Laser Resurfacing Versus Chemical Peels: A Review of Current Trends and Technological Advances in Nonsurgical Facial Rejuvenation
Abstract
1. Introduction
1.1. Background: The Rise of Nonsurgical Facial Rejuvenation
1.2. Significance of Laser Resurfacing and Chemical Peels
1.3. Rationale for the Review
1.4. Review Aims and Objectives
2. Materials and Methods
3. Historical Evolution and Current Trends
3.1. Chemical Peels
3.2. Laser Resurfacing
3.3. Overall Market and Practice Trends
4. Modalities: Mechanisms, Indications, Efficacy, and Safety
4.1. Chemical Peels: Mechanism
4.2. Common Agents and Formulations
- ▪
- Superficial: Glycolic Acid (AHA), Salicylic Acid (BHA), Jessner’s Solution (resorcinol, salicylic acid, lactic acid in ethanol), Retonic Acid, Pyruvic Acid (AHA), Lactic Acid (AHA), Mandelic Acid (AHA), TCA (10–35%).
- ▪
- Medium: TCA (various concentrations 20–50% and application techniques—single vs. multiple coats), Modified Jessner’s + TCA (combination).
- ▪
- Deep: Phenol formulations (Baker-Gordon, Hetter, Stone—varying croton oil concentrations).
4.3. Clinical Indications
- ▪
- ▪
- Medium: Moderate dyschromia, fine lines, superficial rhytides, superficial atrophic acne scars, actinic keratoses.
- ▪
- Deep: Coarse rhytides, deeper acne scars, significant photodamage, dermal melasma (caution).
4.4. Efficacy
4.5. Safety Profile and Complications
4.6. Laser Types and Technologies
5. Comparative Analysis: Laser Resurfacing
6. Comparative Analysis: Chemical Peels
7. Advancements for Diverse Skin Types (Fitzpatrick IV–VI)
7.1. Historical Challenges
7.2. Laser Advances for Skin of Color
7.3. Chemical Peel Advances for Skin of Color
7.4. Comparative Safety and Efficacy in Fitzpatrick IV–VI
8. Clinical Application and Decision-Making
8.1. Patient Assessment and Selection
8.2. Matching Modality/Technology to Patient and Indication
8.3. Pre-Treatment Considerations
8.4. Post-Treatment Care and Management
8.5. Setting Realistic Expectations
9. Results
9.1. Treatment Modalities
- Radiofrequency microneedling (Cheles, Tao, Munavalli) [27];
- Picosecond lasers (Wang, Khetarpal, Dierickx, Tao) [37];
- Intense Pulsed Light (IPL) (Sales) [38];
- CO2/1540 nm fractional lasers (Belletti) [29];
- Plasma exeresis (Ferreira) [39];
- Calcium hydroxylapatite fillers (Wollina) [40];
- Combination therapies (Dayan, Munavalli, Tao) [41];
9.2. Efficacy Outcomes
9.3. Safety and Tolerability
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AF | Ablative fractional |
AFCO2 | Ablative fractional CO2 |
AFEr | Ablative fractional erbion |
BHAs | Beta-hydroxy acids |
CO | Croton Oil |
DLA | Diffractive Lens Array |
Er:Glass | Erbium-doped glass |
Er:YAG | Erbium-doped yttrium aluminum garnet |
FCWS | Fitzpatrick Wrinkle Assessment Scale/Wrinkle & Elastosis Scale |
GA | Glycolic Acid |
IPL | Intense Pulsed Light |
JS | Jessner’s Solution |
LCW | Lemperle Classification of Wrinkles |
LFW | Lemperle Classification of Facial Wrinkles |
LIOB | Laser-Induced Optical Breakdown |
MAS | Michaelsson Acne Score |
MASI | Melasma Area and Severity Index |
MTZs | Microscopic transition zones |
NAF | Non-ablative fractional |
NAFL | Non-ablative laser |
Nd:YAG | Neodynium-doped yttrium aluminum garnet |
PDL | Pulsed Dye Laser |
PIH | Non-ablative fractional laser |
RCT | Randomized Controlled Trial |
RF | Radio Frequency |
SA | Salicylic Acid |
SST | Same-day sequential Q-switched Nd:YAG laser and 1565 nm non-ablative fractional laser |
TCA | Trichloroacetic acid |
TST | Thermal Relaxation Time |
VAS | Visual Analog Scale |
References
- Hari-Raj, A.; Spataro, E.A. Evidence-Based Medicine for Nonsurgical Facial Rejuvenation. Facial Plast. Surg. 2023, 39, 230–236. [Google Scholar] [CrossRef]
- 2023 Plastic Surgery Statistics: Minimally Invasive Procedures. American Society of Plastic Surgeons. 2023. Available online: https://www.plasticsurgery.org/news/plastic-surgery-statistics?sub=2023+Plastic+Surgery+Statistics (accessed on 10 June 2025).
