The Role of Soil Diversity (Pedodiversity) in the Kunming-Montreal Global Biodiversity Framework: Example of the Contiguous United States of America (USA)
Abstract
1. Introduction
Soil Order | General Characteristics and Constraints |
---|---|
Slight Weathering | |
Entisols | Embryonic soils with ochric epipedon |
Inceptisols | Young soils with ochric or umbric epipedon |
Histosols | Organic soils with ≥20% of organic carbon |
Andisols | Volcanic soils |
Moderate Weathering | |
Aridisols | Dry soils. Common in desert areas |
Vertisols | Soils with swelling clays |
Alfisols | Clay-enriched B horizon with base saturation ≥35% |
Mollisols | Carbon-enriched soils with base saturation ≥50% |
Strong Weathering | |
Spodosols | Coarse-textured soils with albic and spodic horizons |
Ultisols | Highly leached soils with base saturation <35% |
2. Materials and Methods
3. Results
3.1. The Role of Soil Diversity (Pedodiversity) in the Kunming-Montreal Global Biodiversity Framework (GBF)
3.1.1. Global Goals of GBF for 2050: Goal A and Goal B
3.1.2. Global Targets of GBF for 2030
3.2. Enhancing Existing Metrics and Potential New Metrics for the Kunming-Montreal Global Biodiversity Framework (GBF)
- Accounting for pedodiversity loss from land cover change analysis.
- Accounting for biodiversity and pedodiversity loss from climate change, including sea level rise.
4. Discussion
4.1. Significance of the Results for the Kunming-Montreal Global Biodiversity Framework (GBF)
4.1.1. Benefits and Limitations of the Kunming-Montreal Global Biodiversity Framework (GBF)
4.1.2. Refining the Kunming-Montreal Global Biodiversity Framework
4.2. Significance of the Results to Other United Nations (UN) Initiatives
Soil Order | Total Land Area | Total Midpoint Soil Organic Carbon (SOC) Storage | Anthropogenically Degraded Land | Total Area − Anthropogenically Degraded Land | Remaining Midpoint Soil Organic Carbon (SOC) Storage | |
---|---|---|---|---|---|---|
(km2) | (%) | (kg of SOC) | (km2) | (km2) | (kg of SOC) | |
Slightly Weathered Soils | ||||||
1,743,804 | 28.4 | 2.8 × 1013 | 371,482 | 1,372,322 | 4.7 × 1012 | |
Entisols | 819,170 | 13.3 | 6.6 × 1012 | 182,793 | 636,377 | 1.5 × 1012 |
Inceptisols | 767,973 | 12.5 | 6.8 × 1012 | 173,900 | 594,073 | 1.5 × 1012 |
Histosols | 97,366 | 1.6 | 1.4 × 1013 | 11,966 | 85,400 | 1.7 × 1012 |
Andisols | 59,296 | 1.0 | 6.3 × 1011 | 2822 | 56,474 | 3.0 × 1010 |
Moderately Weathered Soils | ||||||
3,451,510 | 56.2 | 3.5 × 1013 | 1,449,577 | 2,001,933 | 1.6 × 1013 | |
Aridisols | 537,759 | 8.8 | 2.2 × 1012 | 47,818 | 489,941 | 1.9 × 1011 |
Vertisols | 157,752 | 2.6 | 2.3 × 1012 | 75,954 | 81,798 | 1.1 × 1012 |
Alfisols | 1,055,770 | 17.2 | 7.9 × 1012 | 505,881 | 549,889 | 3.8 × 1012 |
Mollisols | 1,700,229 | 27.6 | 2.3 × 1013 | 819,923 | 880,306 | 1.1 × 1013 |
Strongly Weathered Soils | ||||||
949,325 | 15.4 | 7.8 × 1012 | 271,482 | 677,843 | 2.1 × 1012 | |
Spodosols | 207,912 | 3.4 | 2.6 × 1012 | 33,031 | 174,881 | 4.1 × 1011 |
Ultisols | 741,414 | 12.0 | 5.3 × 1012 | 238,450 | 502,964 | 1.7 × 1012 |
All Soils | ||||||
Totals | 6,144,640 | 100.0 | 7.1 × 1013 | 2,092,540 | 4,052,100 | 2.3 × 1013 |
4.3. Limitations of the Study and Future Research Needs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C | Carbon |
CO2 | Carbon dioxide |
ES | Ecosystem services |
EPA | Environmental Protection Agency |
EU | European Union |
GBF | Kunming-Montreal Global Biodiversity Framework |
GHG | Greenhouse gases |
LD | Land degradation |
L&D | Loss and damage |
LULC | Land use/land cover |
NBS | Nature-based solutions |
NLCD | National Land Cover Database |
NRCS | Natural Resources Conservation Service |
PA | Protected area |
SC-CO2 | Social cost of carbon emissions |
SDGs | Sustainable Development Goals |
SOC | Soil organic carbon |
SIC | Soil inorganic carbon |
SSURGO | Soil Survey Geographic Database |
STATSGO | State Soil Geographic Database |
TSC | Total soil carbon |
UN | United Nations |
UNCCD | United Nations Convention to Combat Desertification |
USA | United States of America |
USD | United States dollar |
USDA | United States Department of Agriculture |
References
- UN. Convention on Biological Diversity. Treaty Collection. 1992. Available online: https://www.cbd.int/doc/legal/cbd-en.pdf (accessed on 29 January 2025).
- UN. Convention on Biological Diversity. Kunming-Montreal Global Biodiversity Framework. 2022. Available online: https://www.cbd.int/article/cop15-final-text-kunming-montreal-gbf-221222 (accessed on 29 January 2025).
- Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A.; Post, G.C. Soil diversity (pedodiversity) and ecosystem services. Land 2021, 10, 288. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; De-Alba, S.; Lobo, A.; Zucarello, V. Pedodiversity and global soil patterns at coarse scales (with Discussion). Geoderma 1998, 83, 171–214. [Google Scholar] [CrossRef]
- Amundson, R.; Guo, Y.; Gong, P. Soil diversity and land use in the United States. Ecosystems 2003, 6, 470–482. [Google Scholar] [CrossRef]
- Mattson, S. The constitution of the pedosphere. Ann. Agric. Coll. Swed. 1938, 5, 261–279. [Google Scholar]
- Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Zurqani, H.A. The business side of ecosystem services of soil systems. Earth 2020, 1, 15–34. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Pearson Education: London, UK, 2002. [Google Scholar]
- Li, Q.; Ge, Y.; Sayer, J.A. Challenges to Implementing the Kunming-Montreal Global Biodiversity Framework. Land 2023, 12, 2166. [Google Scholar] [CrossRef]
- Hughes, A.C.; Grumbine, R.E. The Kunming-Montreal Global Biodiversity Framework: What it does and does not do, and how to improve it. Front. Environ. Sci. 2023, 11, 1281536. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Lin, L.; Hao, Z.; Post, C.J.; Schlautman, M.A.; Shepherd, G.B. Possible integration of soil information into land degradation analysis for the United Nations (UN) Land Degradation Neutrality (LDN) Concept: A case study of the contiguous United States of America (USA). Soil Syst. 2024, 8, 27. [Google Scholar] [CrossRef]
- Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. n.d.a. Soil Survey Geographic (SSURGO) Database. Available online: https://nrcs.app.box.com/v/soils (accessed on 30 January 2025).
- The United States Census Bureau. TIGER/Line Boundary Shapefiles. 2018. Available online: https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.2018.html (accessed on 30 January 2025).
- Giakoumi, S.; Richardson, A.J.; Doxa, A.; Moro1, S.; Andrello, M.; Hanson, J.O.; Hermoso, V.; Mazor, T.; McGowan, J.; Kujala, H.; et al. Advances in systematic conservation planning to meet global biodiversity goals. Trends Ecol. Evol. 2024, 40, 395–410. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Zurqani, H.A.; Lin, L.; Hao, Z.; Post, C.J.; Schlautman, M.A.; Shepherd, G.B. Opportunities for monitoring soil and land development to support United Nations (UN) Sustainable Development Goals (SDGs): A Case study of the United States of America (USA). Land 2023, 12, 1853. [Google Scholar] [CrossRef]
- Multi-Resolution Land Characteristics Consortium—MRLC. Available online: https://www.mrlc.gov/ (accessed on 30 January 2025).
- ESRI (Environmental Systems Research Institute). ArcGIS Pro 2.6. Available online: https://pro.arcgis.com/en/pro-app/2.6/get-started/whats-new-in-arcgis-pro.htm (accessed on 29 January 2025).
