Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics
Abstract
:1. Introduction
2. Engineering Ceramics
2.1. Typical Engineering Ceramics and Their Respective Applications
Ceramics | Key Properties | Applications |
---|---|---|
Silicon Carbide (SiC) | Exceptional hardness, high thermal conductivity, chemical resistance, mechanical strength | Gas turbines and automotive [42,43], abrasive materials [9,10], biomedical devices [87]. |
Alumina (Al2O3) | High wear resistance, temperature resistance, toughness, hardness, thermal stability, chemical corrosion resistance, biocompatibility. | Cutting tools, grinding media, high-temperature bearings [47], aggressive chemical environment [47], biomedical implants [88], dielectric substrates [49]. |
Zirconia (ZrO2) | High fracture toughness, hardness, thermal expansion, resistance to crack propagation, biocompatibility. | Dental implants, structural applications, bone tissue engineering [57,58,63], nanocoating [61,62]. |
Silicon Nitride (Si3N4) | Superior mechanical properties at high temperatures, high strength, toughness, resistance to thermal shock, wear resistance, low friction | Engine components, turbochargers, bearings, and cutting tools [75,76], tribological applications [69,75], joint replacement [70,77]. |
Aluminum Nitride (AlN) | High thermal conductivity, thermal stability, electrical insulation, heat dissipation performance | Electronic substrates and heat sinks [78,79] |
2.2. Investigation and Testing of Engineering Ceramics
2.3. Wear Test
Sintering Method | MLG (wt%) | Apparent Density (g/cm3) | Relative Density (%) | HVM0.5 (GPa) | VIF Toughness (MPa·m1/2) |
---|---|---|---|---|---|
HIP | 0 | 3.23 | 96.52 | 13.3 ± 0.48 | 4.7 ± 0.38 |
1 | 3.27 | 97.94 | 11.8 ± 0.68 | 4.2 ± 0.14 | |
3 | 2.80 | 84.66 | 5.8 ± 0.65 | 5.7 ± 0.28 | |
SPS | 0 | 3.23 | 96.54 | 15.8 ± 0.84 | 5.1 ± 0.47 |
1 | 3.29 | 98.52 | 15.4 ± 0.70 | 4.9 ± 0.72 | |
3 | 3.11 | 93.84 | 13.7 ± 0.82 | 2.7 ± 0.37 |
3. Engineering Ceramics Challenges
4. Improving the Properties of Engineering Ceramics
- (1)
- The secondary phase can include ceramic micro- or nanoparticles, such as silicon carbide (SiC) and silicon nitride (Si3N4), which enhance toughness and wear resistance.
- (2)
- The inclusion of carbon nanotubes (CNTs) as a reinforcing material for enhancing toughness and functional properties, such as electrical and thermal conductivity, of ceramic matrices.
- (3)
- Graphene nanoplatelets are another effective reinforcing material that can be used to improve the fracture toughness of ceramics through mechanisms like crack deflection, bridging, and pull-out, leading to increased mechanical performance.
- (4)
- Hybrid composites can be obtained by combining two or more reinforcing materials. For example, CNTs and graphene, or the combination of second-phase nano/micro materials with graphene and CNTs can further enhance the properties of ceramics, resulting in a balance of strength, toughness, and other functional properties.
4.1. Using Nanosized Ceramic Particles as Secondary Phases
4.2. Using Graphene Nanomaterials to Increase Mechanical and Functional Properties of Ceramics
Applications | Type of Ceramics and References |
---|---|
Energy production and storage | Li-ion battery cathodes: vanadium pentoxide (V2O5) [122], cobalt oxide (Co3O4) [123] Anodes: void-containing Al2O3/coated porous Si [124] Si3N4-coated Si core [125], |
Piezoelectric energy harvesting | Lead zirconate titanate (PZT) [126], Barium titanate [127] |
Sensors | Tin oxide (SnO2) [128,129] γ-alumina [130] Zin oxide (ZnO) [131,132] |
Electromagnetic interference shielding | Boron carbide (B4C) [133] Magnetic iron oxide (Fe3O4) [134] Nickel cobalt sulfide (NiCoS) [135] |
Catalytic applications | Titanium dioxide (TiO2) [136] Bismuth vanadate–silicon dioxide (BiVO4/SiO2) [137] Iron oxide/Nickle oxide (Fe3O4/NiO) [138] |
Heat sinks and thermal energy storage | Alumina (Al2O3) [139,140] Dual silicon oxycarbide (SiOC) [141,142] |
4.3. Using Carbon Nanotubes to Increase the Properties of Ceramics
4.4. Combination of Graphene and Carbon Nanotubes
5. Challenges of Using Carbon Nanotubes in Ceramics:
- (i)
- Homogeneous Dispersion
- (ii)
- Suitable Interfacial Adhesion between CNTs and Ceramics
- (iii)
- Thermal Degradation of Carbon Nanotubes in Ceramics
6. Conclusions
- (1)
- The inclusion of carbon nanotubes (CNTs) as a reinforcing phase has been shown to enhance both the toughness and functional properties, such as electrical and thermal conductivity, of ceramic matrices.
- (2)
- Graphene nanoplatelets are another effective reinforcing material. They improve the fracture toughness of ceramics through mechanisms like crack deflection, bridging, and pull-out, leading to increased mechanical performance.
- (3)
- Hybrid composites, combining different reinforcing materials such as CNTs and graphene, can further enhance the properties of ceramics, providing a balance of strength, toughness, and other functional attributes.
Author Contributions
Funding
Conflicts of Interest
References
- Balázsi, K.; Furkó, M.; Liao, Z.; Fogarassy, Z.; Medved, D.; Zschech, E.; Dusza, J.; Balázsi, C. Graphene added multilayer ceramic sandwich (GMCS) composites: Structure, preparation and properties. J. Eur. Ceram. Soc. 2020, 40, 4792–4798. [Google Scholar] [CrossRef]
- Xia, Y.; Zeng, Y.P.; Jiang, D. Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Mater. Des. 2012, 33, 98–103. [Google Scholar] [CrossRef]
- Palakkathodi Kammampata, S.; Thangadurai, V. Cruising in ceramics—Discovering new structures for all-solid-state batteries—Fundamentals, materials, and performances. Ionics 2018, 24, 639–660. [Google Scholar] [CrossRef]
- Takada, K. Secondary batteries—Lithium rechargeable systems—Lithium-ion | Electrolytes: Solid Oxide. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 328–336. ISBN 9780444527455. [Google Scholar]
- Vinila, V.S.; Isac, J. Synthesis and structural studies of superconducting perovskite GdBa2Ca3Cu4O10.5+δ nanosystems. In Design, Fabrication, and Characterization of Multifunctional Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 319–341. [Google Scholar]
- Eda, G.; Chhowalla, M. Graphene-based composite thin films for electronics. Nano Lett. 2009, 9, 814–818. [Google Scholar] [CrossRef] [PubMed]
- Lamnini, S.; Pugliese, D.; Baino, F. Zirconia-Based Ceramics Reinforced by Carbon Nanotubes: A Review with Emphasis on Mechanical Properties. Ceramics 2023, 6, 1705–1734. [Google Scholar] [CrossRef]
- Yin, S.; Wan, W.; Fang, X.; Ma, H.; Xie, X.; Zhou, C.; Li, T.; Zuo, R. Mechanical and thermal properties of Si3N4 ceramics prepared by gelcasting using high-solid-loading slurries. Ceram. Int. 2023, 49, 40930–40941. [Google Scholar] [CrossRef]
- Krupka, M.; Kienzle, A. Fiber Reinforced Ceramic Composite for Brake Discs; SAE Technical Paper; SAE International: Warrendale, PA, USA, 2000. [Google Scholar] [CrossRef]
- Hardwicke, C.U.; Lau, Y.-C. Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review. J. Therm. Spray Technol. 2013, 22, 564–576. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, M. Characterization of sulfur poisoning of Ni–YSZ anodes for solid oxide fuel cells using in situ Raman microspectroscopy. Solid State Ion. 2007, 178, 925–935. [Google Scholar] [CrossRef]
- Valenzuela-Gutiérrez, A.; López-Cuevas, J.; González-Ángeles, A.; Pilalua-Díaz, N. Addition of ceramics materials to improve the corrosion resistance of alumina refractories. SN Appl. Sci. 2019, 1, 784. [Google Scholar] [CrossRef]
- Kong, N.; Chen, A.; Yan, W.; Zhang, H. Ceramic implant fracture: A clinical report. J. Prosthet. Dent. 2019, 122, 425–429. [Google Scholar] [CrossRef]
- Bai, R.; Sun, Q.; He, Y.; Peng, L.; Zhang, Y.; Zhang, L.; Lu, W.; Deng, J.; Zhuang, Z.; Yu, T.; et al. Ceramic Toughening Strategies for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 840372. [Google Scholar] [CrossRef] [PubMed]
- Zoli, L.; Servadei, F.; Bassi, G.; Rossi, A.; Montesi, M.; Vinci, A.; Sciti, D.; Panseri, S. From outer space to inside the body: Ultra-high temperature ceramic matrix composites for biomedical applications. J. Eur. Ceram. Soc. 2024, 44, 729–737. [Google Scholar] [CrossRef]
- Rincón, A.; Chinelatto, A.S.A.; Moreno, R. Tape casting of alumina/zirconia suspensions containing graphene oxide. J. Eur. Ceram. Soc. 2014, 34, 1819–1827. [Google Scholar] [CrossRef]
- Balázsi, C.; Kónya, Z.; Wéber, F.; Biró, L.P.; Arató, P. Preparation and characterization of carbon nanotube reinforced silicon nitride composites. Mater. Sci. Eng. C 2003, 23, 1133–1137. [Google Scholar] [CrossRef]
- Sayyadi-Shahraki, A.; Rafiaei, S.M.; Ghadami, S.; Nekouee, K.A. Densification and mechanical properties of spark plasma sintered Si3N4/ZrO2 nano-composites. J. Alloys Compd. 2019, 776, 798–806. [Google Scholar] [CrossRef]
- Balázsi, K.; Furkó, M.; Liao, Z.; Gluch, J.; Medved, D.; Sedlák, R.; Dusza, J.; Zschech, E.; Balázsi, C. Porous sandwich ceramic of layered silicon nitride-zirconia composite with various multilayered graphene content. J. Alloys Compd. 2020, 832, 154984. [Google Scholar] [CrossRef]
- Liao, Z.; Standke, Y.; Gluch, J.; Balázsi, K.; Pathak, O.; Höhn, S.; Herrmann, M.; Werner, S.; Dusza, J.; Balázsi, C.; et al. Microstructure and fracture mechanism investigation of porous silicon nitride–zirconia–graphene composite using multi-scale and in-situ microscopy. Nanomaterials 2021, 11, 285. [Google Scholar] [CrossRef]
- Rutkowski, P.; Stobierski, L.; Górny, G. Thermal stability and conductivity of hot-pressed Si3N4-graphene composites. J. Therm. Anal. Calorim. 2014, 116, 321–328. [Google Scholar] [CrossRef]
- Cygan, T.; Wozniak, J.; Kostecki, M.; Adamczyk-Cieslak, B.; Olszyna, A. Influence of graphene addition and sintering temperature on physical properties of Si3N4 matrix composites. Int. J. Refract. Met. Hard Mater. 2016, 57, 19–23. [Google Scholar] [CrossRef]
- Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Qadir, A.; Balazsi, K.; Balazsi, C.; Ivor, M.; Dusza, J. Properties of MWCNTs added Si3N4 composites processed from oxidized silicon nitride powders. Process. Appl. Ceram. 2020, 14, 25–31. [Google Scholar] [CrossRef]
- Kovalčikova, A.; Balázsi, C.; Dusza, J.; Tapasztó, O. Mechanical properties and electrical conductivity in a carbon nanotube reinforced silicon nitride composite. Ceram. Int. 2012, 38, 527–533. [Google Scholar] [CrossRef]
- Ge, P.; Sun, K.; Li, A.; Pingji, G. Improving the electrical and microwave absorbing properties of Si3N4 ceramics with carbon nanotube fibers. Ceram. Int. 2018, 44, 2727–2731. [Google Scholar] [CrossRef]
- Tapasztó, O.; Balko, J.; Puchy, V.; Kun, P.; Dobrik, G.; Fogarassy, Z.; Horváth, Z.E.; Dusza, J.; Balázsi, K.; Balázsi, C.; et al. Highly wear-resistant and low-friction Si3N4 composites by addition of graphene nanoplatelets approaching the 2D limit. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Amutha Rani, D.; Yoshizawa, Y.; Hyuga, H.; Hirao, K.; Yamauchi, Y. Tribological behavior of ceramic materials (Si3N4, SiC and Al2O3) in aqueous medium. J. Eur. Ceram. Soc. 2004, 24, 3279–3284. [Google Scholar] [CrossRef]
