Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift
Abstract
:1. Introduction
2. Box Model
3. Differential Temperature
4. Thermal Thresholds
5. Pliocene Climate
6. Discussion
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Symbols
a | Ice albedo () |
Planetary albedo of box-i | |
Ablation | |
Accumulation | |
b | Atmospheric absorption ( |
B | Lateral Bowen ratio ( |
Atmospheric energy transport | |
Latent heat transport | |
h | Ice height |
Glacial line height | |
Snowline height | |
∆h | Height of snowline above the glacial line |
Ice cover | |
Meridional span of plateau () | |
Latent heat of sublimation () | |
m | Melt rate () |
p | Annual precipitation rate |
Incoming SW flux of box i | |
Absorbed SW flux of box i | |
Global-mean absorbed SW flux | |
Convective flux | |
Net radiative flux through tropopause | |
Outgoing LW radiation | |
Incoming SW flux | |
Excess reflectance of ice over land | |
s | Slope ( |
Global sensitivity () | |
SST (same as summer SAT) of box i | |
SAT of box i | |
Latitudinal distance | |
Air-sea exchange coefficient ([29]) | |
Lapse rate | |
Melt rate per degree temperature increase ) | |
Moisture content parameter () | |
Water density () | |
Atmospheric entropy production | |
Oceanic entropy production |
Appendix B. Glacial Marking Temperature (GMT)
References
- Miller, K.G.; Fairbanks, R.G.; Mountain, G.S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 1987, 2, 1–19. [Google Scholar] [CrossRef]
- Westerhold, T.; Marwan, N.; Drury, A.J.; Liebrand, D.; Agnini, C.; Anagnostou, E.; Barnet, J.S.; Bohaty, S.M.; De Vleeschouwer, D.; Florindo, F.; et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 2020, 369, 1383–1387. [Google Scholar] [CrossRef]
- Kleiven, H.F.; Jansen, E.; Fronval, T.; Smith, T.M. Intensification of Northern Hemisphere glaciations in the circum Atlantic region (3.5–2.4 Ma)–ice-rafted detritus evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2002, 184, 213–223. [Google Scholar] [CrossRef]
- Lawrence, K.T.; Herbert, T.D.; Brown, C.M.; Raymo, M.E.; Haywood, A.M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 2009, 24, PA2218. [Google Scholar] [CrossRef]
- Bailey, I.; Hole, G.M.; Foster, G.L.; Wilson, P.A.; Storey, C.D.; Trueman, C.N.; Raymo, M.E. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 2013, 75, 181–194. [Google Scholar] [CrossRef]
- Berner, R.A.; Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 1997, 25, 955–956. [Google Scholar] [CrossRef]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef]
- Cenozoic CO2 Proxy Integration Project (CenCO2PIP) Consortium; Hönisch, B.; Royer, D.L.; Breecker, D.O.; Polissar, P.J.; Bowen, G.J.; Henehan, M.J.; Cui, Y.; Steinthorsdottir, M.; McElwain, J.C.; et al. Toward a Cenozoic history of atmospheric CO2. Science 2023, 382, eadi5177. [Google Scholar] [CrossRef]
- Meehl, G.A.; Senior, C.A.; Eyring, V.; Flato, G.; Lamarque, J.F.; Stouffer, R.J.; Taylor, K.E.; Schlund, M. Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci. Adv. 2020, 6, eaba1981. [Google Scholar] [CrossRef]
- Sarnthein, M.; Bartoli, G.; Prange, M.; Schmittner, A.; Schneider, B.; Weinelt, M.; Andersen, N.; Garbe-Schönberg, D. Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Clim. Past 2009, 5, 269–283. [Google Scholar] [CrossRef]
- Driscoll, N.W.; Haug, G.H. A Short Circuit in Thermohaline Circulation: A Cause for Northern Hemisphere Glaciation? Science 1998, 282, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Lunt, D.J.; Valdes, P.J.; Haywood, A.; Rutt, I.C. Closure of the Panama Seaway during the Pliocene: Implications for climate and Northern Hemisphere glaciation. Clim. Dyn. 2008, 30, 1–18. [Google Scholar] [CrossRef]
- Alley, R.B.; Andrews, J.T.; Brigham-Grette, J.T.; Clarke, G.K.; Cuffey, K.M.; Fitzpatrick, J.J.; Funder, S.; Marshall, S.J.; Miller, G.H.; Mitrovica, J.X.; et al. History of the Greenland Ice Sheet: Paleoclimatic insights. Quat. Sci. Rev. 2010, 29, 1728–1756. [Google Scholar] [CrossRef]