- Guo, Y.; Amundson, R.; Gong, P.; Yu, Q. Quantity and spatial variability of soil carbon in the conterminous United States. Soil Sci. Soc. Am. J. 2006, 70, 590–600. [Google Scholar] [CrossRef]
- EPA—United States Environmental Protection Agency. The Social Cost of Carbon. EPA Fact Sheet. 2016. Available online: https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html (accessed on 10 February 2025).
- United Nations (UN) Sustainable Development Group. Theory of Change. UNDAF Companion Guidance. 2017. Available online: https://unsdg.un.org/sites/default/files/UNDG-UNDAF-Companion-Pieces-7-Theory-of-Change.pdf (accessed on 30 January 2025).
- Li, X.; Tian, H.; Lu, C.; Pan, S. Four-century history of land transformation by humans in the United States (1630–2020): Annual and 1 km grid data for the HIStory of LAND changes (HISLAND-US). Earth Syst. Sci. Data 2023, 15, 1005–1035. [Google Scholar] [CrossRef]
- Frazier, A.E.; Kedron, P.; Yang, W.; Quan, H. America the Beautiful: Meeting “30 × 30” conservation goals through connected protected areas. Ann. Assoc. Am. Geogr. 2024, 1–17. [Google Scholar] [CrossRef]
- U.S. Bureau of the Census. Statistical Abstract of the United States: 1991; U.S. Bureau of the Census: Washington, DC, USA, 1991; p. 201. [Google Scholar]
- Mikhailova, E.A.; Zurqani, H.A.; Lin, L.; Hao, Z.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Shepherd, G.B.; Dixon, R.M. Quantifying damages to soil health and emissions from land development in the state of Illinois (USA). Land 2023, 12, 1567. [Google Scholar] [CrossRef]
- UN. Convention on Biological Diversity. 15/5. Monitoring Framework for the Kunming-Montreal Global Biodiversity Framework. 2022. Available online: https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-05-en.pdf (accessed on 29 January 2025).
- Mikhailova, E.A.; Zurqani, H.A.; Lin, L.; Hao, Z.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Shepherd, G.B. Accounting for climate and inherent soil quality in United Nations (UN) land degradation analysis: A case study of the state of Arizona (USA). Climate 2024, 12, 194. [Google Scholar] [CrossRef]
- United Nations Convention to Combat Desertification. Available online: https://www.unccd.int/convention/overview (accessed on 18 March 2025).
- United Nations (UN) Convention to Combat Desertification. Decision 3/COP.12 (COP 12, Ankara, 2015). Integration of the Sustainable Development Goals and Target into the Implementation of the United Nations Convention to Combat Desertification and the Intergovernmental Working Group Report on Land Degradation Neutrality. Available online: https://www.unccd.int/official-documentscop-12-ankara-2015/3cop12 (accessed on 18 March 2025).
- Shen, X.; Liu, M.; Hanson, J.O.; Wang, J.; Locke, H.; Watson, J.E.; Ellis, E.C.; Li, S.; Ma, K. Countries’ differentiated responsibilities to fulfill area-based conservation targets of the Kunming-Montreal Global Biodiversity Framework. One Earth 2023, 6, 548–559. [Google Scholar] [CrossRef]
- Helfenstein, J.; Diogo, V.; Bürgi, M.; Verburg, P.H.; Schüpbach, B.; Szerencsits, E.; Mohr, F.; Siegrist, M.; Swart, R.; Herzog, F. An approach for comparing agricultural development to societal visions. Agron. Sustain. Dev. 2022, 42, 5. [Google Scholar] [CrossRef]
- Mantyka-Pringle, C.S.; Martin, T.G.; Rhodes, J.R. Interactions between climate and habitat loss effects on biodiversity: A systematic review and meta-analysis. Glob. Change Biol. 2012, 18, 1239–1252. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Climate.gov. Available online: https://www.climate.gov/maps-data (accessed on 17 March 2025).
- Ekardt, F.; Günther, P.; Hagemann, K.; Garske, B.; Heyl, K.; Weyland, R. Legally binding and ambitious biodiversity protection under the CBD, the global biodiversity framework, and human rights law. Environ. Sci. Eur. 2023, 35, 80. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondízio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019; 1144p, ISBN 978-3-947851-20-1. [Google Scholar]
- Government of the State of California, United States of America (USA). Executive Order N-82-20. Available online: https://www.gov.ca.gov/wp-content/uploads/2020/10/10.07.2020-EO-N-82-20-.pdf (accessed on 18 March 2025).