- Subramaniam, S.; Nithyaprakash, R.; Abbas, G.; Pramanik, A.; Basak, A.K. Tribological behavior of silicon nitride-based ceramics-a review. J. Tribol. 2021, 29, 57–71. [Google Scholar]
- Schlüter, B.; Schröder, C.; Zhang, W.; Mülhaupt, R.; Degenhardt, U.; Sedlák, R.; Dusza, J.; Balázsi, K.; Balázsi, C.; Kailer, A. Influence of Graphene Type and Content on Friction and Wear of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment. Materials 2022, 15, 7755. [Google Scholar] [CrossRef]
- Llorente, J.; Ramírez, C.; Belmonte, M. High graphene fillers content for improving the tribological performance of silicon nitride-based ceramics. Wear 2019, 430–431, 183–190. [Google Scholar] [CrossRef]
- Shrivastava, S.; Rajak, D.K.; Joshi, T.; Singh, D.K.; Mondal, D.P. Ceramic Matrix Composites: Classifications, Manufacturing, Properties, and Applications. Ceramics 2024, 7, 652–679. [Google Scholar] [CrossRef]
- Ferraris, E.; Vleugels, J.; Guo, Y.; Bourell, D.; Kruth, J.P.; Lauwers, B. Shaping of engineering ceramics by electro, chemical and physical processes. CIRP Ann. Manuf. Technol. 2016, 65, 761–784. [Google Scholar] [CrossRef]
- Franks, G.V.; Tallon, C.; Studart, A.R.; Sesso, M.L.; Leo, S. Colloidal processing: Enabling complex shaped ceramics with unique multiscale structures. J. Am. Ceram. Soc. 2017, 100, 458–490. [Google Scholar] [CrossRef]
- Terrani, K.A.; Kiggans, J.O.; Silva, C.M.; Shih, C.; Katoh, Y.; Snead, L.L. Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form. J. Nucl. Mater. 2015, 457, 9–17. [Google Scholar] [CrossRef]
- Ramachandran, K.; Boopalan, V.; Bear, J.C.; Subramani, R. Multi-walled carbon nanotubes (MWCNTs)-reinforced ceramic nanocomposites for aerospace applications: A review. J. Mater. Sci. 2022, 57, 3923–3953. [Google Scholar] [CrossRef]
- Fernie, J.A.; Drew, R.A.L.; Knowles, K.M. Joining of engineering ceramics. Int. Mater. Rev. 2009, 54, 283–331. [Google Scholar] [CrossRef]
- Katz, R.N. Overview of Ceramic Materials, Design, and Application. Mech. Eng. Handb. Mater. Mech. Des. Third Ed. 2006, 1, 433–449. [Google Scholar] [CrossRef]
- Xu, M.; Girish, Y.R.; Rakesh, K.P.; Wu, P.; Manukumar, H.M.; Byrappa, S.M.; Udayabhanu; Byrappa, K. Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Mater. Today Commun. 2021, 28, 102533. [Google Scholar] [CrossRef]
- Abderrazak, H.; Hadj Hmi, E.S.B. Silicon Carbide: Synthesis and Properties. In Properties and Applications of Silicon Carbide; IntechOpen: London, UK, 2011; pp. 361–388. [Google Scholar] [CrossRef]
- Dasog, M.; Smith, L.F.; Purkait, T.K.; Veinot, J.G.C. Low temperature synthesis of silicon carbide nanomaterials using a solid-state method. Chem. Commun. 2013, 49, 7004–7006. [Google Scholar] [CrossRef]
- Rejhon, M.; Zhou, X.; Lavini, F.; Zanut, A.; Popovich, F.; Schellack, L.; Witek, L.; Coelho, P.; Kunc, J.; Riedo, E. Giant Increase of Hardness in Silicon Carbide by Metastable Single Layer Diamond-Like Coating. Adv. Sci. 2023, 10, e2204562. [Google Scholar] [CrossRef]
- Chaudhury, P.; Samantaray, S. Modelling and Optimization of Machining of SiC-CNT Conductive Ceramic Composite used for Micro and Nano Sensor by Electrical Discharge Machining. J. Inst. Eng. Ser. D 2021, 102, 437–452. [Google Scholar] [CrossRef]
- Kaunisto, K.; Lagerbom, J.; Honkanen, M.; Varis, T.; Lambai, A. Evolution of alumina phase structure in thermal plasma processing. Ceram. Int. 2023, 49, 21346–21354. [Google Scholar] [CrossRef]
- Busca, G. Structural, Surface, and Catalytic Properties of Aluminas. In Advances in Catalysis; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 57, pp. 319–404. ISBN 9780128001271. [Google Scholar]
- Spiridigliozzi, H. Bottom-up Strategy for the Development of Optically Transparent and Nanostructured MgAl2O4 Spinel Ceramics. Master’s Thesis, Université Sorbonne Paris Nord, Villetaneuse, France, 2024. [Google Scholar]
- Aruna, S.T.; Balaji, N.; Shedthi, J.; Grips, V.K.W. Surface & Coatings Technology Effect of critical plasma spray parameters on the microstructure, microhardness and wear and corrosion resistance of plasma sprayed alumina coatings. Surf. Coat. Technol. 2012, 208, 92–100. [Google Scholar] [CrossRef]
- Warlimont, H. Classes of Materials (Ceramics). In Springer Handbook of Condensed Matter and Materials Data; Martienssen, W., Warlimont, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 431–476. [Google Scholar]
- Abyzov, A.M. Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al2O3 and Commercial Production of Dispersed Al2O3. Refract. Ind. Ceram. 2019, 60, 24–32. [Google Scholar] [CrossRef]
- Xu, C.; Liu, H.; Yang, H.; Yang, L. A Green Biocompatible Fabrication of Highly Porous Functional Ceramics with High Strength and Controllable Pore Structures. J. Mater. Sci. Technol. 2016, 32, 729–732. [Google Scholar] [CrossRef]
- Ghanizadeh, S.; Bao, X.; Vaidhyanathan, B.; Binner, J. Synthesis of nano α-alumina powders using hydrothermal and precipitation routes: A comparative study. Ceram. Int. 2014, 40, 1311–1319. [Google Scholar] [CrossRef]
- Ghanizadeh, S. Membrane Emulsification for Particle Production. Ph.D. Thesis, Loughborough University, Reading, UK, 2013. [Google Scholar]
- Li, J.G.; Sun, X. Synthesis and sintering behavior of a nanocrystalline α-alumina powder. Acta Mater. 2000, 48, 3103–3112. [Google Scholar] [CrossRef]
- Suchanek, W.L. Hydrothermal synthesis of alpha alumina (α-Al2O3) powders: Study of the processing variables and growth mechanisms. J. Am. Ceram. Soc. 2010, 93, 399–412. [Google Scholar] [CrossRef]
- Bapat, R.A.; Yang, H.J.; Chaubal, T.V.; Dharmadhikari, S.; Abdulla, A.M.; Arora, S.; Rawal, S.; Kesharwani, P. Review on synthesis, properties and multifarious therapeutic applications of nanostructured zirconia in dentistry. RSC Adv. 2022, 12, 12773–12793. [Google Scholar] [CrossRef]
- Hu, C.; Sun, J.; Long, C.; Wu, L.; Zhou, C.; Zhang, X. Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol. Rev. 2019, 8, 396–404. [Google Scholar] [CrossRef]