- Haug, G.H.; Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 1998, 393, 673–676. [Google Scholar] [CrossRef]
- Molnar, P. Closing of the Central American Seaway and the Ice Age: A critical review. Paleoceanography 2008, 23, PA2201. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Prell, W.L.; Raymo, M.E. Late Cenozoic uplift in southern Asia and the American West: Rationale for general circulation modeling experiments. J. Geophys. Res. Atmos. 1989, 94, 18379–18391. [Google Scholar] [CrossRef]
- Raymo, M.E.; Ruddiman, W.F.; Froelich, P.N. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 1988, 16, 649–653. [Google Scholar] [CrossRef]
- Kerrick, D.M.; Caldeira, K. Was the Himalayan orogen a climatically significant coupled source and sink for atmospheric CO2 during the Cenozoic? Earth Planet Sci. Lett. 1999, 173, 195–203. [Google Scholar] [CrossRef]
- Manabe, S.; Terpstra, T.B. The effects of mountains on the general circulation of the atmosphere as identified by numerical experiments. J. Atmos. Sci. 1974, 31, 3–42. [Google Scholar] [CrossRef]
- Wang, L.; Yang, H.; Wen, Q.; Liu, Y.; Wu, G. The Tibetan Plateau’s Far-Reaching Impacts on Arctic and Antarctic Climate: Seasonality and Pathways. J. Clim. 2023, 36, 1399–1414. [Google Scholar] [CrossRef]
- Milankovitch, M. Canon of Insolation and the Ice-Age Problem; Royal Serbian Academy Publication: Belgrade, Serbia, 1941; Volume 132. [Google Scholar]
- Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 2006, 313, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, M. Reconstruction of the 2.4 million km2 late Pleistocene ice sheet on the Tibetan Plateau and its impact on the global climate. Quat. Int. 1998, 45, 71–108. [Google Scholar] [CrossRef]
- Ruddiman, W.F.; Raymo, M.E. Northern Hemisphere climate regimes during the past 3 Ma: Possible tectonic connections. Philos. Trans. R. Soc. London Ser. B 1988, 318, 411–430. [Google Scholar] [CrossRef]
- Mudelsee, M.; Raymo, M.E. Slow dynamics of the Northern Hemisphere glaciation. Paleoceanography 2005, 20, PA4022. [Google Scholar] [CrossRef]
- Ozawa, H.; Ohmura, A.; Lorenz, R.D.; Pujol, T. The second law of thermodynamics and the global climate system: A review of the maximum entropy production principle. Rev. Geophys. 2003, 41, 1–24. [Google Scholar] [CrossRef]
- Kleidon, A. Non-equilibrium thermodynamics and maximum entropy production in the Earth system: Applications and implications. Naturwissenschaften 2009, 96, 653–677. [Google Scholar] [CrossRef] [PubMed]
- Dewar, R.C. Maximum entropy production and the fluctuation theorem. J. Phys. A Math. Gen. 2005, 38, L371–L381. [Google Scholar] [CrossRef]
- Ou, H.W. Thermohaline circulation: A missing equation and its climate change implications. Clim. Dyn. 2018, 50, 641–653. [Google Scholar] [CrossRef]
- Wang, G.M.; Sevick, E.M.; Mittag, E.; Searles, D.J.; Evans, D.J. Experimental demonstration of violations of the Second Law of Thermodynamics for small systems and short time scales. Phys. Rev. Lett. 2002, 89, 050601. [Google Scholar] [CrossRef]
- Hogg, A.M.; Gayen, B. Ocean gyres driven by surface buoyancy forcing. Geophys. Res. Lett. 2020, 47, e2020GL088539. [Google Scholar] [CrossRef]
- Liu, T.; Ou, H.W.; Liu, X.; Chen, D. On the role of eddy mixing in the subtropical ocean circulation. Front. Mar. Sci. 2022, 9, 832992. [Google Scholar] [CrossRef]
- Ou, H.W. Meridional thermal field of a coupled ocean-atmosphere system: A conceptual model. Tellus A Dyn. Meteorol. Oceanogr. 2006, 58, 404–415. [Google Scholar] [CrossRef]
- Colin de Verdière, A. Buoyancy driven planetary flows. J. Mar. Res. 1988, 46, 215–265. [Google Scholar] [CrossRef]
- Paltridge, G. Global dynamics and climate-a system of minimum entropy exchange. Q. J. R. Meteorol. Soc. 1975, 101, 475–484. [Google Scholar] [CrossRef]
- Ou, H.W. A Theory of Orbital-Forced Glacial Cycles: Resolving Pleistocene Puzzles. J. Mar. Sci. Eng. 2023, 11, 564. [Google Scholar] [CrossRef]
