can improve the stage prediction of Graves’ ophthalmopathy compared to clinical activity scores. Endocrine 2022, 78, 321–328. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.; Jiang, M.; Fang, S.; Huang, Y.; Li, Y.; Zhong, S.; Wang, Y.; Zhang, S.; Wu, Y.; et al. Application of Magnetic Resonance Imaging in the Evaluation of Disease Activity in Graves’ Ophthalmopathy. Endocr. Pract. 2021, 27, 198–205. [Google Scholar] [CrossRef]
- Sorace, A.G.; Elkassem, A.A.; Galgano, S.J.; Lapi, S.E.; Larimer, B.M.; Partridge, S.C.; Quarles, C.C.; Reeves, K.; Napier, T.S.; Song, P.N.; et al. Imaging for Response Assessment in Cancer Clinical Trials. Semin. Nucl. Med. 2020, 50, 488–504. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Luo, B.; Zhai, L.-H.; Wu, H.-Y.; Wang, Q.-X.; Yuan, G.; Jiang, G.-H.; Chen, L.; Zhang, J. Multi-Parametric Diffusion Tensor Imaging of The Optic Nerve for Detection of Dysthyroid Optic Neuropathy in Patients with Thyroid-Associated Ophthalmopathy. Front. Endocrinol. 2022, 13, 851143. [Google Scholar] [CrossRef]
- Basser, P.J.; Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson. B 1996, 111, 209–219. [Google Scholar] [CrossRef]
- Beaulieu, C. The basis of anisotropic water diffusion in the nervous system—A technical review. NMR Biomed. 2002, 15, 435–455. [Google Scholar] [CrossRef]
- Raj, S.; Vyas, S.; Modi, M.; Garg, G.; Singh, P.; Kumar, A.; Kamal Ahuja, C.; Goyal, M.K.; Govind, V. Comparative Evaluation of Diffusion Kurtosis Imaging and Diffusion Tensor Imaging in Detecting Cerebral Microstructural Changes in Alzheimer Disease. Acad. Radiol. 2022, 29 (Suppl. S3), S63–S70. [Google Scholar] [CrossRef]
- Henkelman, R.M.; Stanisz, G.J.; Graham, S.J. Magnetization transfer in MRI: A review. NMR Biomed. 2001, 14, 57–64. [Google Scholar] [CrossRef]
- Kollmer, J.; Kästel, T.; Jende, J.M.E.; Bendszus, M.; Heiland, S. Magnetization Transfer Ratio in Peripheral Nerve Tissue: Does It Depend on Age or Location? Investig. Radiol. 2018, 53, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Chen, L.; Zhou, J.; Chen, W.; Chen, H.-H.; Zhang, J.-L.; Hsu, Y.-C.; Xu, X.-Q.; Wu, F.-Y. Multiparametric magnetic resonance imaging for differentiating active from inactive thyroid-associated ophthalmopathy: Added value from magnetization transfer imaging. Eur. J. Radiol. 2022, 151, 110295. [Google Scholar] [CrossRef]
- Zhai, L.; Luo, B.; Wu, H.; Wang, Q.; Yuan, G.; Liu, P.; Ma, Y.; Zhao, Y.; Zhang, J. Prediction of treatment response to intravenous glucocorticoid in patients with thyroid-associated ophthalmopathy using T2 mapping and T2 IDEAL. Eur. J. Radiol. 2021, 142, 109839. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Luo, B.; Yuan, G.; Wang, Q.; Liu, P.; Zhao, Y.; Zhai, L.; Ma, Y.; Lv, W.; Zhang, J. The diagnostic value of the IDEAL-T2WI sequence in dysthyroid optic neuropathy: A quantitative analysis of the optic nerve and cerebrospinal fluid in the optic nerve sheath. Eur. Radiol. 2021, 31, 7419–7428. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Wu, Q.; Chen, L.; Chen, W.; Yang, T.; Xu, X.-Q.; Wu, F.-Y.; Hu, H.; Chen, H.-H. Texture analysis of orbital magnetic resonance imaging for monitoring and predicting treatment response to glucocorticoids in patients with thyroid-associated ophthalmopathy. Endocr. Connect. 2021, 10, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Bartley, G.B.; Gorman, C.A. Diagnostic criteria for Graves’ ophthalmopathy. Am. J. Ophthalmol. 1995, 119, 792–795. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.K.; Perl, J.; Beham, R.; Sheeler, L.R.; Foster, J.A.; Gliga, M.; McBride, N.; Faiman, M.R.; Mehta, A.E.; Dattatreya, R.; et al. Effect of 131 Iodine Therapy on the Course of Graves’ Ophthalmopathy: A Quantitative Analysis of Extraocular Muscle Volumes Using Orbital Magnetic Resonance Imaging. Thyroid 2001, 11, 959–965. [Google Scholar] [CrossRef]
- Gontarz-Nowak, K.; Szychlińska, M.; Matuszewski, W.; Stefanowicz-Rutkowska, M.; Bandurska-Stankiewicz, E. Current Knowledge on Graves’ Orbitopathy. J. Clin. Med. 2020, 10, 16. [Google Scholar] [CrossRef]
- Nagy, E.; Toth, J.; Kaldi, I.; Damjanovich, J.; Mezosi, E.; Lenkey, A.; Toth, L.; Szabo, J.; Karanyi, Z.; Leovey, A. Graves’ ophthalmopathy: Eye muscle involvement in patients with diplopia. Eur. J. Endocrinol. 2000, 142, 591–597. [Google Scholar] [CrossRef]
- Kvetny, J.; Puhakka, K.B.; Røhl, L. Magnetic resonance imaging determination of extraocular eye muscle volume in patients with thyroid-associated ophthalmopathy and proptosis. Acta Ophthalmol. Scand. 2006, 84, 419–423. [Google Scholar] [CrossRef]
- Nishida, Y.; Tian, S.; Isberg, B.; Tallstedt, L.; Lennerstrand, G. MRI measurements of orbital tissues in dysthyroid ophthalmopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2001, 239, 824–831. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Zheng, L.; Shuo, Z.; Xingtong, L.; Mengda, J.; Lin, Z.; Ziyang, S.; Huifang, Z. Evaluation of extraocular muscles in patients with thyroid associated ophthalmopathy using apparent diffusion coefficient measured by magnetic resonance imaging before and after radiation therapy. Acta Radiol. 2022, 63, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Hiwatashi, A.; Togao, O.; Yamashita, K.; Kikuchi, K.; Momosaka, D.; Honda, H. Diffusion-weighted magnetic resonance imaging of extraocular muscles in patients with Grave’s ophthalmopathy using turbo field echo with diffusion-sensitized driven-equilibrium preparation. Diagn. Interv. Imaging 2018, 99, 457–463. [Google Scholar] [CrossRef]
- George, N.M.; Feeney, C.; Lee, V.; Avari, P.; Ali, A.; Madani, G.; Lingam, R.K.; Bhatia, K.S. Extraocular muscle Diffusion Weighted Imaging as a quantitative metric of posterior orbital involvement in thyroid associated orbitopathy. Insights Imaging 2024, 15, 183. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, Y.; Dai, J.; Ni, S.; Zhang, T.; Chen, X.; Jiang, Q.; Cheng, Y.; Ma, Y.; Li, T.; et al. Prospective Comparison of FOCUS MUSE and Single-Shot Echo-Planar Imaging for Diffusion-Weighted Imaging in Evaluating Thyroid-Associated Ophthalmopathy. Korean J. Radiol. 2024, 25, 913–923. [Google Scholar] [CrossRef]
- Shen, J.; Jiang, W.; Luo, Y.; Cai, Q.; Li, Z.; Chen, Z.; Hu, S.; Tang, L. Establishment of magnetic resonance imaging 3D reconstruction technology of orbital soft tissue and its preliminary application in patients with thyroid-associated ophthalmopathy. Clin. Endocrinol. 2018, 88, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.A.; Realini, T.; Hogg, J.P.; Sivak-Callcott, J.A. CT dimensions of the lacrimal gland in Graves orbitopathy. Ophthal. Plast. Reconstr. Surg. 2012, 28, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Kawashima, M.; Arita, R.; Kozaki, A.; Tsubota, K. Investigation of Meibomian Gland Function and Dry Eye Disease in Patients with Graves’ Ophthalmopathy. J. Clin. Med. 2020, 9, 2814. [Google Scholar] [CrossRef] [PubMed]