- Biden, J.R. Executive Order on Tackling the Climate Crisis at Home and Abroad. 2021. Available online: https://bidenwhitehouse.archives.gov/briefing-room/presidential-actions/2021/01/27/executive-order-on-tackling-the-climate-crisis-at-home-and-abroad/ (accessed on 18 March 2025).
- Dinerstein, E.; Vynne, C.; Sala, E.; Joshi, A.R.; Fernando, S.; Lovejoy, T.E.; Mayorga, J.; Olson, D.; Asner, G.P.; Baillie, J.E.M.; et al. A global deal for nature: Guiding principles, milestones, and targets. Sci. Adv. 2019, 5, eaaw2869. [Google Scholar] [CrossRef]
- Dinerstein, E.; Joshi, A.R.; Vynne, C.; Lee, A.T.; Pharand-Deschênes, F.; França, M.; Fernando, S.; Birch, T.; Burkart, K.; Asner, G.P.; et al. A “global safety net” to reverse biodiversity loss and stabilize Earth’s climate. Sci. Adv. 2020, 6, eabb2824. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harrison, S.; Franklin, J.; Hernandez, R.R.; Ikegami, M.; Safford, H.D.; Thorne, J.H. Climate change and California’s terrestrial biodiversity. Proc. Natl. Acad. Sci. USA 2024, 121, e2310074121. [Google Scholar] [CrossRef] [PubMed]
- Zabala, A.; Palomo, I.; Múgica, M.; Montes, C. Challenges beyond reaching a 30% of area protection. npj Biodivers. 2024, 3, 9. [Google Scholar] [CrossRef]
- Villagomez, A.; Hidayat, A. The U.S. Terminated Its 30 × 30 Conservation Plan But This also Presents an Opportunity (Commentary). Mongabay. 2025. Available online: https://news.mongabay.com/2025/02/the-u-s-terminated-its-30x30-conservation-plan-but-this-also-presents-an-opportunity-commentary/ (accessed on 18 March 2025).
- Reed, B. America the Beautiful: How Biden Is Conserving Land and Water as Trump Looms. The Guardian, 10 June 2024. Available online: https://www.theguardian.com/environment/article/2024/jun/10/land-water-conservation-biden-environment (accessed on 18 March 2025).
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development; The Resolution Adopted by the General Assembly on 25 September 2015; United Nations: New York, NY, USA, 2015; 35p. [Google Scholar]
- Paris Agreement to the United Nations Framework Convention on Climate Change, 12 December 2015, T.I.A.S. No. 16-1104. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 18 March 2025).
- Food and Agriculture Organization (FAO). Revised World Soil Charter. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/65be618a-f5e8-4f67-9cbb-d77f1f5cd31e/content (accessed on 18 March 2025).
- Heuvelink, G.B.; Burrough, P.A.; Stein, A. Propagation of errors in spatial modelling with GIS. Int. J. Geogr. Inf. Syst. 1989, 3, 303–322. [Google Scholar] [CrossRef]
- Bhaduri, D.; Sihi, D.; Bhowmik, A.; Verma, B.C.; Munda, S.; Dari, B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front. Microbiol. 2022, 13, 938481. [Google Scholar] [CrossRef]
- Conciatori, M.; Tran, N.T.C.; Diez, Y.; Valletta, A.; Segalini, A.; Lopez Caceres, M.L. Plant species classification and biodiversity estimation from UAV images with deep learning. Remote Sens. 2024, 16, 3654. [Google Scholar] [CrossRef]