- Peixoto, J.P.; Oort, A.H. Physics of Climate; American Institute of Physics: New York, NY, USA, 1992. [Google Scholar]
- Kucera, M.; Weinelt, M.; Kiefer, T.; Pflaumann, U.; Hayes, A.; Weinelt, M.; Chen, M.T.; Mix, A.C.; Barrows, T.T.; Cortijo, E.; et al. Reconstruction of sea-surface temperatures from assemblages of planktonic foraminifera: Multi-technique approach based on geographically constrained calibration data sets and its application to glacial Atlantic and Pacific Oceans. Quat. Sci. Rev. 2005, 24, 951–998. [Google Scholar] [CrossRef]
- Macdonald, A.M. The global ocean circulation: A hydrographic estimate and regional analysis. Prog. Oceanogr. 1998, 41, 281–382. [Google Scholar] [CrossRef]
- Dalan, F.; Stone, P.; Kamenkovich, I.V.; Scott, J.R. Sensitivity of the ocean’s climate to diapycnal diffusivity in an EMIC. Part 1: Equilibrium state. J. Clim. 2005, 18, 2460–2481. [Google Scholar] [CrossRef]
- Lasabuda, A.P.; Hanssen, A.; Laberg, J.S.; Faleide, J.I.; Patton, H.; Abdelmalak, M.M.; Rydningen, T.A.; Kjølhamar, B. Paleobathymetric reconstructions of the SW Barents Seaway and their implications for Atlantic–Arctic ocean circulation. Comm. Earth Environ. 2023, 4, 231. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Michelsen, M.L. Large-scale effects on the regulation of tropical sea surface temperature. J. Clim. 1993, 6, 2049–2062. [Google Scholar] [CrossRef]
- Ohmura, A. New temperature distribution maps for Greenland. Z. Gletscherkunde Glazialgeol. 1987, 23, 1–45. [Google Scholar]
- Solgaard, A.M.; Bonow, J.M.; Langen, P.L.; Japsen, P.; Hvidberg, C.S. Mountain building and the initiation of the Greenland Ice Sheet. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 392, 161–176. [Google Scholar] [CrossRef]
- Larsen, H.C.; Saunders, A.D.; Clift, P.D.; Beget, J.; Wei, W.; Spezzaferri, S. Seven million years of glaciation in Greenland. Science 1994, 264, 952–955. [Google Scholar] [CrossRef]
- Mercier, J.L.; Armijo, R.; Tapponnier, P.; Carey-Gailhardis, E.; Lin, H.T. Change from late Tertiary compression to Quaternary extension in southern Tibet during the India-Asia collision. Tectonics 1987, 6, 275–304. [Google Scholar] [CrossRef]
- Spicer, R.A.; Su, T.; Valdes, P.J.; Farnsworth, A.; Wu, F.X.; Shi, G.; Spicer, T.E.; Zhou, Z. Why ‘the uplift of the Tibetan Plateau’ is a myth. Natl. Sci. Rev. 2021, 8, nwaa091. [Google Scholar] [CrossRef]
- Fielding, E.J. Tibet uplift and erosion. Tectonophysics 1996, 260, 55–84. [Google Scholar] [CrossRef]
- Zheng, H.; Powell, C.M.; An, Z.; Zhou, J.; Dong, G. Pliocene uplift of the northern Tibetan Plateau. Geology 2000, 28, 715–718. [Google Scholar] [CrossRef]
- Eyles, N. Passive margin uplift around the North Atlantic region and its role in Northern Hemisphere late Cenozoic glaciation. Geology 1996, 24, 103–106. [Google Scholar] [CrossRef]
- Kuhle, M. Subtropical mountain-and highland-glaciation as ice age triggers and the waning of the glacial periods in the Pleistocene. GeoJournal 1987, 1, 393–421. [Google Scholar] [CrossRef]
- Clark, P.U.; Archer, D.; Pollard, D.; Blum, J.D.; Rial, J.A.; Brovkin, V.; Mix, A.C.; Pisias, N.G.; Roy, M. The middle Pleistocene transition: Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 2006, 25, 3150–3184. [Google Scholar] [CrossRef]
- Willeit, M.; Ganopolski, A.; Calov, R.; Brovkin, V. Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci. Adv. 2019, 5, eaav7337. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, J.; Mann, M.E.; Larson, C.J.; Christiansen, S.; Willeit, M.; Ganopolski, A.; Li, X.; Murphy, J.G. Path-dependence of the Plio–Pleistocene glacial/interglacial cycles. Proc. Natl. Acad. Sci. USA 2024, 121, e2322926121. [Google Scholar] [CrossRef] [PubMed]
- Maslin, M.A.; Li, X.S.; Loutre, M.F.; Berger, A. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation. Quat. Sci. Rev. 1998, 17, 411–426. [Google Scholar] [CrossRef]
- Knies, J.; Matthiessen, J.; Vogt, C.; Stein, R. Evidence of ‘Mid-Pliocene (~3 Ma) global warmth’ in the eastern Arctic Ocean and implications for the Svalbard/Barents Sea ice sheet during the late Pliocene and early Pleistocene (~3–1.7 Ma). Boreas 2002, 31, 82–93. [Google Scholar] [CrossRef]
- Bachem, P.E.; Risebrobakken, B.; De Schepper, S.; McClymont, E.L. Highly variable Pliocene sea surface conditions in the Norwegian Sea. Clim. Past 2017, 13, 1153–1168. [Google Scholar] [CrossRef]
- Fedorov, A.V.; Brierley, C.M.; Lawrence, K.T.; Liu, Z.; Dekens, P.S.; Ravelo, A.C. Patterns and mechanisms of early Pliocene warmth. Nature 2013, 496, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Sato, M.; Russell, G.; Kharecha, P. Climate sensitivity, sea level and atmospheric carbon dioxide. Philos. Trans. R. Soc. A 2013, 371, 20120294. [Google Scholar] [CrossRef] [PubMed]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Matthiessen, J.; Knies, J.; Vogt, C.; Stein, R. Pliocene palaeoceanography of the Arctic Ocean and subarctic seas. Philos. Trans. R. Soc. A 2009, 367, 21–48. [Google Scholar] [CrossRef]
- Clark, D.L. Origin, nature and world climate effect of Arctic Ocean ice-cover. Nature 1982, 300, 321–325. [Google Scholar] [CrossRef]
- Clark, D.L. The Pliocene record in the central Arctic Ocean. Mar. Micropaleontol. 1996, 27, 157–164. [Google Scholar] [CrossRef]
- Knies, J.; Cabedo-Sanz, P.; Belt, S.T.; Baranwal, S.; Fietz, S.; Rosell-Melé, A. The emergence of modern sea ice cover in the Arctic Ocean. Nat. Commun. 2014, 5, 5608. [Google Scholar] [CrossRef]
- Ravelo, A.C.; Andreasen, D.H.; Lyle, M.; Olivarez Lyle, A.; Wara, M.W. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 2004, 429, 263–267. [Google Scholar] [CrossRef]
- Knies, J.; Mattingsdal, R.; Fabian, K.; Grøsfjeld, K.; Baranwal, S.; Husum, K.; De Schepper, S.; Vogt, C.; Andersen, N.; Matthiessen, J.; et al. Effect of early Pliocene uplift on late Pliocene cooling in the Arctic–Atlantic gateway. Earth Planet. Sci. Lett. 2014, 387, 132–144. [Google Scholar] [CrossRef]
- Rahmstorf, S.; Crucifix, M.; Ganopolski, A.; Goosse, M.; Kamenkovich, I.; Knutti, R.; Lohmann, G.; Marsh, R.; Mysak, L.A.; Wang, Z.; et al. Thermohaline circulation hysteresis: A model intercomparison. Geophys. Res. Lett. 2005, 32, L23605. [Google Scholar] [CrossRef]
- Egger, J. Slope winds and the axisymmetric circulation over Antarctica. J. Atmos. Sci. 1985, 42, 1859–1867. [Google Scholar] [CrossRef]
- Ou, H.W. Hydrological cycle and ocean stratification in a coupled climate system: A theoretical study. Tellus A Dyn. Meteorol. Oceanogr. 2007, 59, 683–694. [Google Scholar] [CrossRef]
- Alduchov, O.A.; Eskridge, R.E. Improved Magnus form approximation of saturation vapor pressure. J. Appl. Meteorol. 1996, 1, 601–609. [Google Scholar] [CrossRef]
- Ou, H.W. Possible bounds on the earth’s surface temperature: From the perspective of a conceptual global-mean model. J. Clim. 2001, 14, 2976–2988. [Google Scholar] [CrossRef]
- Ohmura, A.; Reeh, N. New precipitation and accumulation maps for Greenland. J. Glaciol. 1991, 37, 140–148. [Google Scholar] [CrossRef]
- Reeh, N. Parameterization of melt rate and surface temperature in the Greenland ice sheet. Polarforschung 1991, 59, 113–128. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ou, H.-W. Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift. Glacies 2024, 1, 19-34. https://doi.org/10.3390/glacies1010003
Ou H-W. Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift. Glacies. 2024; 1(1):19-34. https://doi.org/10.3390/glacies1010003
Chicago/Turabian StyleOu, Hsien-Wang. 2024. "Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift" Glacies 1, no. 1: 19-34. https://doi.org/10.3390/glacies1010003
APA StyleOu, H.-W. (2024). Northern Hemisphere Glaciation: Its Tectonic Origin in the Neogene Uplift. Glacies, 1(1), 19-34. https://doi.org/10.3390/glacies1010003