- Bingham, C.M.; Harris, M.A.; Realini, T.; Nguyen, J.; Hogg, J.P.; Sivak-Callcott, J.A. Calculated computed tomography volumes of lacrimal glands and comparison to clinical findings in patients with thyroid eye disease. Ophthal. Plast. Reconstr. Surg. 2014, 30, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Huh, H.-D.; Kim, J.-H.; Kim, S.-J.; Yoo, J.-M.; Seo, S.-W. The Change of Lacrimal Gland Volume in Korean Patients with Thyroid-associated Ophthalmopathy. Korean J. Ophthalmol. KJO 2016, 30, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xu, X.-Q.; Wu, F.-Y.; Chen, H.-H.; Su, G.-Y.; Shen, J.; Hong, X.-N.; Shi, H.-B. Diagnosis and stage of Graves’ ophthalmopathy: Efficacy of quantitative measurements of the lacrimal gland based on 3-T magnetic resonance imaging. Exp. Ther. Med. 2016, 12, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Razek, A.A.; El-Hadidy, E.-H.M.; Moawad, M.E.-S.; El-Metwaly, N.; El-Said, A.A.E.-H. Assessment of lacrimal glands in thyroid eye disease with diffusion-weighted magnetic resonance imaging. Pol. J. Radiol. 2019, 84, e142–e146. [Google Scholar] [CrossRef]
- Chen, L.; Hu, H.; Chen, W.; Wu, Q.; Zhou, J.; Chen, H.-H.; Xu, X.-Q.; Shi, H.-B.; Wu, F.-Y. Usefulness of readout-segmented EPI-based diffusion tensor imaging of lacrimal gland for detection and disease staging in thyroid-associated ophthalmopathy. BMC Ophthalmol. 2021, 21, 281. [Google Scholar] [CrossRef]
- Soni, C.R.; Johnson, L.N. Visual neuropraxia and progressive vision loss from thyroid-associated stretch optic neuropathy. Eur. J. Ophthalmol. 2010, 20, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Nugent, R.A.; Belkin, R.I.; Neigel, J.M.; Rootman, J.; Robertson, W.D.; Spinelli, J.; Graeb, D.A. Graves orbitopathy: Correlation of CT and clinical findings. Radiology 1990, 177, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, K.; Higashide, T.; Nakase, Y.; Inoue, T.; Inoue, Y.; Shiga, H. Role of rectus muscle enlargement in clinical profile of dysthyroid ophthalmopathy. Jpn. J. Ophthalmol. 1991, 35, 175–181. [Google Scholar]
- Chan, L.-L.; Tan, H.-E.; Fook-Chong, S.; Teo, T.-H.; Lim, L.-H.; Seah, L.-L. Graves ophthalmopathy: The bony orbit in optic neuropathy, its apical angular capacity, and impact on prediction of risk. Am. J. Neuroradiol. 2009, 30, 597–602. [Google Scholar] [CrossRef]
- Gonçalves, A.C.P.; Gebrim, E.M.M.S.; Monteiro, M.L.R. Imaging studies for diagnosing Graves’ orbitopathy and dysthyroid optic neuropathy. Clinics. 2012, 67, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.P.; Silva, L.N.; Gebrim, E.M.M.S.; Monteiro, M.L.R. Quantification of orbital apex crowding for screening of dysthyroid optic neuropathy using multidetector CT. Am. J. Neuroradiol. 2012, 33, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Weis, E.; Heran, M.K.S.; Jhamb, A.; Chan, A.K.; Chiu, J.P.; Hurley, M.C.; Rootman, J. Quantitative computed tomographic predictors of compressive optic neuropathy in patients with thyroid orbitopathy: A volumetric analysis. Ophthalmology. 2012, 119, 2174–2178. [Google Scholar] [CrossRef] [PubMed]