Soil Quality Continuum | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
NLCD Land Cover Classes (LULC), Dynamic Soil Quality (Soil Health Continuum) | Change in Area, 2001–2021 (%) | Inherent Soil Quality (Soil Suitability) | ||||||||||
Degree of Weathering and Soil Development | ||||||||||||
Slight | Moderate | Strong | ||||||||||
Enti- sols | Incepti- sols | Histo- sols | Andi- sols | Verti- sols | Alfi- soils | Molli- soils | Aridi- sols | Spodo-sols | Ulti- sols | |||
Change in Area, 2001–2021 (%) | ||||||||||||
Woody wetlands | Higher | 3.6 | 2.6 | 2.8 | 2.9 | 10.6 | 25.5 | 6.1 | 4.8 | 0.3 | 3.4 | 0.1 |
Shrub/Scrub | −0.5 | −0.5 | 7.3 | −11.8 | 10.2 | −1.1 | 3.6 | −3.0 | −2.2 | −9.7 | 17.3 | |
Mixed forest | −5.8 | −7.4 | −4.1 | −1.4 | 11.4 | 7.4 | −15.2 | −12.4 | −6.2 | 2.0 | −4.8 | |
Deciduous forest | −3.8 | −4.7 | −2.9 | −7.7 | 2.2 | −5.6 | −1.4 | −2.5 | −8.3 | −3.0 | −7.1 | |
Herbaceous | −1.0 | −1.4 | 2.5 | −1.5 | 29.8 | −6.9 | −1.6 | −2.8 | 2.6 | −8.5 | 13.5 | |
Evergreen forest | −1.0 | −2.9 | −5.9 | −3.2 | −1.0 | 16.3 | −1.4 | −4.4 | −3.8 | −1.5 | 7.7 | |
Emergent herbaceous wetlands | 5.3 | 1.7 | 9.3 | −3.4 | 14.5 | 10.5 | 4.6 | 9.0 | 18.6 | 3.2 | 55.1 | |
Hay/Pasture | −8.4 | −7.2 | −7.2 | −16.2 | −5.6 | −1.5 | −9.1 | −7.8 | −3.2 | −5.4 | −10.3 | |
Cultivated crops | 4.4 | 4.0 | 3.9 | −1.1 | 2.7 | 22.4 | 4.1 | 3.8 | 6.6 | 0.8 | 0.4 | |
Developed, open space | −2.9 | −9.5 | −1.0 | −8.7 | 6.1 | −6.4 | −2.5 | −8.3 | 1.5 | −4.9 | 4.3 | |
Developed, low intensity | 27.6 | 12.0 | 28.3 | 18.2 | 26.5 | 26.3 | 29.0 | 29.0 | 23.1 | 26.6 | 38.6 | |
Developed, medium intensity | 96.5 | 59.0 | 78.4 | 94.4 | 83.0 | 110.9 | 114.1 | 103.8 | 115.3 | 111.8 | 130.7 | |
Developed, high intensity | 95.9 | 66.1 | 85.7 | 111.9 | 90.8 | 107.5 | 113.7 | 98.7 | 163.3 | 100.7 | 119.8 | |
Barren land | Lower | −1.8 | −3.1 | −3.1 | −5.5 | −1.1 | 1.2 | 13.3 | 27.8 | −6.4 | −15.9 | −5.4 |
Soil Order | Total Area | Anthropogenically Degraded Land | Types of Anthropogenic Degradation | Potential Land for Nature-Based Solutions | |||
---|---|---|---|---|---|---|---|
Barren | Developed | Agriculture | |||||
(km2) | (%) | (km2) | (km2) | (km2) | (km2) | (km2) | |
Slightly Weathered Soils | |||||||
1,743,804 | 28.4 | 371,482 (+3.6) | 19,479 (−3.1) | 104,002 (+15.3) | 248,001 (−0.1) | 636,824 (+0.7) | |
Entisols | 819,170 | 13.3 | 182,793 (+3.8) | 16,418 (−3.1) | 51,272 (+13.8) | 115,104 (+0.9) | 455,868 (−1.0) |
Inceptisols | 767,973 | 12.5 | 173,900 (+3.5) | 2689 (−3.1) | 47,730 (+17.2) | 123,481 (−0.9) | 168,327 (+4.9) |
Histosols | 97,366 | 1.6 | 11,966 (+0.1) | 146 (−5.5) | 3256 (+13.0) | 8564 (−4.0) | 1462 (−7.5) |
Andisols | 59,296 | 1.0 | 2822 (+9.5) | 227 (−1.1) | 1744 (+17.2) | 851 (−0.9) | 11,167 (+15.0) |
Moderately Weathered Soils | |||||||
3,451,510 | 56.2 | 1,449,577 (+3.6) | 10,075 (+2.1) | 194,085 (+19.1) | 1,245,416 (+1.6) | 1,389,497 (−1.9) | |