- Cannizzaro, G.; Torchio, C.; Felice, P.; Leone, M.; Esposito, M. Immediate occlusal versus non-occlusal loading of single zirconia implants. A multicentre pragmatic randomised clinical trial. Eur. J. Oral Implantol. 2010, 3, 111–120. [Google Scholar]
- Hisbergues, M.; Vendeville, S.; Vendeville, P. Review zirconia: Established facts and perspectives for a biomaterial in dental implantology. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 88, 519–529. [Google Scholar] [CrossRef]
- Sailer, I.; Zembic, A.; Jung, R.E.; Siegenthaler, D.; Holderegger, C.; Hämmerle, C.H.F. Randomized controlled clinical trial of customized zirconia and titanium implant abutments for canine and posterior single-tooth implant reconstructions: Preliminary results at 1 year of function. Clin. Oral Implants Res. 2009, 20, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Balagangadharan, K.; Viji Chandran, S.; Arumugam, B.; Saravanan, S.; Devanand Venkatasubbu, G.; Selvamurugan, N. Chitosan/nano-hydroxyapatite/nano-zirconium dioxide scaffolds with miR-590-5p for bone regeneration. Int. J. Biol. Macromol. 2018, 111, 953–958. [Google Scholar] [CrossRef]
- Wang, J.; Huang, C.; Wan, Q.; Chen, Y.; Chao, Y. Characterization of fluoridated hydroxyapatite/zirconia nano-composite coating deposited by a modified electrocodeposition technique. Surf. Coatings Technol. 2010, 204, 2576–2582. [Google Scholar] [CrossRef]
- Hakim, L.F.; George, S.M.; Weimer, A.W. Conformal nanocoating of zirconia nanoparticles by atomic layer deposition in a fluidized bed reactor. Nanotechnology 2005, 16, S375–S381. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zhu, R.; Ma, J.; Weng, Z.; Wang, Y.; Shi, X.; Li, Y.; Yan, X.; Dong, Z.; Xu, J.; et al. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Biomed. Mater. 2015, 10, 55009. [Google Scholar] [CrossRef]
- Andreiotelli, M.; Wenz, H.J.; Kohal, R.J. Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implants Res. 2009, 20, 32–47. [Google Scholar] [CrossRef]
- Chopra, D.; Guo, T.; Gulati, K.; Ivanovski, S. Load, unload and repeat: Understanding the mechanical characteristics of zirconia in dentistry. Dent. Mater. 2024, 40, e1–e17. [Google Scholar] [CrossRef]
- Rashad, M.M.; Baioumy, H.M. Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes. J. Mater. Process. Technol. 2008, 195, 178–185. [Google Scholar] [CrossRef]
- De Aza, A.H.; Chevalier, J.; Fantozzi, G.; Schehl, M.; Torrecillas, R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002, 23, 937–945. [Google Scholar] [CrossRef]
- Ji, H.; Huang, Z.; Chen, K.; Li, W.; Gao, Y.; Fang, M.; Liu, Y.-G.; Wu, X. Synthesis of Si3N4 powder with tunable α/β-Si3N4 content from waste silica fume using carbothermal reduction nitridation. Powder Technol. 2014, 252, 51–55. [Google Scholar] [CrossRef]
- Li, B.; Feng, Y.; Li, G.; Chen, H.; Chen, J.; Hou, X. Preparation of high-purity α-Si3N4 nano-powder by precursor-carbothermal reduction and nitridation. Ceram. Int. 2019, 45, 6335–6339. [Google Scholar] [CrossRef]
- Heimann, R.B. Silicon Nitride Ceramics: Structure, Synthesis, Properties, and Biomedical Applications. Materials 2023, 16, 5142. [Google Scholar] [CrossRef] [PubMed]
- Legut, D.; Wdowik, U.D.; Kurtyka, P. Vibrational and dielectric properties of α-Si3N4 from density functional theory. Mater. Chem. Phys. 2014, 147, 42–49. [Google Scholar] [CrossRef]
- Van Cuong, T.; Duc Ha, N.; Quoc Khanh, D.; Manh Tuong, N.; Hung Vu, N.; Dao, V.-D. Preparation of Si3N4 powder by carbothermal reduction and nitridation of glucose and water glass. Inorg. Chem. Commun. 2024, 162, 112241. [Google Scholar] [CrossRef]
- Leitch, S.; Moewes, A.; Ouyang, L.; Ching, W.Y.; Sekine, T. Properties of non-equivalent sites and bandgap of spinel-phase silicon nitride. J. Phys. Condens. Matter 2004, 16, 6469–6476. [Google Scholar] [CrossRef]
- Katz, R.N. High-Temperature Structural Ceramics. Science 1980, 208, 841–847. [Google Scholar] [CrossRef]
- Riley, F.L. Silicon nitride and related materials. J. Am. Ceram. Soc. 2000, 83, 245–265. [Google Scholar] [CrossRef]
- Yang, J.H.; Chen, Y.X.; Liu, G.H.; Lin, Z.M.; Li, J.T. Effects of diazenedicarboxamide additive on the content of α-Si 3N 4 synthesized by combustion method. Ceram. Int. 2012, 38, 961–965. [Google Scholar] [CrossRef]
- Du, X.; Lee, S.S.; Blugan, G.; Ferguson, S.J. Silicon Nitride as a Biomedical Material: An Overview. Int. J. Mol. Sci. 2022, 23, 6551. [Google Scholar] [CrossRef]
- Matsumae, T.; Kurashima, Y.; Higurashi, E.; Nishizono, K.; Amano, T.; Takagi, H. Room temperature bonding of aluminum nitride ceramic and semiconductor substrate. Ceram. Int. 2020, 46, 25956–25963. [Google Scholar] [CrossRef]
- Li, G.; Li, B.; Ren, B.; Chen, H.; Zhu, B.; Chen, J. Synthesis of Aluminum Nitride Using Sodium Aluminate as Aluminum Source. Processes 2023, 11, 1034. [Google Scholar] [CrossRef]
- Wang, C.P.; Huang, Y.C.; Liu, H.Q. Efficiency improvement of power LED modules using a hybrid aluminum nitride substrate. Microelectron. Eng. 2020, 223, 111227. [Google Scholar] [CrossRef]
- Huang, D.; Liu, Z.; Harris, J.; Diao, X.; Liu, G. High thermal conductive AlN substrate for heat dissipation in high-power LEDs. Ceram. Int. 2019, 45, 1412–1415. [Google Scholar] [CrossRef]
- Varshni, Y.P. Temperature dependence of the energy gap in semiconductors. Physica 1967, 34, 149–154. [Google Scholar] [CrossRef]
- Kato, T.; Sugawara, K. Low-Temperature Synthesis of Aluminum Nitride by Addition of Ammonium Chloride. ACS Omega 2019, 4, 14714–14720. [Google Scholar] [CrossRef]
- Lee, K.B.; Kim, J.; Shim, C.H.; Kim, Y.; Choi, H.; Ahn, J.P. Low-Temperature synthesis of high-purity AlN from Al powder. J. Mater. Res. Technol. 2022, 21, 4526–4536. [Google Scholar] [CrossRef]
- Molisani, A.L.; Yoshimura, H.N. Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction-nitridation method. Mater. Res. Bull. 2010, 45, 733–738. [Google Scholar] [CrossRef]
- CeramTec Industrial. Ceramic Material with Very High Thermal Conductivity; CeramTec Industrial: Plochingen, Germany; Available online: https://www.ceramtec-industrial.com/en/materials (accessed on 21 November 2024).
- Oliveros, A.; Guiseppi-Elie, A.; Saddow, S.E. Silicon carbide: A versatile material for biosensor applications. Biomed. Microdevices 2013, 15, 353–368. [Google Scholar] [CrossRef]
- Hassanpour, P.; Panahi, Y.; Ebrahimi-Kalan, A.; Akbarzadeh, A.; Davaran, S.; Nasibova, A.N.; Khalilov, R.; Kavetskyy, T. Biomedical applications of aluminium oxide nanoparticles. Micro Nano Lett. 2018, 13, 1227–1231. [Google Scholar] [CrossRef]
- Clinton, D.J.; Morrell, R. Hardness testing of ceramic materials. Mater. Chem. Phys. 1987, 17, 461–473. [Google Scholar] [CrossRef]
- Bai, H.; Zhong, L.; Kang, L.; Liu, J.; Zhuang, W.; Lv, Z.; Xu, Y. A review on wear-resistant coating with high hardness and high toughness on the surface of titanium alloy. J. Alloys Compd. 2021, 882, 160645. [Google Scholar] [CrossRef]
- Qadir, A.; Ali, S.; Dusza, J.; Rafaja, D. Predicting hardness of graphene-added Si3N4 using machine learning: A data-driven approach. Open Ceram. 2024, 19, 100634. [Google Scholar] [CrossRef]
- Shin, J.H.; Choi, J.; Kim, M.; Hong, S.H. Comparative study on carbon nanotube- and reduced graphene oxide-reinforced alumina ceramic composites. Ceram. Int. 2018, 44, 8350–8357. [Google Scholar] [CrossRef]
- Krstic, Z.; Krstic, V.D. Silicon nitride: The engineering material of the future. J. Mater. Sci. 2012, 47, 535–552. [Google Scholar] [CrossRef]
- Ming-Chang, J.; Li-Yung, Y. Environmental effects on wear behaviour of alumina. Wear 1993, 161, 111–119. [Google Scholar] [CrossRef]
- Correa Filho, L.; Fu, L.; Engqvist, H.; Xia, W.; Persson, C. Wear Performance of a Novel Silicon Nitride Ceramic for Biomedical Applications. Biomed. Mater. Devices 2023, 1, 990–999. [Google Scholar] [CrossRef]
- Yazdani, B.; Xu, F.; Ahmad, I.; Hou, X.; Xia, Y.; Zhu, Y. Tribological performance of Graphene/Carbon nanotube hybrid reinforced Al2O3 composites. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef]
- Maros B., M.; Németh, A.K.; Károly, Z.; Bódis, E.; Maros, Z.; Tapasztó, O.; Balázsi, K. Tribological characterisation of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology. Tribol. Int. 2015, 93, 269–281. [Google Scholar] [CrossRef]
- Sharma, N.; Alam, S.N.; Ray, B.C.; Yadav, S.; Biswas, K. Wear behavior of silica and alumina-based nanocomposites reinforced with multi walled carbon nanotubes and graphene nanoplatelets. Wear 2019, 418–419, 290–304. [Google Scholar] [CrossRef]
- Shah, W.A.; Luo, X.; Rabiu, B.I.; Huang, B.; Yang, Y.Q. Toughness enhancement and thermal properties of graphene-CNTs reinforced Al2O3 ceramic hybrid nanocomposites. Chem. Phys. Lett. 2021, 781, 138978. [Google Scholar] [CrossRef]
- Yazdani, B.; Porwal, H.; Xia, Y.; Yan, H.; Reece, M.J.; Zhu, Y. Role of synthesis method on microstructure and mechanical properties of graphene/carbon nanotube toughened Al2O3 nanocomposites. Ceram. Int. 2015, 41, 9813–9822. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Reece, M.J.; Jiang, K. Toughening of zirconia/alumina composites by the addition of graphene platelets. J. Eur. Ceram. Soc. 2012, 32, 4185–4193. [Google Scholar] [CrossRef]
- Anselmi-Tamburini, U.; Garay, J.E.; Munir, Z.A.; Tacca, A.; Maglia, F.; Spinolo, G. Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 2004, 19, 3255–3262. [Google Scholar] [CrossRef]
- Shojaie-bahaabad, M.; Bozorg, M.; Najafizadeh, M.; Cavaliere, P. Ultra high temperature ceramic coatings in thermal protection systems (TPS). Ceram. Int. 2024, 50, 9937–9951. [Google Scholar] [CrossRef]
- Koo, K.H.; Ha, Y.C.; Kim, S.Y.; Yoon, K.S.; Min, B.W.; Kim, S.R. Revision of ceramic head fracture after third generation ceramic-on-ceramic total hip arthroplasty. J. Arthroplasty 2014, 29, 214–218. [Google Scholar] [CrossRef]
- Almansoori, A.; Majewski, C.; Rodenburg, C. Nanoclay/Polymer Composite Powders for Use in Laser Sintering Applications: Effects of Nanoclay Plasma Treatment. JOM 2017, 69, 2278–2285. [Google Scholar] [CrossRef]
- Almansoori, A.; Abrams, K.J.; Ghali Al-Rubaye, A.D.; Majewski, C.; Rodenburg, C. Novel plasma treatment for preparation of laser sintered nanocomposite parts. Addit. Manuf. 2019, 25, 297–306. [Google Scholar] [CrossRef]
- Bódis, E.; Cora, I.; Németh, P.; Tapasztó, O.; Mohai, M.; Tóth, S.; Károly, Z.; Szépvölgyi, J. Toughening of silicon nitride ceramics by addition of multilayer graphene. Ceram. Int. 2019, 45, 4810–4816. [Google Scholar] [CrossRef]
- Maitra, S. Nanoceramic Matrix Composites: Types, Processing and Applications; Woodhead Publishing Limited: Cambridge, UK, 2014; ISBN 9780857091208. [Google Scholar]
- Nevarez-Rascon, A.; Aguilar-Elguezabal, A.; Orrantia, E.; Bocanegra-Bernal, M.H. On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content. Int. J. Refract. Met. Hard Mater. 2009, 27, 962–970. [Google Scholar] [CrossRef]
- Parchovianský, M.; Galusek, D.; Švančárek, P.; Sedláček, J.; Šajgalík, P. Thermal behavior, electrical conductivity and microstructure of hot pressed Al2O3/SiC nanocomposites. Ceram. Int. 2014, 40, 14421–14429. [Google Scholar] [CrossRef]
- Selvarajan, L.; Venkataramanan, K. Surface morphology and drilled hole accuracy of conductive ceramic composites Si3N4–TiN and MoSi2–SiC on EDMed surfaces. Wear 2023, 530–531, 204973. [Google Scholar] [CrossRef]
- Bayal, N.; Jeevanandam, P. Synthesis of TiO2-MgO mixed metal oxide nanoparticles via a sol-gel method and studies on their optical properties. Ceram. Int. 2014, 40, 15463–15477. [Google Scholar] [CrossRef]
- Yang, Y.; Li, B.; Zhang, C.; Wang, S.; Liu, K.; Yang, B. Fabrication and properties of graphene reinforced silicon nitride composite materials. Mater. Sci. Eng. A 2015, 644, 90–95. [Google Scholar] [CrossRef]
- Kwon, S.M.; Lee, S.J.; Shon, I.J. Enhanced properties of nanostructured ZrO2-graphene composites rapidly sintered via high-frequency induction heating. Ceram. Int. 2015, 41, 835–842. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Yan, H.; Jiang, K. Spark plasma sintering of alumina composites with graphene platelets and silicon carbide nanoparticles. Adv. Eng. Mater. 2014, 16, 1111–1118. [Google Scholar] [CrossRef]
- Román-Manso, B.; Figueiredo, F.M.; Achiaga, B.; Barea, R.; Pérez-Coll, D.; Morelos-Gómez, A.; Terrones, M.; Osendi, M.I.; Belmonte, M.; Miranzo, P. Electrically functional 3D-architectured graphene/SiC composites. Carbon N. Y. 2016, 100, 318–328. [Google Scholar] [CrossRef]
- Cheng, Y.; Lyu, Y.; Han, W.; Hu, P.; Zhou, S.; Zhang, X. Multiscale toughening of ZrB2-SiC-Graphene@ZrB2-SiC dual composite ceramics. J. Am. Ceram. Soc. 2019, 102, 2041–2052. [Google Scholar] [CrossRef]
- Yin, Z.; Yuan, J.; Chen, M.; Si, D.; Xu, C. Mechanical property and ballistic resistance of graphene platelets/B4C ceramic armor prepared by spark plasma sintering. Ceram. Int. 2019, 45, 23781–23787. [Google Scholar] [CrossRef]
- Chen, J.; Li, N.; Wei, Y.; Han, B.; Zhang, Y. A low-cost approach to fabricate SiC nanosheets by reactive sintering from Si powders and graphite. J. Alloys Compd. 2019, 788, 345–351. [Google Scholar] [CrossRef]
- Tapasztó, O.; Tapasztó, L.; Markó, M.; Kern, F.; Gadow, R.; Balázsi, C. Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 2011, 511, 340–343. [Google Scholar] [CrossRef]
- Ramírez, C.; Belmonte, M.; Miranzo, P.; Osendi, M.I. Applications of ceramic/graphene composites and hybrids. Materials 2021, 14, 2071. [Google Scholar] [CrossRef] [PubMed]
- Nakhanivej, P.; Park, S.K.; Shin, K.H.; Yun, S.; Park, H.S. Hierarchically structured vanadium pentoxide/reduced graphene oxide composite microballs for lithium ion battery cathodes. J. Power Sources 2019, 436, 226854. [Google Scholar] [CrossRef]
- Peng, S.; Chen, T.; Lee, C.; Lu, H.; Lue, S.J. Optimal cobalt oxide (Co3O4): Graphene (GR) ratio in Co3O4/GR as air cathode catalyst for air-breathing hybrid electrolyte lithium-air battery. J. Power Sources 2020, 471, 228373. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Z.; Chen, H.; You, R.; Zheng, G.; Zhang, Q.; Wang, J.; Li, C.; Chen, S.; Yang, Y. Double-shelled microscale porous Si anodes for stable lithium-ion batteries. J. Power Sources 2019, 436, 226794. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, Z.; Yang, W.; Li, X.; Li, P.; Guo, X.; Jung, Y.; Dong, X. Nitrification protection of Si monocrystal nanoparticles into the graphene matrix as the high-performance anode material for lithium-ion batteries. Mater. Chem. Phys. 2020, 249, 123156. [Google Scholar] [CrossRef]
- Tang, J.; Liu, J.; Huang, H. Dielectric, Piezoelectric and Ferroelectric Properties of Flexible 0–3 Type PZT/PVDF Composites Doped with Graphene. J. Electron. Mater. 2019, 48, 4033–4039. [Google Scholar] [CrossRef]
- Mallada, C.; Menéndez, J.L.; Dura, O.J.; López de la Torre, M.A.; Menéndez, R.; Santamaría, R. Spark plasma sintered BaTiO3/graphene composites for thermoelectric applications. J. Eur. Ceram. Soc. 2017, 37, 3741–3746. [Google Scholar] [CrossRef]
- Kim, H.W.; Na, H.G.; Kwon, Y.J.; Kang, S.Y.; Choi, M.S.; Bang, J.H.; Wu, P.; Kim, S.S. Microwave-Assisted Synthesis of Graphene-SnO2 Nanocomposites and Their Applications in Gas Sensors. ACS Appl. Mater. Interfaces 2017, 9, 31667–31682. [Google Scholar] [CrossRef]
- Tyagi, P.; Sharma, A.; Tomar, M.; Gupta, V. A comparative study of RGO-SnO2 and MWCNT-SnO2 nanocomposites based SO2 gas sensors. Sens. Actuators B Chem. 2017, 248, 980–986. [Google Scholar] [CrossRef]
- Taleb, M.; Ivanov, R.; Bereznev, S.; Kazemi, S.H.; Hussainova, I. Graphene-ceramic hybrid nanofibers for ultrasensitive electrochemical determination of ascorbic acid. Microchim. Acta 2017, 184, 897–905. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Zhang, B.; Xiao, Y.; Gao, Y.; Yang, Q.; Wang, Y.; Lu, G. Ultrasensitive and Low Detection Limit of Nitrogen Dioxide Gas Sensor Based on Flower-Like ZnO Hierarchical Nanostructure Modified by Reduced Graphene Oxide; Elsevier B.V.: Amsterdam, The Netherlands, 2017; Volume 249, ISBN 8643185167. [Google Scholar]
- Fu, H.; Jiang, Y.; Ding, J.; Zhang, J.; Zhang, M.; Zhu, Y.; Li, H. Zinc oxide nanoparticle incorporated graphene oxide as sensing coating for interferometric optical microfiber for ammonia gas detection. Sens. Actuators B Chem. 2018, 254, 239–247. [Google Scholar] [CrossRef]