- Al-Bakri, M.; Rasmussen, A.K.; Thomsen, C.; Toft, P.B. Orbital Volumetry in Graves’ Orbitopathy: Muscle and Fat Involvement in relation to Dysthyroid Optic Neuropathy. Int. Sch. Res. Not. 2014, 435276. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, R.; Ye, H.; Xiao, W.; Yang, H. Orbital MRI 3D Reconstruction Based on Volume Rendering in Evaluating Dysthyroid Optic Neuropathy. Curr. Eye Res. 2022, 47, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Dodds, N.I.; Atcha, A.W.; Birchall, D.; Jackson, A. Use of high-resolution MRI of the optic nerve in Graves’ ophthalmopathy. Br. J. Radiol. 2009, 82, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Mayer, E.J.; Fox, D.L.; Herdman, G.; Hsuan, J.; Kabala, J.; Goddard, P.; Potts, M.J.; Lee, R.W.J. Signal intensity, clinical activity and cross-sectional areas on MRI scans in thyroid eye disease. Eur. J. Radiol. 2005, 56, 20–24. [Google Scholar] [CrossRef]
- Liu, P.; Chen, L.; Wang, Q.-X.; Luo, B.; Su, H.-H.; Yuan, G.; Jiang, G.-H.; Zhang, J. Histogram analysis of T2 mapping for detecting early involvement of extraocular muscles in patients with thyroid-associated ophthalmopathy. Sci. Rep. 2020, 10, 19445. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, T.; Nishida, Y.; Morino, K.; Ugi, S.; Nishio, Y.; Maegawa, H.; Ohji, M. Use of MRI signal intensity of extraocular muscles to evaluate methylprednisolone pulse therapy in thyroid-associated ophthalmopathy. Jpn. J. Ophthalmol. 2015, 59, 124–130. [Google Scholar] [CrossRef]
- Politi, L.S.; Godi, C.; Cammarata, G.; Ambrosi, A.; Iadanza, A.; Lanzi, R.; Falini, A.; Bianchi Marzoli, S. Magnetic resonance imaging with diffusion-weighted imaging in the evaluation of thyroid-associated orbitopathy: Getting below the tip of the iceberg. Eur. Radiol. 2014, 24, 1118–1126. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Hu, H.; Chen, W.; Cui, D.; Xu, X.Q.; Wu, F.Y.; Yang, T. Thyroid-Associated Orbitopathy: Evaluating Microstructural Changes of Extraocular Muscles and Optic Nerves Using Readout-Segmented Echo-Planar Imaging-Based Diffusion Tensor Imaging. Korean J. Radiol. 2020, 21, 332–340. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, X.; Wang, L.; Fan, Y.; Huang, Q.; Yao, N.; Long, J.; Liu, C. Quantitative evaluation of activity of thyroid-associated Ophthalmopathy using short-tau inversion recovery (STIR) sequence. BMC Endocr. Disord. 2021, 21, 226. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, W.; Chen, H.-H.; Wu, Q.; Xu, X.-Q.; Hu, H.; Wu, F.-Y. Radiological Staging of Thyroid-Associated Ophthalmopathy: Comparison of T1 Mapping with Conventional MRI. Int. J. Endocrinol. 2020, 2020, 2575710. [Google Scholar] [CrossRef]
- Zhu, H.; Zou, M.; Wu, D.; Li, B.; Su, Y.; Li, Y.; Hong, S.; Yang, Z. Quantitative assessment of extraocular muscles in Graves’ ophthalmopathy using T1 mapping. Eur. Radiol. 2023, 33, 9074–9083. [Google Scholar] [CrossRef]
- Ma, R.; Geng, Y.; Gan, L.; Peng, Z.; Cheng, J.; Guo, J.; Qian, J. Quantitative T1 mapping MRI for the assessment of extraocular muscle fibrosis in thyroid-associated ophthalmopathy. Endocrine 2022, 75, 456–464. [Google Scholar] [CrossRef]
- Gagliardo, C.; Radellini, S.; Morreale Bubella, R.; Falanga, G.; Richiusa, P.; Vadalà, M.; Ciresi, A.; Midiri, M.; Giordano, C. Lacrimal gland herniation in Graves ophthalmopathy: A simple and useful MRI biomarker of disease activity. Eur. Radiol. 2020, 30, 2138–2141. [Google Scholar] [CrossRef] [PubMed]
- Bartalena, L.; Baldeschi, L.; Boboridis, K.; Eckstein, A.; Kahaly, G.J.; Marcocci, C.; Perros, P.; Salvi, M.; Wiersinga, W.M.; European Group on Graves’ Orbitopathy (EUGOGO). The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur. Thyroid J. 2016, 5, 9–26. [Google Scholar] [CrossRef]
- Zhu, W.; Ye, L.; Shen, L.; Jiao, Q.; Huang, F.; Han, R.; Zhang, X.; Wang, S.; Wang, W.; Ning, G. A prospective, randomized trial of intravenous glucocorticoids therapy with different protocols for patients with graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 2014, 99, 1999–2007. [Google Scholar] [CrossRef]
- Vannucchi, G.; Covelli, D.; Campi, I.; Origo, D.; Currò, N.; Cirello, V.; Dazzi, D.; Beck-Peccoz, P.; Salvi, M. The therapeutic outcome to intravenous steroid therapy for active Graves’ orbitopathy is influenced by the time of response but not polymorphisms of the glucocorticoid receptor. Eur. J. Endocrinol. 2014, 170, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Takahashi, Y.; Katsuda, E.; Oshima, Y.; Takeuchi, A.; Mori, T.; Abe, S.; Mori, Y.; Kakizaki, H.; Suzuki, K. Predictive factors of prognosis after radiation and steroid pulse therapy in thyroid eye disease. Sci. Rep. 2019, 9, 2027. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, L.; Xie, C.; Guan, M.; Xue, Y. Thickness of Extraocular Muscle and Orbital Fat in MRI Predicts Response to Glucocorticoid Therapy in Graves’ Ophthalmopathy. Int. J. Endocrinol. 2017, 2017, 3196059. [Google Scholar] [CrossRef]
- Taylor, P.N.; Zhang, L.; Lee, R.W.; Muller, I.; Ezra, D.G.; Dayan, C.M.; Kahaly, G.J.; Ludgate, M. New insights into the pathogenesis and nonsurgical management of Graves orbitopathy. Nat. Rev. Endocrinol. 2020, 16, 104–116. [Google Scholar] [CrossRef]
- Jain, A.P.; Gellada, N.; Ugradar, S.; Kumar, A.; Kahaly, G.; Douglas, R. Teprotumumab reduces extraocular muscle and orbital fat volume in thyroid eye disease. Br. J. Ophthalmol. 2022, 106, 165–171. [Google Scholar] [CrossRef]
- Douglas, R.S.; Kahaly, G.J.; Patel, A.; Sile, S.; Thompson, E.H.Z.; Perdok, R.; Fleming, J.C.; Fowler, B.T.; Marcocci, C.; Marinò, M.; et al. Teprotumumab for the Treatment of Active Thyroid Eye Disease. N. Engl. J. Med. 2020, 382, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, H.; Chen, L.; Zhang, H.; Yang, T.; Xu, X.; Chen, H. Observation study of using a small dose of rituximab treatment for thyroid-associated ophthalmopathy in seven Chinese patients: One pilot study. Front. Endocrinol. 2023, 13, 1079852. [Google Scholar] [CrossRef]
- Duan, M.; Xu, D.-D.; Zhou, H.-L.; Fang, H.-Y.; Meng, W.; Wang, Y.-N.; Jin, Z.-Y.; Chen, Y.; Zhang, Z.-H. Triamcinolone acetonide injection in the treatment of upper eyelid retraction in Graves’ ophthalmopathy evaluated by 3.0 Tesla magnetic resonance imaging. Indian J. Ophthalmol. 2022, 70, 1736–1741. [Google Scholar] [CrossRef] [PubMed]
- Higashiyama, T.; Nishida, Y.; Ohji, M. Relationship between magnetic resonance imaging signal intensity and volume of extraocular muscles in thyroid-associated ophthalmopathy with methylprednisolone pulse therapy. Clin. Ophthalmol. 2016, 10, 721–729. [Google Scholar] [CrossRef]
- Tachibana, S.; Murakami, T.; Noguchi, H.; Noguchi, Y.; Nakashima, A.; Ohyabu, Y.; Noguchi, S. Orbital magnetic resonance imaging combined with clinical activity score can improve the sensitivity of detection of disease activity and prediction of response to immunosuppressive therapy for Graves’ ophthalmopathy. Endocr. J. 2010, 57, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Xu, X.-Q.; Chen, L.; Chen, W.; Wu, Q.; Chen, H.-H.; Zhu, H.; Shi, H.-B.; Wu, F.-Y. Predicting the response to glucocorticoid therapy in thyroid-associated ophthalmopathy: Mobilizing structural MRI-based quantitative measurements of orbital tissues. Endocrine 2020, 70, 372–379. [Google Scholar] [CrossRef]
- Liu, P.; Luo, B.; Chen, L.; Wang, Q.-X.; Yuan, G.; Jiang, G.-H.; Zhang, J. Baseline Volumetric T2 Relaxation Time Histogram Analysis: Can It Be Used to Predict the Response to Intravenous Methylprednisolone Therapy in Patients with Thyroid-Associated Ophthalmopathy? Front. Endocrinol. 2021, 12, 614536. [Google Scholar] [CrossRef]
Sequences | Applications in TAO | Description | Advantages |
---|---|---|---|
STIR | Assessment of activity stage | Selective suppression of fat signals, highlights water tissue | Highly discriminatory for inflammatory edema |
T1 mapping | Evaluation of the degree of fibrosis | Detects small changes in water molecules, proteoglycans, collagen content, etc. in tissues | Excellent scanning consistency and reproducibility |
T2 mapping | Assessment of activity stage | Quantification of tissue moisture and collagen fiber content and composition | Excellent scanning consistency and reproducibility |
DWI | Assessment of activity stage | Quantifying the movement of water molecules in tissues | Reduction of magnetic susceptibility artefacts and geometrical variations, improving the signal-to-noise ratio of orbital images |
DCE-MRI | Assessment of activity stage, prediction of treatment response to IVGC | Provides quantitative information about the microcirculatory perfusion and permeability of various tissues | Shows further physiological alterations within EOMs |
DTI | Assessment of activity and severity stage | A quantitative method for observing the anisotropy of water molecule diffusion in tissues | Elimination of bias in estimating the microstructure of tissues and the ability to distinguish changes in the tissue itself |
MTI | Evaluation of the degree of fibrosis | Provides additional information about water molecules bound to macromolecules | Detects fibrotic changes of orbital tissues |
IDEAL-IQ | Assessment of activity and severity stage, prediction of treatment response to IVGC | Enables the quantitative measurement of water and lipid content in tissues, respectively | Evaluates both inflammation and fibrosis |
Radiomics | Assessment of activity and severity stage, prediction of treatment response to IVGC | Extracts high-throughput quantitative features from medical images that reflect tissue and lesion characteristics such as heterogeneity and shape | Large number of quantitative features, can be fused multimodally |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Song, Y.; Shi, J.; Li, T. The Value of MRI and Radiomics for the Diagnostic Evaluation of Thyroid-Associated Ophthalmopathy. Diagnostics 2025, 15, 388. https://doi.org/10.3390/diagnostics15030388
Zhou W, Song Y, Shi J, Li T. The Value of MRI and Radiomics for the Diagnostic Evaluation of Thyroid-Associated Ophthalmopathy. Diagnostics. 2025; 15(3):388. https://doi.org/10.3390/diagnostics15030388
Chicago/Turabian StyleZhou, Weiyi, Yan Song, Jufeng Shi, and Tuo Li. 2025. "The Value of MRI and Radiomics for the Diagnostic Evaluation of Thyroid-Associated Ophthalmopathy" Diagnostics 15, no. 3: 388. https://doi.org/10.3390/diagnostics15030388
APA StyleZhou, W., Song, Y., Shi, J., & Li, T. (2025). The Value of MRI and Radiomics for the Diagnostic Evaluation of Thyroid-Associated Ophthalmopathy. Diagnostics, 15(3), 388. https://doi.org/10.3390/diagnostics15030388