In the last twenty years, an increasing volume of research has characterized lipids as dynamic signaling molecules that play essential roles in various physiological and pathological processes, especially concerning chronic diseases such as cardiovascular disorders, diabetes, liver disease, neurodegeneration, cancer, obesity, diabetic and
[...] Read more.
In the last twenty years, an increasing volume of research has characterized lipids as dynamic signaling molecules that play essential roles in various physiological and pathological processes, especially concerning chronic diseases such as cardiovascular disorders, diabetes, liver disease, neurodegeneration, cancer, obesity, diabetic and chronic kidney diseases and atherosclerosis. Dysregulation of lipid synthesis and storage, lipolysis, fatty acid oxidation, lipid signaling pathways, and organelle-specific lipid modifications, including mitochondrial phospholipid remodeling and endoplasmic reticulum stress induced by saturated fatty acids, are recognized as contributors to the initiation and progression of this pathogenesis. Concurrently with the increasing comprehension of lipid metabolism, the last decade has seen progress in the understanding of genome control, especially with non-coding RNAs (ncRNAs). MicroRNAs, long non-coding RNAs, and circular RNAs, as ncRNAs, are essential modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels that affect a number of lipid metabolism-related processes, such as fatty acid synthesis and oxidation, cholesterol homeostasis, and lipid droplet dynamics. Therapeutically, ncRNAs hold considerable promise owing to their tissue specificity and modularity, with antisense oligonucleotides and CRISPR-based editing currently under preclinical evaluation. In this context, we review recent studies exploring the interplay between ncRNAs and the regulatory networks governing lipid metabolism, and how disruptions in these networks contribute to chronic disease. This emerging paradigm underscores the role of ncRNA–lipid metabolism interactions as central nodes in metabolic and inflammatory pathways, highlighting the need for a holistic approach to therapeutic targeting.
Full article