- Tan, Y.Q.; Luo, H.; Zhou, X.S.; Peng, S.M.; Zhang, H.B. Boron carbide composites with highly aligned graphene nanoplatelets: Light-weight and efficient electromagnetic interference shielding materials at high temperatures. RSC Adv. 2018, 8, 39314–39320. [Google Scholar] [CrossRef] [PubMed]
- Wajahat, M.; Kim, J.H.; Ahn, J.; Lee, S.; Bae, J.; Pyo, J.; Seol, S.K. 3D Printing of Fe3O4 Functionalized Graphene-Polymer (FGP) Composite Microarchitectures; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 167, ISBN 8255280146. [Google Scholar]
- Tang, X.; Zhu, C.; Cheng, D.; Zhou, H.; Liu, X.; Xie, P.; Zhao, Q.; Zhang, D.; Fan, T. Architectured Leaf-Inspired Ni0.33Co0.66S2/Graphene Aerogels via 3D Printing for High-Performance Energy Storage. Adv. Funct. Mater. 2018, 28, 1805057. [Google Scholar] [CrossRef]
- Li, S.; Chen, H.; Wang, X.; Dong, X.; Huang, Y.; Guo, D. Catalytic degradation of clothianidin with graphene/TiO2 using a dielectric barrier discharge (DBD) plasma system. Environ. Sci. Pollut. Res. 2020, 27, 29599–29611. [Google Scholar] [CrossRef] [PubMed]
- Trinh, D.T.T.; Channei, D.; Chansaenpak, K.; Khanitchaidecha, W.; Nakaruk, A. Photocatalytic degradation of organic dye over bismuth vanadate–silicon dioxide–graphene oxide nanocomposite under visible light irradiation. J. Aust. Ceram. Soc. 2020, 56, 1237–1241. [Google Scholar] [CrossRef]
- Zhao, G.; Mo, Z.; Zhang, P.; Wang, B.; Zhu, X. Synthesis of graphene/Fe3O4/NiO magnetic nanocomposites and its application in photocatalytic degradation the organic pollutants in wastewater. J. Porous Mater. 2015, 22, 1245–1253. [Google Scholar] [CrossRef]
- Zhou, M.; Lin, T.; Huang, F.; Zhong, Y.; Wang, Z.; Tang, Y. Highly Conductive Porous Graphene / Ceramic Composites for Heat Transfer and Thermal Energy Storage. Adv. Funct. Mater. 2012, 23, 2263–2269. [Google Scholar] [CrossRef]
- Zhou, M.; Bi, H.; Lin, T.; Lü, X.; Wan, D.; Huang, F.; Lin, J. Heat transport enhancement of thermal energy storage material using graphene/ceramic composites. Carbon N. Y. 2014, 75, 314–321. [Google Scholar] [CrossRef]
- Garman, P.D.; Johnson, J.M.; Talesara, V.; Yang, H.; Du, X.; Pan, J.; Zhang, D.; Yu, J.; Cabrera, E.; Yen, Y.C.; et al. Dual Silicon Oxycarbide Accelerated Growth of Well-Ordered Graphitic Networks for Electronic and Thermal Applications. Adv. Mater. Technol. 2019, 4, 1800324. [Google Scholar] [CrossRef]
- Garman, P.D.; Johnson, J.M.; Talesara, V.; Yang, H.; Zhang, D.; Castro, J.; Lu, W.; Hwang, J.; Lee, L.J. Silicon Oxycarbide Accelerated Chemical Vapor Deposition of Graphitic Networks on Ceramic Substrates for Thermal Management Enhancement. ACS Appl. Nano Mater. 2019, 2, 452–458. [Google Scholar] [CrossRef]
- Chan, K.F.; Zaid, M.H.M.; Mamat, M.S.; Liza, S.; Tanemura, M.; Yaakob, Y. Recent Developments in Carbon Nanotubes-Reinforced Ceramic Matrix Composites: A Review on Dispersion and Densification Techniques. Crystals 2021, 11, 457. [Google Scholar] [CrossRef]
- Guo, C.; Luo, X.; Shah, W.A.; Huang, B.; Li, J.K.; Umer, M.A.; Yang, Y.Q. Mechanical and electrical properties of carbon nanotube-reinforced Al2O3 nanocomposites. J. Mater. Sci. 2020, 55, 8728–8740. [Google Scholar] [CrossRef]
- Karagedov, G.R.; Shutilov, R.A.; Kolesov, B.A.; Kuznetsov, V.L. The effect of carbon nanotubes introduction on the mechanical properties of reaction bonded boron carbide ceramics. J. Eur. Ceram. Soc. 2021, 41, 5782–5790. [Google Scholar] [CrossRef]
- Yadhukulakrishnan, G.B.; Rahman, A.; Karumuri, S.; Stackpoole, M.M.; Kalkan, A.K.; Singh, R.P.; Harimkar, S.P. Spark plasma sintering of silicon carbide and multi-walled carbon nanotube reinforced zirconium diboride ceramic composite. Mater. Sci. Eng. A 2012, 552, 125–133. [Google Scholar] [CrossRef]
- Shahedi Asl, M.; Farahbakhsh, I.; Nayebi, B. Characteristics of multi-walled carbon nanotube toughened ZrB2-SiC ceramic composite prepared by hot pressing. Ceram. Int. 2016, 42, 1950–1958. [Google Scholar] [CrossRef]
- Wiśniewska, M.; Laptev, A.M.; Marczewski, M.; Leshchynsky, V.; Lota, G.; Acznik, I.; Celotti, L.; Sullivan, A.; Szybowicz, M.; Garbiec, D. Influence of carbon nanotubes on thermal and electrical conductivity of zirconia-based composite. Ceram. Int. 2023, 49, 15442–15450. [Google Scholar] [CrossRef]
- Michálek, M.; Kašiarová, M.; Michálková, M.; Galusek, D. Mechanical and functional properties of Al2O3-ZrO2-MWCNTs nanocomposites. J. Eur. Ceram. Soc. 2014, 34, 3329–3337. [Google Scholar] [CrossRef]
- Ahmad, I.; Unwin, M.; Cao, H.; Chen, H.; Zhao, H.; Kennedy, A.; Zhu, Y.Q. Multi-walled carbon nanotubes reinforced Al2O3 nanocomposites: Mechanical properties and interfacial investigations. Compos. Sci. Technol. 2010, 70, 1199–1206. [Google Scholar] [CrossRef]
- Anstis, G.R. Indentation and fracture toughness, I. Transformation 1981, 46, 533–538. [Google Scholar]
- Cuadrado, N.; Casellas, D.; Anglada, M.; Jiménez-Piqué, E. Evaluation of fracture toughness of small volumes by means of cube-corner nanoindentation. Scr. Mater. 2012, 66, 670–673. [Google Scholar] [CrossRef]
- ASTM E399; Annual Book of ASTM Standards: Standard Test Method for Plain Strain Fracture Toughness of Metallic Materials. ASTM: Philadelphia, PA, USA, 1991.
