Previous Issue
Volume 2, December
 
 

Energy Storage Appl., Volume 3, Issue 1 (March 2026) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
20 pages, 5225 KB  
Article
Thermal Management and Optimization of Large-Scale Metal Hydride Reactors for Shipboard Hydrogen Storage and Transport
by Seth A. Thomas, Vamsi Krishna Kukkapalli and Sunwoo Kim
Energy Storage Appl. 2026, 3(1), 2; https://doi.org/10.3390/esa3010002 - 27 Jan 2026
Viewed by 121
Abstract
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze [...] Read more.
Hydrogen storage is vital to the development of renewables, especially in low-infrastructure countries. Metal hydrides offer a small but safe solid-state candidate for hydrogen storage at medium pressures and near-ambient temperature, yet large-scale applications face heat-management challenges. In this article, we numerically analyze examples of two large-scale lanthanum pentanickel (LaNi5)-based metal hydride reactor configurations with shell-and-tube heat exchangers. This research studies two large-scale shell-and-tube metal hydride reactor configurations: a tube-side cooling reactor with hydride powder packed in the shell and coolant flowing through internal tubes, and a shell-side cooling reactor using annular hydride pellets with coolant circulating through the shell. The thermal and kinetic performance of these large-scale reactors was simulated using COMSOL Multiphysics (version 6.1) and analyzed under different geometries and operating conditions typical of industrial scales. The tube-side solution provided 90% hydrogen absorption in 1500–2000 s at 30 bar, while the shell-side solution reached the same level of absorption in 430 s at 10 bar. Results show that tube-side cooling has higher storage, while shell-side cooling improves heat removal and kinetics. For energy and maritime transport applications, these findings reveal optimization insights for large-scale, efficient hydrogen storage systems. Full article
Show Figures

Figure 1

28 pages, 2694 KB  
Article
Model-Based Design and Operational Optimization of HPC Waste Heat Recovery and High-Temperature Aquifer Thermal Energy Storage in Existing Energy Infrastructures
by Niclas Hampel, André Xhonneux and Dirk Müller
Energy Storage Appl. 2026, 3(1), 1; https://doi.org/10.3390/esa3010001 - 6 Jan 2026
Viewed by 318
Abstract
The waste heat generated by high-performance computing (HPC) represents an opportunity for advancing the decarbonization of energy systems. Seasonal storage is necessary to regulate the balance between waste heat production and demand. High-temperature aquifer thermal energy storage (HT-ATES) is a particularly well-suited technology [...] Read more.
The waste heat generated by high-performance computing (HPC) represents an opportunity for advancing the decarbonization of energy systems. Seasonal storage is necessary to regulate the balance between waste heat production and demand. High-temperature aquifer thermal energy storage (HT-ATES) is a particularly well-suited technology for this purpose due to its large storage capacity. However, integrating HT-ATES into energy systems for district heating is complex, affecting existing components. Therefore, this study applies a bi-objective mixed-integer quadratically constrained programming (MIQCP) approach to optimize the energy system at Forschungszentrum Jülich (FZJ) regarding total annualized costs (TAC) and global warming impact (GWI). The exascale computer Jupiter, which is hosted at FZJ, generates a substantial amount of renewable waste heat that is suitable for integration into district heating networks and seasonal storage. Case studies show that HT-ATES integration into the investigated system can reduce GWI by 20% and increase TAC by 1% compared to the reference case. Despite increased TAC from investments and heat pump (HP) operation, summer charging of the HT-ATES remains flexible and cost-effective. An idealized future scenario indicates that HT-ATES with a storage capacity of 16,990 MWh and HPs could cover most of the heating demand, reducing GWI by up to 91% while TAC increases by 6% relative to the reference system. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop