Qualitative Comparison of Hydrogen Peroxide Decontamination Systems: Vapor vs. Aerosol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Laboratory
2.2. Biological Indicators (IBs)
2.3. Chemical Indicators
2.4. Monitoring of Humidity, Temperature, and Hydrogen Peroxide Levels
3. Results
3.1. DC Parameters
3.2. Chemical Indicators
3.3. Biological Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browne, K.; Mitchell, B.G. Multimodal Environmental Cleaning Strategies to Prevent Healthcare-Associated Infections. Antimicrob. Resist. Infect. Control 2023, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Doll, M.; Stevens, M.; Bearman, G. Environmental Cleaning and Disinfection of Patient Areas. Int. J. Infect. Dis. 2018, 67, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Griffith, C. Surface Sampling and the Detection of Contamination. In Handbook of Hygiene Control in the Food Industry, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 673–696. [Google Scholar] [CrossRef]
- Lesho, E.; Newhart, D.; Reno, L.; Sleeper, S.; Nary, J.; Gutowski, J.; Yu, S.; Walsh, E.; Vargas, R.; Riedy, D.; et al. Effectiveness of Various Cleaning Strategies in Acute and Long-Term Care Facilities during Novel Corona Virus 2019 Disease Pandemicrelated Staff Shortages. PLoS ONE 2022, 17, e0261365. [Google Scholar] [CrossRef] [PubMed]
- Vandini, A.; Temmerman, R.; Frabetti, A.; Caselli, E.; Antonioli, P.; Balboni, P.G.; Platano, D.; Branchini, A.; Mazzacane, S. Hard Surface Biocontrol in Hospitals Using Microbial-Based Cleaning Products. PLoS ONE 2014, 9, e108598. [Google Scholar] [CrossRef] [PubMed]
- Pastorino, B.; de Lamballerie, X.; Charrel, R. Biosafety and Biosecurity in European Containment Level 3 Laboratories: Focus on French Recent Progress and Essential Requirements. Front. Public Health 2017, 5, 121. [Google Scholar] [CrossRef] [PubMed]
- NF EN 17 272; Method of Disinfection by Air, Automated Processes. AFNOR: Saint-Denis, France, 2020.
- Otter, J.A.; Yezli, S.; Perl, T.M.; Barbut, F.; French, G.L. The Role of “no-Touch” Automated Room Disinfection Systems in Infection Prevention and Control. J. Hosp. Infect. 2013, 83, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Otter, J.A.; Yezli, S.; Barbut, F.; Perl, T.M. An Overview of Automated Room Disinfection Systems: When to Use Them. In Decontamination in Hospitals and Healthcare; Elsevier: Amsterdam, The Netherlands, 2019; pp. 323–369. [Google Scholar] [CrossRef]
- Unger-Bimczok, B.; Kottke, V.; Hertel, C.; Rauschnabel, J. The Influence of Humidity, Hydrogen Peroxide Concentration, and Condensation on the Inactivation of Geobacillus Stearothermophilus Spores with Hydrogen Peroxide Vapor. J. Pharm. Innov. 2008, 3, 123–133. [Google Scholar] [CrossRef]
- Kaspari, O.; Lemmer, K.; Becker, S.; Lochau, P.; Howaldt, S.; Nattermann, H.; Grunow, R. Decontamination of a BSL3 Laboratory by Hydrogen Peroxide Fumigation Using Three Different Surrogates for Bacillus Anthracis Spores. J. Appl. Microbiol. 2014, 117, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.Y.; Gent, P.; Kumar, V. Efficacy, Efficiency and Safety Aspects of Hydrogen Peroxide Vapour and Aerosolized Hydrogen Peroxide Room Disinfection Systems. J. Hosp. Infect. 2012, 80, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Holmdahl, T.; Lanbeck, P.; Wullt, M.; Walder, M.H. A Head-to-Head Comparison of Hydrogen Peroxide Vapor and Aerosol Room Decontamination Systems. Infect. Control Hosp. Epidemiol. 2011, 32, 831–836. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.D.; Lawson, S.; Otter, J.A. Evaluation of Hydrogen Peroxide Vapour as a Method for the Decontamination of Surfaces Contaminated with Clostridium Botulinum Spores. J. Microbiol. Methods 2005, 60, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Arunwuttipong, A.; Jangtawee, P.; Vchirawongkwin, V.; Kangwansupamonkon, W.; Asavanant, K.; Ekgasit, S. Public Buses Decontamination by Automated Hydrogen Peroxide Aerosolization System. Open Access Maced. J. Med. Sci. 2021, 9, 847–856. [Google Scholar] [CrossRef]
- Falaise, C.; Bouvattier, C.; Larigauderie, G.; Lafontaine, V.; Berchebru, L.; Marangon, A.; Vaude-Lauthier, V.; Raynaud, F.; Taysse, L. Hydrogen Peroxide Vapor Decontamination of Hazard Group 3 Bacteria and Viruses in a Biosafety Level 3 Laboratory. Appl. Biosaf. 2022, 27, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Watling, D.; Ryle, C.; Parks, M.; Christopher, M. Theoretical Analysis of the Condensation of Hydrogen Peroxide Gas and Water Vapour as Used in Surface Decontamination. PDA J. Pharm. Sci. Technol. 2002, 56, 291–299. [Google Scholar] [PubMed]
- Pottage, T.; Macken, S.; Giri, K.; Walker, J.T.; Bennett, A.M. Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications. Appl. Environ. Microbiol. 2012, 78, 4169–4174. [Google Scholar] [CrossRef] [PubMed]
- Pottage, T.; Richardson, C.; Parks, S.; Walker, J.T.; Bennett, A.M. Evaluation of Hydrogen Peroxide Gaseous Disinfection Systems to Decontaminate Viruses. J. Hosp. Infect. 2010, 74, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Kyoo Lee, J.; Soo Han, H.; Chaikasetsin, S.; Marron, D.P.; Waymouth, R.M.; Prinz, F.B.; Zare, R.N. Condensing Water Vapor to Droplets Generates Hydrogen Peroxide. Proc. Natl. Acad. Sci. USA 2020, 117, 30934–30941. [Google Scholar] [CrossRef]
- Vaisala. Understanding Dew Point in Vaporized Hydrogen Peroxide Applications; Vaisala: Vantaa, Finland, 2020. [Google Scholar]
Coupon N° | Position | Height on the Ground (cm) | H2O2 Device Distance (cm) |
---|---|---|---|
1 | Above laboratory table | 85 | 170 |
2 | Below laboratory table | 85 | 177 |
3 | Room corner #1 | 192 | 290 |
4 | Room wall #1 | 192 | 160 |
5 | BCCII front | 178 | 120 |
6 | BCCII inside | 100 | 150 |
7 | BCCII exhaust filter | 212 | 170 |
8 | BCCII left bake | 178 | 166 |
9 | BCCII right bake | 178 | 255 |
10 | Room corner #2 | 192 | 300 |
11 | Room HEPA filter (inlet) | 255 | 135 |
12 | Room HEPA filter (exhaust) | 255 | 240 |
13 | Room wall #2 | 192 | 224 |
14 | Room door #1 | 192 | 230 |
15 | Room door #2 | 192 | 145 |
16 | Autoclave front | 192 | 205 |
17 | H2O2 device (on right) | 0 | 165 |
18 | H2O2 device (on left) | 0 | 111 |
19 | Closed Petri dish inside BCCII | 90 | 170 |
20 | Closed Petri dish above laboratory table | 90 | 177 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courti, I.; Allix, S. Qualitative Comparison of Hydrogen Peroxide Decontamination Systems: Vapor vs. Aerosol. Laboratories 2024, 1, 124-134. https://doi.org/10.3390/laboratories1020010
Courti I, Allix S. Qualitative Comparison of Hydrogen Peroxide Decontamination Systems: Vapor vs. Aerosol. Laboratories. 2024; 1(2):124-134. https://doi.org/10.3390/laboratories1020010
Chicago/Turabian StyleCourti, Ibtissam, and Sébastien Allix. 2024. "Qualitative Comparison of Hydrogen Peroxide Decontamination Systems: Vapor vs. Aerosol" Laboratories 1, no. 2: 124-134. https://doi.org/10.3390/laboratories1020010
APA StyleCourti, I., & Allix, S. (2024). Qualitative Comparison of Hydrogen Peroxide Decontamination Systems: Vapor vs. Aerosol. Laboratories, 1(2), 124-134. https://doi.org/10.3390/laboratories1020010