- Balázsi, K.; Furkó, M.; Balázsi, C. Ceramic Matrix Graphene and Carbon Nanotube Composites. Encycl. Mater. Tech. Ceram. Glas. 2021, 2, 243–259. [Google Scholar] [CrossRef]
- Zhao, W.; Sun, J.; Huang, Z. Three-dimensional graphene-carbon nanotube reinforced ceramics and computer simulation. Ceram. Int. 2021, 47, 33941–33955. [Google Scholar] [CrossRef]
- Ahmad, I.; Yazdani, B.; Zhu, Y. Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites. Nanomaterials 2014, 5, 90–114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Zhang, Y.; Wan, T.; Yin, Z.; Wang, J. Mechanical properties and toughening mechanisms of graphene platelets reinforced Al2O3/TiC composite ceramic tool materials by microwave sintering. Mater. Sci. Eng. A 2017, 680, 190–196. [Google Scholar] [CrossRef]
- Sun, D.; Jiang, X.; Su, L.; Sun, H.; Hu, C.; Song, T.; Luo, Z. Fabrication and mechanical properties of Al2O3–TiC ceramic composites synergistically reinforced with multi-walled carbon nanotubes and graphene nanoplates. Ceram. Int. 2020, 46, 20068–20080. [Google Scholar] [CrossRef]
- Gurnani, L.; Mukhopadhyay, A. Development of Carbon Nanotube-Reinforced Ceramic Matrix Nanocomposites for Advanced Structural Applications. In Handbook of Advanced Ceramics and Composites; Springer International Publishing: Cham, Switzerland, 2020; pp. 929–974. [Google Scholar]
- Shah, W.A.; Luo, X.; Yang, Y.Q. Microstructure, mechanical, and thermal properties of graphene and carbon nanotube-reinforced Al2O3 nanocomposites. J. Mater. Sci. Mater. Electron. 2021, 32, 13656–13672. [Google Scholar] [CrossRef]
- Yazdani, B.; Xia, Y.; Ahmad, I.; Zhu, Y. Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J. Eur. Ceram. Soc. 2015, 35, 179–186. [Google Scholar] [CrossRef]
- Silvestre, J.; Silvestre, N.; De Brito, J. An overview on the improvement of mechanical properties of ceramics nanocomposites. J. Nanomater. 2015, 2015, 106494. [Google Scholar] [CrossRef]
- Dassios, K.G.; Alafogianni, P.; Antiohos, S.K.; Leptokaridis, C.; Barkoula, N.M.; Matikas, T.E. Optimization of sonication parameters for homogeneous surfactant assisted dispersion of multiwalled carbon nanotubes in aqueous solutions. J. Phys. Chem. C 2015, 119, 7506–7516. [Google Scholar] [CrossRef]
- Estili, M.; Kawasaki, A.; Sakamoto, H.; Mekuchi, Y.; Kuno, M.; Tsukada, T. The homogeneous dispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubes in α-alumina ceramics for structural reinforcement. Acta Mater. 2008, 56, 4070–4079. [Google Scholar] [CrossRef]
- Rubel, R.I.; Ali, M.H.; Jafor, M.A.; Alam, M.M. Carbon nanotubes agglomeration in reinforced composites: A review. AIMS Mater. Sci. 2019, 6, 756–780. [Google Scholar] [CrossRef]
- Rivero-Antúnez, P.; Cano-Crespo, R.; Esquivias, L.; de la Rosa-Fox, N.; Zamora-Ledezma, C.; Domínguez-Rodríguez, A.; Morales-Flórez, V. Mechanical characterization of sol-gel alumina-based ceramics with intragranular reinforcement of multiwalled carbon nanotubes. Ceram. Int. 2020, 46, 19723–19730. [Google Scholar] [CrossRef]
- Tu, S.; Wang, Q.; Ramachandran, C.S. Parametric investigation of in-situ synthesis of carbon nanotubes on Al2O3 powder by the rotary chemical vapor deposition method. Ceram. Int. 2022, 48, 28258–28267. [Google Scholar] [CrossRef]
- Inam, F.; Yan, H.; Reece, M.J.; Peijs, T. Structural and chemical stability of multiwall carbon nanotubes in sintered ceramic nanocomposite. Adv. Appl. Ceram. 2010, 109, 240–245. [Google Scholar] [CrossRef]
- Suslova, E.; Savilov, S.; Egorov, A.; Shumyantsev, A.; Lunin, V. Carbon nanotube frameworks by spark plasma sintering. Microporous Mesoporous Mater. 2020, 293, 109807. [Google Scholar] [CrossRef]
- Cho, J.; Boccaccini, A.R.; Shaffer, M.S.P. Ceramic matrix composites containing carbon nanotubes. J. Mater. Sci. 2009, 44, 1934–1951. [Google Scholar] [CrossRef]
Property | Alumina (Content: 99.99 wt%) |
---|---|
Density, g/cm3 | 3.97–3.99 |
Melting point, °C | 2054 |
Ultimate strength, (flexure (σf)) MPa | 282 |
Compression, MPa | 2550–3100 |
Modulus of elasticity, GPa | 366–410 |
Crack resistance (K1c), MPa·m0.5 | 2.8–4.5 |
Hardness: Vickers (HV), GPa | 19.3 |
Thermal conductivity at room temperature, W/(m·K) | 38.9 |
Thermal expansion coefficient (10−6/K) at 200–1200 °C | 6.5–8.9 |
Specific volumetric electrical resistivity (ρ), Ohm·m | 2 × 1014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansoori, A.; Balázsi, K.; Balázsi, C. Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics. Nanomaterials 2024, 14, 1881. https://doi.org/10.3390/nano14231881
Almansoori A, Balázsi K, Balázsi C. Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics. Nanomaterials. 2024; 14(23):1881. https://doi.org/10.3390/nano14231881
Chicago/Turabian StyleAlmansoori, Alaa, Katalin Balázsi, and Csaba Balázsi. 2024. "Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics" Nanomaterials 14, no. 23: 1881. https://doi.org/10.3390/nano14231881
APA StyleAlmansoori, A., Balázsi, K., & Balázsi, C. (2024). Advances, Challenges, and Applications of Graphene and Carbon Nanotube-Reinforced Engineering Ceramics. Nanomaterials, 14(23), 1881. https://doi.org/10.3390/nano14231881