- Haykal, D.; Cartier, H.; Goldberg, D.; Gold, M. Advancements in laser technologies for skin rejuvenation: A comprehensive review of efficacy and safety. J. Cosmet. Dermatol. 2024, 23, 3078–3089. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Shang, J.; Gu, Z.; Luo, X.; Chen, Y.; Liu, Y. Lactic Acid Chemical Peeling in Skin Disorders. Clin. Cosmet. Investig. Dermatol. 2024, 17, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Weissler, J.M.; Carney, M.J.; Carreras Tartak, J.A.; Bensimon, R.H.; Percec, I. The Evolution of Chemical Peeling and Modern-Day Applications. Plast. Reconstr. Surg. 2017, 140, 920–929. [Google Scholar] [CrossRef]
- Herbig, K.; Trussler, A.P.; Khosla, R.K.; Rohrich, R.J. Combination Jessner’s solution and trichloroacetic acid chemical peel: Technique and outcomes. Plast. Reconstr. Surg. 2009, 124, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Manstein, D.; Herron, G.S.; Sink, R.K.; Tanner, H.; Anderson, R.R. Fractional photothermolysis: A new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg. Med. 2004, 34, 426–438. [Google Scholar] [CrossRef]
- Halpin, J.; Amechi, M. Considerations for Laser Therapy, Microneedling, and Chemical Peels When Treating Patients with Skin of Color. Plast Aesthet Nurs. 2023, 43, E2. [Google Scholar] [CrossRef]
- Anayb Baleg, S.M.; Bidin, N.; Suan, L.P.; Sidi Ahmad, M.F.; Krishnan, G.; Johari, A.R.; Hamid, A. Combination of Er:YAG laser and CO2 laser treatment on skin tissue. Photochem. Photobiol. 2015, 91, 134–138. [Google Scholar] [CrossRef]
- Jacono, A.A.; Malone, M.H.; Lavin, T.J. Nonsurgical Facial Rejuvenation Procedures in Patients Under 50 Prior to Undergoing Facelift: Habits, Costs, and Results. Aesthet. Surg. J. 2017, 37, 448–453. [Google Scholar] [CrossRef]
- Liu, Y.; Mao, R.; Xiao, M.; Zhu, W.; Liu, Y.; Xiao, H. Facial Rejuvenation: A Global Trend of Dermatological Procedures in the Last Decade. Plast. Reconstr. Surg. Glob. Open 2024, 12, e5801. [Google Scholar] [CrossRef]
- Amici, J.; Cogrel, O.; Jourdan, M.; Raimbault, C.; Canchy, L.; Kerob, D.; Madfes, D.C.; Tian, Y.; Araviiskaia, E. Expert recommendations on supportive skin care for non-surgical and surgical procedures. J. Eur. Acad. Dermatol. Venereol. 2023, 37 (Suppl. S3), 16–33. [Google Scholar] [CrossRef]
- Lee, K.C.; Wambier, C.G.; Soon, S.L.; Sterling, J.B.; Landau, M.; Rullan, P.; Brody, H.J. Basic chemical peeling: Superficial and medium-depth peels. J. Am. Acad. Dermatol. 2019, 81, 313–324. [Google Scholar] [CrossRef]
- How, K.N.; Lim, P.Y.; Kammal, W.S.L.W.A.; Shamsudin, N. Efficacy and safety of Jessner’s solution peel in comparison with salicylic acid 30% peel in the management of patients with acne vulgaris and postacne hyperpigmentation with skin of color: A randomized, double-blinded, split-face, controlled trial. Int. J. Dermatol. 2020, 59, 804–812. [Google Scholar] [CrossRef] [PubMed]