Aridisols | 537,759 | 8.8 | 47,818 (+9.0) | 5887 (−6.4) | 12,535 (+28.6) | 29,397 (+5.6) | 485,106 (−1.2) |
Vertisols | 157,752 | 2.6 | 75,954 (+17.8) | 830 (+1.2) | 10,025 (+28.9) | 65,100 (+16.5) | 57,635 (−4.4) |
Alfisols | 1,055,770 | 17.2 | 505,881 (+1.9) | 1358 (+13.3) | 89,465 (+20.3) | 415,058 (−1.4) | 180,292 (+1.1) |
Mollisols | 1,700,229 | 27.6 | 819,923 (+3.3) | 2000 (+27.8) | 82,061 (+15.5) | 735,862 (+2.0) | 666,465 (−2.9) |
Strongly Weathered Soils | |||||||
949,325 | 15.4 | 271,482 (+2.2) | 1928 (−8.3) | 95,790 (+22.2) | 173,764 (−6.1) | 67,778 (+9.8) | |
Spodosols | 207,912 | 3.4 | 33,031 (+5.1) | 484 (−15.9) | 16,139 (+15.6) | 16,408 (−2.8) | 11,598 (−9.4) |
Ultisols | 741,414 | 12.0 | 238,450 (+1.9) | 1444 (−5.4) | 79,651 (+23.6) | 157,356 (−6.4) | 56,181 (+14.8) |
All Soils | |||||||
Totals | 6,144,640 | 100.0 | 2,092,540 (+3.4) | 31,482 (−1.8) | 393,877 (+18.8) | 1,667,181 (+0.5) | 2,094,099 (−0.7) |
Soil Order | Prior to and Through 2021 | Recent (2001–2021) | ||||
---|---|---|---|---|---|---|
Developed Area | Midpoint Total Soil C Loss | Midpoint SC-CO2 | Developed Area | Midpoint Total Soil C Loss | Midpoint SC-CO2 | |
(km2) | (kg C) | ($, USD) | (km2) | (kg C) | ($, USD) | |
Slightly Weathered Soils | ||||||
104,002.0 | 1.8 × 1012 | $305.3B | 13,838.9 | 2.3 × 1011 | $39.4B | |
Entisols | 51,271.8 | 6.6 × 1011 | $111.3B | 6203.5 | 7.9 × 1010 | $13.5B |
Inceptisols | 47,729.8 | 6.7 × 1011 | $112.6B | 7006.6 | 9.8 × 1010 | $16.5B |
Histosols | 3256.3 | 4.6 × 1011 | $78.2B | 373.4 | 5.3 × 1010 | $9.0B |
Andisols | 1744.1 | 1.9 × 1010 | $3.3B | 255.4 | 2.7 × 109 | $459.7M |
Moderately Weathered Soils | ||||||
194,085.4 | 3.7 × 1012 | $629.7B | 31,139.8 | 5.9 × 1011 | $100.1B | |
Aridisols | 12,534.6 | 2.5 × 1011 | $42.2B | 2789.4 | 5.6 × 1010 | $9.4B |
Vertisols | 10,024.6 | 3.8 × 1011 | $64.1B | 2245.7 | 8.5 × 1010 | $14.4B |
Alfisols | 89,465.0 | 1.1 × 1012 | $178.0B | 15,099.0 | 1.8 × 1011 | $30.0B |
Mollisols | 82,061.2 | 2.1 × 1012 | $345.5B | 11,005.7 | 2.8 × 1011 | $46.3B |
Strongly Weathered Soils | ||||||
95,790.0 | 7.7 × 1011 | $130.6B | 17,392.8 | 1.4 × 1011 | $23.0B | |
Spodosols | 16,139.3 | 2.1 × 1011 | $35.0B | 2181.5 | 2.8 × 1010 | $4.7B |
Ultisols | 79,650.7 | 5.7 × 1011 | $95.6B | 15,211.4 | 1.1 × 1011 | $18.3B |
All Soils | ||||||
Totals | 393,877.4 | 6.3 × 1012 | $1.1T | 62,371.5 | 9.6 × 1011 | $162.5B |
Soil Order | Anthropogenically Degraded Land | Proportion from Total Soil Order Area | Potential Land for Nature-Based (NBS) Solutions | Difference (NBS − Anthropogenic LD) |
---|---|---|---|---|
km2 (%) | % | km2 (%) | km2 | |
Slightly Weathered Soils | ||||
371,482 (+3.6) | 21.3 | 636,824 (+0.7) | 265,343 | |
Entisols | 182,794 (+3.8) | 22.3 | 455,868 (−1.0) | 273,074 |
Inceptisols | 173,900 (+3.5) | 22.6 | 168,327 (+4.9) | −5573 |
Histosols | 11,966 (+0.1) | 12.3 | 1462 (−7.5) | −10,504 |
Andisols | 2822 (+9.5) | 4.8 | 11,167 (+15.0) | 8345 |
Moderately Weathered Soils | ||||
1,449,576 (+3.6) | 42.0 | 1,389,498 (−1.9) | −60,080 | |
Aridisols | 47,818 (+9.0) | 8.9 | 485,106 (−1.2) | 437,287 |
Vertisols | 75,954 (+17.8) | 48.1 | 57,635 (−4.4) | −18,320 |
Alfisols | 505,881 (+1.9) | 47.9 | 180,292 (+1.1) | −325,589 |
Mollisols | 819,923 (+3.3) | 48.2 | 666,465 (−2.9) | −153,459 |
Strongly Weathered Soils | ||||
271,482 (+2.2) | 28.6 | 67,779 (+9.8) | −203,704 | |
Spodosols | 33,031 (+5.1) | 15.9 | 11,598 (−9.4) | −21,434 |
Ultisols | 238,451 (+1.9) | 32.2 | 56,181 (+14.8) | −182,270 |
All Soils | ||||
Totals | 2,092,540 (+3.4) | 34.1 | 2,094,099 (−0.7) | 1559 |
Soil Order | Agricultural Land | Forest Land |
---|---|---|
km2 (%) | km2 (%) | |
Slightly Weathered Soils | ||
248,000.7 (−0.1) | 533,262.5 (−4.0) | |
Entisols | 115,103.8 (+0.9) | 125,050.8 (−4.3) |
Inceptisols | 123,481.2 (−0.9) | 351,883.2 (−4.3) |
Histosols | 8564.2 (−4.0) | 11,242.1 (−4.3) |
Andisols | 851.4 (−0.9) | 45,086.5 (−0.5) |
Moderately Weathered Soils | ||
1,245,416.2 (+1.6) | 509,570.3 (−3.5) | |
Aridisols | 29,397.0 (+5.6) | 8673.9 (−3.9) |
Vertisols | 65,099.5 (+16.5) | 9322.5 (+6.4) |
Alfisols | 415,057.6 (−1.4) | 324,522.1 (−3.4) |
Mollisols | 735,862.1 (+2.0) | 167,051.8 (−4.2) |
Strongly Weathered Soils | ||
173,764.2 (−6.1) | 530,784.7 (−1.4) | |
Spodosols | 16,407.9 (−2.8) | 134,940.3 (−1.1) |
Ultisols | 157,356.3 (−6.4) | 395,844.4 (−1.5) |
All Soils | ||
Totals | 1,667,181.0 (+0.5) | 1,573,617.5 (−3.0) |
NLCD Land Cover Classes (LULC) | Area (km2) in 2001 | Total Wetlands Area (km2) in 2021; Change (2001–2021) (km2) | Woody Wetlands Area (km2) in 2021 | Emergent Herbaceous Wetlands Area (km2) in 2021 |
---|---|---|---|---|
Total wetlands | 26,494.2 | 26,332.5 (−161.7) | 23,767.1 | 2565.5 |
Woody wetlands | 24,125.0 | 23,991.8 | 23,164.0 | 827.8 |
Emergent herbaceous wetlands | 2369.2 | 2340.7 | 603.0 | 1737.7 |
− | − | Change in the Wetlands Area (2001–2021) (km2) to Non-Wetland Types | ||
Shrub/Scrub | − | +4.6 | +3.7 | +0.8 |
Mixed forest | − | +2.9 | +2.3 | +0.5 |
Deciduous forest | − | +4.7 | +3.5 | +1.2 |
Herbaceous | − | +5.5 | +2.8 | +2.6 |
Evergreen forest | − | +24.5 | +19.1 | +5.5 |
Hay/Pasture | − | +2.2 | +0.7 | +1.5 |
Cultivated crops | − | +16.9 | +13.1 | +3.8 |
Developed, open space | − | +53.3 | +48.5 | +4.8 |
Developed, low intensity | − | +21.8 | +18.6 | +3.2 |
Developed, medium intensity | − | +14.7 | +13.0 | +1.7 |
Developed, high intensity | − | +6.4 | +5.8 | +0.6 |
Barren land | − | +4.2 | +2.0 | +2.2 |
Soil Order | Proportion of Anthropogenically Degraded Soil Area from Total Soil Order Area (%) | ||||||
---|---|---|---|---|---|---|---|
Contiguous USA | Iowa | Indiana | Illinois | Arizona | Nevada | Georgia | |
Slightly Weathered Soils (21.3%) | |||||||
Entisols | 22.3 | 75.0 | 68.1 | 66.6 | 11.6 | 6.3 | 13.3 |
Inceptisols | 22.6 | 93.7 | 49.7 | 50.9 | 2.4 | 9.8 | 12.6 |
Histosols | 12.3 | 59.0 | 77.9 | 77.3 | − | 51.5 | 0.1 |