- Dorgham, N.A.; Hegazy, R.A.; Sharobim, A.K.; Dorgham, D.A. Efficacy and tolerability of chemical peeling as a single agent for melasma in dark-skinned patients: A systematic review and meta-analysis of comparative trials. J. Cosmet. Dermatol. 2020, 19, 2812–2819. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Lakhani, R.M. Chemical Peels for Melasma: A Systematic Review. Dermatol. Surg. 2024, 50, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Ai, J.; Zhu, Z.; Huang, L.; Yi, Z.; Wu, L.; Xu, Y.; Zhu, D.; Li, H.; Yan, Y.; et al. Chemical peeling with 35% glycolic acid for the treatment of disseminated facial verruca plana: A randomized, split-face, evaluator-blinded trial. Dermatol. Ther. 2022, 35, e15594. [Google Scholar] [CrossRef]
- Artzi, O.; Heyman, L.; Carasso, R.; Mehrabi, J. The Efficacy and Safety of a Novel Protective Complex Combined With 50% Glycolic Acid Peel: A Double-Blinded, Split Face, Controlled Study. J. Drugs Dermatol. 2021, 20, 1336–1339. [Google Scholar] [CrossRef]
- Abdel-Meguid, A.M.; Taha, E.A.; Ismail, S.A. Combined Jessner Solution and Trichloroacetic Acid Versus Trichloroacetic Acid Alone in the Treatment of Melasma in Dark-Skinned Patients. Dermatol. Surg. 2017, 43, 651–656. [Google Scholar] [CrossRef]
- Murtaza, F.; Bangash, A.R.; Khushdil, A.; Noor, S.M. Efficacy of Trichloro-Acetic Acid Peel Alone Versus Combined Topical Magnesium Ascorbyl Phosphate for Epidermal Melasma. J. Coll. Physicians Surg. Pak. 2016, 26, 557–561. [Google Scholar]
- Maymone, M.B.; Mirza, F.N.; Steiner, D.; Ribeiro, F.; Landau, M.; Marçon, C.; Celidonio, T.C.; Soon, S.L.; Wambier, C.G. Comparative long-term efficacy of phenol-croton oil chemical peels for persistent melasma at varied Croton tiglium oil concentrations. J. Am. Acad. Dermatol. 2024, 91, 336–338. [Google Scholar] [CrossRef]
- Murray, T.N.; Lohray, R.; Schultz, K.P.; Boutros, S.; Friedman, P.M. Complications of Chemical Peels, Lasers, and Energy-Based Device Procedures Performed by Core Cosmetic Physicians: A Retrospective Analysis. Lasers Surg. Med. 2024, 56, 619–624. [Google Scholar] [CrossRef]
- de Mendonça, M.C.C.M.; Segheto, N.N.; Aarestrup, F.M.; Aarestrup, B.J.D. Punctuated 88% Phenol Peeling for the Treatment of Facial Photoaging: A Clinical and Histopathological Study. Dermatol. Surg. 2018, 44, 241–247. [Google Scholar] [CrossRef]
- Levy, T.; Lerman, I.; Waibel, J.; Gauglitz, G.G.; Clementoni, M.T.; Friedmann, D.P.; Duplechain, K.; Peng, P.; Lim, D.; Al-Niaimi, F.; et al. Expert Consensus on Clinical Recommendations for Fractional Ablative CO2 Laser, in Facial Skin Rejuvenation Treatment. Lasers Surg. Med. 2025, 57, 15–26. [Google Scholar] [CrossRef]
- Khetarpal, S.; Desai, S.; Kruter, L.; Prather, H.; Petrell, K.; Depina, J.; Arndt, K.; Dover, J.S. Picosecond laser with specialized optic for facial rejuvenation using a compressed treatment interval. Lasers Surg. Med. 2016, 48, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.C.; Goldman, M.P.; Wat, H.; Chan, H.H.L. A Systematic Review of Picosecond Laser in Dermatology: Evidence and Recommendations. Lasers Surg. Med. 2021, 53, 9–49. [Google Scholar] [CrossRef] [PubMed]
- Cheles, D.; Vinshtok, Y.; Gershonowitz, A. Microneedling With RF-Assisted Skin Penetration Improves the Hard-to-Treat Periorbital Wrinkles: Nonrandomized Clinical Trial. J. Cosmet. Dermatol. 2024, 23, 3999–4006. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.V.; Christman, M.P.; Feng, H.; Pomerantz, H.; Lederhandler, M.; Geronemus, R.G. Paired facial treatment with 755 nm picosecond laser with diffractive lens array and 1060nm laser lipolysis of the submentum: An open-label prospective trial. J. Cosmet. Dermatol. 2021, 20, 3492–3497. [Google Scholar] [CrossRef]
- Belletti, S.; Madeddu, F.; Brando, A.; Provenzano, E.; Nisticò, S.P.; Fusco, I.; Bennardo, L. Laser Impacts on Skin Rejuvenation: The Use of a Synergistic Emission of CO2 and 1540 nm Wavelengths. Medicina 2023, 59, 1857. [Google Scholar] [CrossRef]
- Munavalli, G. A Split-Face Assessment of the Synergistic Potential of Sequential Q-Switched Nd:YAG Laser and 1565 nm Fractional Nonablative Laser Treatment for Facial Rejuvenation in Fitzpatrick Skin Type II-V Patients. J. Drugs Dermatol. 2016, 15, 1335–1342. [Google Scholar]
- Wat, H.; Wu, D.C.; Chan, H.H. Fractional resurfacing in the Asian patient: Current state of the art. Lasers Surg. Med. 2017, 49, 45–59. [Google Scholar] [CrossRef]
- Seirafianpour, F.; Pour Mohammad, A.; Moradi, Y.; Dehghanbanadaki, H.; Panahi, P.; Goodarzi, A.; Mozafarpoor, S. Systematic review and meta-analysis of randomized clinical trials comparing efficacy, safety, and satisfaction between ablative and non-ablative lasers in facial and hand rejuvenation/resurfacing. Lasers Med. Sci. 2022, 37, 2111–2122. [Google Scholar] [CrossRef] [PubMed]
- Tao, J.; Hashemi, D.A.; Bajaj, S.; Wang, J.V.; Geronemus, R.G. Paired Treatment Using Radiofrequency Microneedling and 755-nm Picosecond Laser with Fractionated Lens Array for Facial Rejuvenation. Dermatol. Surg. 2024, 50, 1163–1166. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, T.; Lanoue, J.; Rahman, Z. A Practical Approach to Chemical Peels: A Review of Fundamentals and Step-by-step Algorithmic Protocol for Treatment. J. Clin. Aesthet. Dermatol. 2018, 11, 21–28. [Google Scholar] [PubMed]
- Nofal, E.; Nofal, A.; Gharib, K.; Nasr, M.; Abdelshafy, A.; Elsaid, E. Combination chemical peels are more effective than single chemical peel in treatment of mild-to-moderate acne vulgaris: A split face comparative clinical trial. J. Cosmet. Dermatol. 2018, 17, 802–810. [Google Scholar] [CrossRef]
- Bae, Y.C.; Rettig, S.; Weiss, E.; Bernstein, L.; Geronemus, R. Treatment of Post-Inflammatory Hyperpigmentation in Patients With Darker Skin Types Using a Low Energy 1927 nm Non-Ablative Fractional Laser: A Retrospective Photographic Review Analysis. Lasers Surg. Med. 2020, 52, 7–12. [Google Scholar] [CrossRef]
- Dierickx, C. Using normal and high pulse coverage with picosecond laser treatment of wrinkles and acne scarring: Long term clinical observations. Lasers Surg. Med. 2018, 50, 51–55. [Google Scholar] [CrossRef]
- Sales, A.F.S.; Pandolfo, I.L.; de Almeida Cruz, M.; Parisi, J.R.; Garcia, L.A.; Martignago, C.C.S.; Renno, A.C.M.; Vassão, P.G. Intense Pulsed Light on skin rejuvenation: A systematic review. Arch. Dermatol. Res. 2022, 314, 823–838. [Google Scholar] [CrossRef]