Andisols | 4.8 | − | − | − | − | 10.1 | − |
Moderately Weathered Soils (42.0%) | |||||||
Aridisols | 8.9 | − | − | − | 9.3 | 3.7 | − |
Vertisols | 48.1 | 97.9 | − | − | 0.9 | 6.2 | − |
Alfisols | 47.9 | 79.7 | 73.8 | 77.5 | 0.9 | 0.6 | 20.3 |
Mollisols | 48.2 | 92.9 | 89.1 | 93.0 | 4.1 | 3.0 | 29.8 |
Strongly Weathered Soils (28.6%) | |||||||
Spodosols | 15.9 | − | 32.6 | − | − | − | 12.7 |
Ultisols | 32.2 | − | 27.3 | 5.4 | − | − | 34.7 |
All Soils (34.1%) | |||||||
Overall | 34.1 | 88.7 | 73.3 | 82.2 | 8.6 | 4.3 | 29.7 |
Soil Orders (Affected by Sea Level Rise) | Total Soil Order Area in the State (km2) | Soil Order Area Loss due to Sea Level Rise, km2 Proportion of Loss from Total Soil Order Area (%) | |||
---|---|---|---|---|---|
1 Foot | 3 Feet | 6 Feet | 9 Feet | ||
Slightly Weathered Soils | |||||
Entisols | 6833.0 | 1751.6 (25.6) | 1891.0 (27.7) | 1998.2 (29.2) | 2095.3 (30.7) |
Inceptisols | 7277.7 | 127.6 (1.8) | 210.6 (2.9) | 389.1 (5.3) | 556.9 (7.7) |
Histosols | 522.2 | 267.6 (51.2) | 288.7 (55.3) | 291.7 (55.9) | 293.3 (56.2) |
Moderately Weathered Soils | |||||
Alfisols | 7390.6 | 78.7 (1.1) | 221.1 (3.0) | 480.5 (6.5) | 728.1 (9.9) |
Mollisols | 229.7 | 22.0 (9.6) | 46.8 (20.4) | 78.3 (34.1) | 110.9 (48.3) |
Strongly Weathered Soils | |||||
Spodosols | 1335.5 | 15.0 (1.1) | 55.7 (4.2) | 141.3 (10.6) | 200.8 (15.0) |
Ultisols | 53,151.2 | 73.9 (0.1) | 209.8 (0.4) | 486.2 (0.9) | 808.5 (1.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, E.A.; Zurqani, H.A.; Lin, L.; Hao, Z.; Post, C.J.; Schlautman, M.A.; Post, G.C.; Highberger, G.A.; Shepherd, G.B. The Role of Soil Diversity (Pedodiversity) in the Kunming-Montreal Global Biodiversity Framework: Example of the Contiguous United States of America (USA). Biosphere 2025, 1, 3. https://doi.org/10.3390/biosphere1010003
Mikhailova EA, Zurqani HA, Lin L, Hao Z, Post CJ, Schlautman MA, Post GC, Highberger GA, Shepherd GB. The Role of Soil Diversity (Pedodiversity) in the Kunming-Montreal Global Biodiversity Framework: Example of the Contiguous United States of America (USA). Biosphere. 2025; 1(1):3. https://doi.org/10.3390/biosphere1010003
Chicago/Turabian StyleMikhailova, Elena A., Hamdi A. Zurqani, Lili Lin, Zhenbang Hao, Christopher J. Post, Mark A. Schlautman, Gregory C. Post, Gretchen A. Highberger, and George B. Shepherd. 2025. "The Role of Soil Diversity (Pedodiversity) in the Kunming-Montreal Global Biodiversity Framework: Example of the Contiguous United States of America (USA)" Biosphere 1, no. 1: 3. https://doi.org/10.3390/biosphere1010003
APA StyleMikhailova, E. A., Zurqani, H. A., Lin, L., Hao, Z., Post, C. J., Schlautman, M. A., Post, G. C., Highberger, G. A., & Shepherd, G. B. (2025). The Role of Soil Diversity (Pedodiversity) in the Kunming-Montreal Global Biodiversity Framework: Example of the Contiguous United States of America (USA). Biosphere, 1(1), 3. https://doi.org/10.3390/biosphere1010003