- Ferreira, F.C.; Sathler, C.S.C.O.; Hida, I.Y.; Leite, S.C.; Kusabara, A.A.; de Castro, A.C.V.; Ribeiro, M.Z.M.L.; Nahas, T.R. Upper eyelid blepharoplasty using plasma exeresis: Evaluation of outcomes, satisfaction, and symptoms after procedure. J. Cosmet. Dermatol. 2021, 20, 2758–2764. [Google Scholar] [CrossRef]
- Wollina, U.; Goldman, A. Long lasting facial rejuvenation by repeated placement of calcium hydroxylapatite in elderly women. Dermatol. Ther. 2020, 33, e14183. [Google Scholar] [CrossRef]
- Dayan, S.H.; Ho, T.T.; Bacos, J.T.; Gandhi, N.D.; Kalbag, A.; Gutierrez-Borst, S. A Randomized Study to Assess the Efficacy of Skin Rejuvenation Therapy in Combination with Neurotoxin and Full Facial Filler Treatments. J. Drugs Dermatol. 2018, 17, 48–54. [Google Scholar]
- Meguid, A.M.A.; Attallah, D.A.E.A.; Omar, H. Trichloroacetic Acid Versus Salicylic Acid in the Treatment of Acne Vulgaris in Dark-Skinned Patients. Dermatol. Surg. 2015, 41, 1398–1404. [Google Scholar] [CrossRef]
- Ali, B.; ElMahdy, N.; Elfar, N.N. Microneedling (Dermapen) and Jessner’s solution peeling in treatment of atrophic acne scars: A comparative randomized clinical study. J. Cosmet. Laser Ther. 2019, 21, 357–363. [Google Scholar] [CrossRef]
- de Vries, F.; Meulendijks, A.; Driessen, R.; van Dooren, A.; Tjin, E.; van de Kerkhof, P. The efficacy and safety of non-pharmacological therapies for the treatment of acne vulgaris: A systematic review and best-evidence synthesis. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 1195–1203. [Google Scholar] [CrossRef]
- Kligman, D.E.; Draelos, Z.D. Combination Superficial Peels with Salicylic Acid and Post-Peel Retinoids. J. Drugs Dermatol. 2016, 15, 442–450. [Google Scholar]
- Clementi, A.; Cannarozzo, G.; Guarino, L.; Zappia, E.; Cassalia, F.; Alma, A.; Sannino, M.; Longo, C.; Nistico, S.P. Sequential Fractional CO2 and 1540/1570 nm Lasers: A Narrative Review of Preclinical and Clinical Evidence. J. Clin. Med. 2025, 14, 3867. [Google Scholar] [CrossRef]
Category | Key Details |
---|---|
Fundamental Principles | Selective Photothermolysis: Target chromophores (water, hemoglobin) using wavelength-specific absorption. Thermal Relaxation Time (TRT): Pulse duration ≤ TRT for precise damage. Fractional Photothermolysis: MTZs limit injury to 10–50% of skin. |
Laser Types | |
Ablative | CO2 (10,600 nm): Deep vaporization + collagen tightening Via thermal necrosis. Er:YAG (2940 nm): Superficial ablation with minimal thermal damage. Fractional variants (AFCO2, AFEr): Reduced Recovery Vs. Traditional. |
Non-Ablative | Nd:YAG (1064/1320 nm): Deep dermal heating for remodeling. Pulsed Dye Laser (PDL) (585–595 nm): Targets hemoglobin (vascular lesions). 1550/1927 nm diodes: Water-targeted collagen remodeling. |
Fractional | Ablative Fractional (AF): Ablation + coagulation (AFCO2 > AFEr). Non-Ablative Fractional (NAF): Coagulation-only MTZs (1550 nm gold standard). |
Picosecond | Ultra-short pulses (10−12 s) induce LIOB. Uses diffractive lens arrays for epidermal/dermal remodeling. |
Laser Category | Primary Indications | Ideal Patient Profile |
---|---|---|
Traditional Ablative | Severe perioral/glabellar rhytides, deep acne scars, actinic cheilitis, epidermal neoplasia. | Fitzpatrick I–III, high downtime tolerance. |
Ablative Fractional | Moderate-severe rhytides, atrophic scars, skin tightening, striae, photodamage. | Fitzpatrick I–IV, moderate downtime tolerance (5–10 days). |
Non-Ablative Fractional | Mild-moderate dyschromia, texture, fine lines, mild acne scars, pore refinement. | Fitzpatrick I–VI, minimal downtime tolerance (0–3 days). |
Picosecond | Pigment (melasma, solar lentigines), fine lines, enlarged pores, subtle textural improvement. | All skin types (esp. Fitzpatrick IV–VI), zero downtime tolerance. |
PDL/Nd:YAG | Vascular lesions (rosacea, telangiectasias), erythema, hypertrophic scars. | Vascular-specific concerns; Fitzpatrick I–IV (PDL). |
Aspect | Chemical Peels | Laser Resurfacing |
---|---|---|
Mechanism of Action | Keratolysis + protein denaturation Via chemical agents. Depth-dependent: Superficial: Epidermis Medium: Papillary/upper reticular dermis Deep: Mid-reticular dermis. | Selective photothermolysis (chromophore targeting) + fractional photothermolysis (microscopic treatment zones). Depth varies by wavelength/pulse. |
Key Agents/ Devices | Superficial: Glycolic, Salicylic, Lactic, Mandelic, Pyruvic acids, Jessner’s solution, Tretinoin-base. Medium: TCA (20–35%), Modified Jessner’s + TCA. Deep: Phenol (Baker-Gordon, Hetter), TCA (>50%). | Ablative: CO2 (10,600 nm), Er:YAG (2940 nm; fractional/non-fractional). Non-Ablative: Nd:YAG, PDL, 1550 nm. Fractional: AFCO2, AFEr, NAF (1550/1927 nm). Picosecond: Diffractive lens arrays. |
Clinical Indications | Superficial: Mild dyschromia, acne, texture, actinic keratosis prophylaxis. Medium: Moderate dyschromia, fine lines, superficial scars. Deep: Coarse rhytides, deep scars, dermal melasma. | Ablative: Severe rhytides/scars, skin tightening. Non-Ablative/NAF: Mild-moderate rhytides, texture, dyschromia, acne scars. Picosecond: Pigment, texture, pores. |
Efficacy | Superficial: Transient improvement (4–6 sessions). Medium: Significant texture/dyschromia correction (1–2+ years). Deep: Dramatic, long-lasting (>5 years). | Ablative: Highest efficacy for severe concerns (70–90% rhytide reduction). NAF/Picosecond: Moderate efficacy (40–70%) with fewer sessions vs. non-fractional. |
Safety Profile | Common: Erythema, desquamation. Risks: PIH (15–45% in Fitz IV–VI), scarring (deep peels), infection, phenol toxicity (cardiac/hepatic, hypopigmentation). Risk Factors: Fitz IV–VI, sun exposure, inadequate priming. | Common: Erythema, edema. Risks: PIH (10–30% in Fitz IV–VI), infection (HSV), scarring (ablative), paradoxical hyperpigmentation. Risk Factors: Aggressive settings, Fitz IV–VI, poor aftercare. |
Parameter | Chemical Peels | Laser Resurfacing |
---|---|---|
PIH Risk | High (esp. medium/deep peels in Fitz IV–VI) | Moderate (lower with NAF/picosecond) |
Downtime | Superficial: 0–3 days; Deep: 14–21 days | NAF: 0–3 days; Ablative: 7–14+ days |
Scarring Risk | Low (superficial); High (deep) | Low (fractional); Moderate (ablative) |
Systemic Toxicity | Phenol peels only (cardiac monitoring) | None |
Study (Year) | n | Fitzpatrick Type | Intervention |
---|---|---|---|
Abdel Meguid (2015) [19] | 20 | III–V | TCA 25% vs. SA 30% |
Khertarpal (2016) [25] | 20 | I–III | Picosecond laser |
Kligman (2016) [45] | 20 | Not specified | SA with 0.25% tretinoin vs. 0.25% retinoic acid |
Munavelli (2016) [30] | 17 | II–V | Sequential Q-switched Nd:YAG and 1565 nm non-ablative fractional laser OR fractional non-ablative laser |
Murtaza (2016) [20] | 148 | III–V | TCA 20% with 5% topical magnesium ascorbyl phosphate vs. TCA alone |
Dayan (2018) [41] | 20 | Not specified | HA fillers + neurotoxin plus basic skin regimen OR Nu-Derm |
de Vries (2018) [44] | 1404 (33 studies) | Not specified | GA (10–40%) vs. amino fruit acid (20–60%) vs. IPL (400–700 nm and 870–1200 nm) vs. diode laser (1450 nm) vs. PDL (585–595 nm) |
Dierickx (2018) [37] | 7 | II–IV | Picosecond laser: standard OR high pulse coverage |
Ali (2019) [43] | 60 | Not specified | Dermapen microneedling plus JS peel vs. each alone |
Dorgham (2020) [15] | 478 (13 studies) | III–VI | GA vs. TCA vs. JS peels vs. topical agents |
How (2020) [14] | 36 | IV–V | JS vs. SA 30% peel |
Wollina and Goldman (2020) [40] | 40 | I–III | Calcium hydroxyapatite filler |
Artzi (2021) [18] | 20 | Not specified | GA 50% peel with novel protecting agent vs. GA alone |
Ferreira (2021) [39] | 16 | II–IV | Plasma exeresis |
Wang (2021) [28] | 11 | II–IV | 755 nm picosecond laser (DLA)—face, 1060 nm laser—neck |
Liu (2022) [17] | 30 | Not specified | GA 35% peel vs. adapalene gel |
Sales (2022) [38] | 637 (16 studies) | I–IV | Intense Pulsed Light |
Tao (2022) [33] | 20 | I–IV | RF microneedling + 755 nm picosecond laser (fractionated lens array) |
Belletti (2023) [29] | 20 | I–III | Combined CO2 + 1540 nm laser |
Cheles (2024) [27] | 24 | II–V | VoluDerm RF microneedling—Gen100 OR Gen36L tip |
Maymone (2024) [21] | 26 | I–IV | Phenol with croton oil at varied concentrations |
Sarkar (2024) [16] | 1075 | Not specified | Variation in chemical peels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morris, M.X.; Gebhardt, S.; Tingen, J.N.; Dorante, M.I.; Pandya, S. Laser Resurfacing Versus Chemical Peels: A Review of Current Trends and Technological Advances in Nonsurgical Facial Rejuvenation. J. Aesthetic Med. 2025, 1, 5. https://doi.org/10.3390/jaestheticmed1010005
Morris MX, Gebhardt S, Tingen JN, Dorante MI, Pandya S. Laser Resurfacing Versus Chemical Peels: A Review of Current Trends and Technological Advances in Nonsurgical Facial Rejuvenation. Journal of Aesthetic Medicine. 2025; 1(1):5. https://doi.org/10.3390/jaestheticmed1010005
Chicago/Turabian StyleMorris, Miranda X., Susanna Gebhardt, Joseph N. Tingen, Miguel I. Dorante, and Sonal Pandya. 2025. "Laser Resurfacing Versus Chemical Peels: A Review of Current Trends and Technological Advances in Nonsurgical Facial Rejuvenation" Journal of Aesthetic Medicine 1, no. 1: 5. https://doi.org/10.3390/jaestheticmed1010005
APA StyleMorris, M. X., Gebhardt, S., Tingen, J. N., Dorante, M. I., & Pandya, S. (2025). Laser Resurfacing Versus Chemical Peels: A Review of Current Trends and Technological Advances in Nonsurgical Facial Rejuvenation. Journal of Aesthetic Medicine, 1(1), 5. https://doi.org/10.3390/jaestheticmed1010005