Human Monocyte-Derived Macrophages Acquire an Inflammatory Phenotype Relative to Risk Factors Typical of Atherogenic Dyslipidaemia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Biochemical and Lipid Measurements
2.3. Cardiovascular Risk
2.4. Monocyte Isolation and Culture
2.5. Macrophage Surface Marker Assessment
2.6. Macrophage Cytokine Assessment via Flow Cytometry
2.7. Macrophage Cytokine Assessment with oxLDL Exposure via LEGENDplex
2.8. Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Macrophage Phenotypic Marker Expression Is Related to Lipid Levels
3.3. Macrophage Cytokine Production Is Related to Lipid Levels
3.4. OxLDL Primes Macrophages to an Inflammatory State
4. Discussion
4.1. Interpretation of Main Findings
4.2. Study Limitations
4.3. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ApoA1 | Apolipoprotein A1 |
| ApoB | Apolipoprotein B |
| Chol | Cholesterol |
| HDL-C | High-density lipoprotein cholesterol |
| LDL-C | Low-density lipoprotein cholesterol |
| Lp(a) | Lipoprotein(a) |
| oxLDL | Oxidised low-density lipoprotein |
| TG | Triglyceride |
| hs-CRP | High-sensitivity C-reactive protein |
| IL-1β | Interleukin 1 beta |
| IL-6 | Interleukin 6 |
| IL-10 | Interleukin 10 |
| TNF | Tumour necrosis factor |
| C-D1 | Control cells after 1 day culture |
| Ox-D1 | Cells cultured with oxLDL for 1 day |
| C-M0 | Control cells cultured for 7 days with no stimulation |
| Ox-M0 | Cells cultured with oxLDL for 7 days with no subsequent stimulation |
| C-M1 | Control cells cultured for 7 days and subsequent stimulation with M1 cytokines LPS/IFNγ |
| Ox-M1 | Cells cultured with oxLDL for 7 days and subsequent stimulation with M1 cytokines LPS/IFNγ |
| LOD | Limit of detection |
| LOQ | Limit of quantitation |
| FDR | False discovery rate |
| NSWHP | New South Wales Health Pathology |
References
- Boren, J.; Chapman, M.J.; Krauss, R.M.; Packard, C.J.; Bentzon, J.F.; Binder, C.J.; Daemen, M.J.; Demer, L.L.; Hegele, R.A.; Nicholls, S.J.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2020, 41, 2313–2330. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Williams, K.J.; Boren, J. Subendothelial lipoprotein retention as the initiating process in atherosclerosis: Update and therapeutic implications. Circulation 2007, 116, 1832–1844. [Google Scholar] [CrossRef]
- Virmani, R.; Burke, A.P.; Farb, A.; Kolodgie, F.D. Pathology of the vulnerable plaque. J. Am. Coll. Cardiol. 2006, 47, C13–C18. [Google Scholar] [CrossRef]
- Medbury, H.J.; James, V.; Ngo, J.; Hitos, K.; Wang, Y.; Harris, D.C.; Fletcher, J.P. Differing association of macrophage subsets with atherosclerotic plaque stability. Int. Angiol. 2013, 32, 74–84. [Google Scholar]
- Stoger, J.L.; Gijbels, M.J.; van der Velden, S.; Manca, M.; van der Loos, C.M.; Biessen, E.A.; Daemen, M.J.; Lutgens, E.; de Winther, M.P. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012, 225, 461–468. [Google Scholar] [CrossRef]
- Jinnouchi, H.; Guo, L.; Sakamoto, A.; Torii, S.; Sato, Y.; Cornelissen, A.; Kuntz, S.; Paek, K.H.; Fernandez, R.; Fuller, D.; et al. Diversity of macrophage phenotypes and responses in atherosclerosis. Cell. Mol. Life Sci. 2020, 77, 1919–1932. [Google Scholar] [CrossRef]
- Finn, A.V.; Nakano, M.; Polavarapu, R.; Karmali, V.; Saeed, O.; Zhao, X.; Yazdani, S.; Otsuka, F.; Davis, T.; Habib, A.; et al. Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J. Am. Coll. Cardiol. 2012, 59, 166–177. [Google Scholar] [CrossRef]
- Williams, J.W.; Zaitsev, K.; Kim, K.W.; Ivanov, S.; Saunders, B.T.; Schrank, P.R.; Kim, K.; Elvington, A.; Kim, S.H.; Tucker, C.G.; et al. Limited proliferation capacity of aortic intima resident macrophages requires monocyte recruitment for atherosclerotic plaque progression. Nat. Immunol. 2020, 21, 1194–1204. [Google Scholar] [CrossRef] [PubMed]
- Swirski, F.K.; Libby, P.; Aikawa, E.; Alcaide, P.; Luscinskas, F.W.; Weissleder, R.; Pittet, M.J. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 2007, 117, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Williams, H.; Cassorla, G.; Pertsoulis, N.; Patel, V.; Vicaretti, M.; Marmash, N.; Hitos, K.; Fletcher, J.P.; Medbury, H.J. Human classical monocytes display unbalanced M1/M2 phenotype with increased atherosclerotic risk and presence of disease. Int. Angiol. 2017, 36, 145–155. [Google Scholar] [CrossRef]
- Patel, V.K.; Williams, H.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Monocyte inflammatory profile is specific for individuals and associated with altered blood lipid levels. Atherosclerosis 2017, 263, 15–23. [Google Scholar] [CrossRef]
- Patel, V.K.; Williams, H.; Li, S.C.H.; Fletcher, J.P.; Medbury, H.J. Monocyte Subset Recruitment Marker Profile Is Inversely Associated With Blood ApoA1 Levels. Front. Immunol. 2021, 12, 616305. [Google Scholar] [CrossRef]
- Nichols, M.; Peterson, K.; Herbert, J.; Alston, L.; Allender, S. Australian Heart Disease Statistics 2015; National Heart Foundation of Australia: Melbourne, Australia, 2016. [Google Scholar]
- Ference, B.A.; Braunwald, E.; Catapano, A.L. The LDL cumulative exposure hypothesis: Evidence and practical applications. Nat. Rev. Cardiol. 2024, 21, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Australian CVD Risk Calculator. Available online: https://www.cvdcheck.org.au/calculator (accessed on 5 February 2025).
- Marik, P.E.; Varon, J. Hypertensive crises: Challenges and management. Chest 2007, 131, 1949–1962. [Google Scholar] [CrossRef] [PubMed]
- National Vascular Disease Prevention Alliance. Absolute Cardiovascular Disease Management. In Quick Reference Guide for Health Professionals; National Stroke Foundation: Melbourne, Australia, 2012; ISBN 978-0-9805933-9-6. [Google Scholar]
- Ushach, I.; Zlotnik, A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J. Leukoc. Biol. 2016, 100, 481–489. [Google Scholar] [CrossRef]
- Beyer, M.; Mallmann, M.R.; Xue, J.; Staratschek-Jox, A.; Vorholt, D.; Krebs, W.; Sommer, D.; Sander, J.; Mertens, C.; Nino-Castro, A.; et al. High-resolution transcriptome of human macrophages. PLoS ONE 2012, 7, e45466. [Google Scholar] [CrossRef]
- Kim, H.-K.; Kim, S.H.; Kang, Y.W.; Kim, B.; Rhee, K.-J.; Kim, Y.S. Triglyceride Regulates the Expression of M1 and M2 Macrophage-specific Markers in THP-1 Monocytes. Biomed. Sci. Lett. 2016, 22, 220–226. [Google Scholar] [CrossRef]
- Gower, R.M.; Wu, H.; Foster, G.A.; Devaraj, S.; Jialal, I.; Ballantyne, C.M.; Knowlton, A.A.; Simon, S.I. CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1. Arter. Thromb. Vasc. Biol. 2011, 31, 160–166. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef]
- National Cholesterol Education Program (US). Expert Panel on Detection, & Treatment of High Blood Cholesterol in Adults. Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar]
- Bosomworth, N.J. Approach to identifying and managing atherogenic dyslipidemia: A metabolic consequence of obesity and diabetes. Can. Fam. Physician 2013, 59, 1169–1180. [Google Scholar]
- Paublini, H.; Lopez Gonzalez, A.A.; Busquets-Cortes, C.; Tomas-Gil, P.; Riutord-Sbert, P.; Ramirez-Manent, J.I. Relationship between Atherogenic Dyslipidaemia and Lipid Triad and Scales That Assess Insulin Resistance. Nutrients 2023, 15, 2105. [Google Scholar] [CrossRef]
- Hoogeveen, R.C.; Ballantyne, C.M. Residual Cardiovascular Risk at Low LDL: Remnants, Lipoprotein(a), and Inflammation. Clin. Chem. 2021, 67, 143–153. [Google Scholar] [CrossRef]
- Ohmura, H.; Mokuno, H.; Sawano, M.; Hatsumi, C.; Mitsugi, Y.; Watanabe, Y.; Daida, H.; Yamaguchi, H. Lipid compositional differences of small, dense low-density lipoprotein particle influence its oxidative susceptibility: Possible implication of increased risk of coronary artery disease in subjects with phenotype B. Metabolism 2002, 51, 1081–1087. [Google Scholar] [CrossRef]
- Fotakis, P.; Kothari, V.; Thomas, D.G.; Westerterp, M.; Molusky, M.M.; Altin, E.; Abramowicz, S.; Wang, N.; He, Y.; Heinecke, J.W.; et al. Anti-Inflammatory Effects of HDL (High-Density Lipoprotein) in Macrophages Predominate Over Proinflammatory Effects in Atherosclerotic Plaques. Arter. Thromb. Vasc. Biol. 2019, 39, e253–e272. [Google Scholar] [CrossRef]
- Sanson, M.; Distel, E.; Fisher, E.A. HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS ONE 2013, 8, e74676. [Google Scholar] [CrossRef]
- Lian, Z.; Perrard, X.D.; Antony, A.K.; Peng, X.; Xu, L.; Ni, J.; Zhang, B.; O’Brien, V.; Saeed, A.; Jia, X.; et al. Dietary Effects on Monocyte Phenotypes in Subjects With Hypertriglyceridemia and Metabolic Syndrome. JACC Basic. Transl. Sci. 2023, 8, 460–475. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Yang, M.; Huang, W.; Chen, W.; Zhao, Y.; Schulte, M.L.; Volberding, P.; Gerbec, Z.; Zimmermann, M.T.; Zeighami, A.; et al. Mitochondrial Metabolic Reprogramming by CD36 Signaling Drives Macrophage Inflammatory Responses. Circ. Res. 2019, 125, 1087–1102. [Google Scholar] [CrossRef]
- Bekkering, S.; Quintin, J.; Joosten, L.A.; van der Meer, J.W.; Netea, M.G.; Riksen, N.P. Oxidized low-density lipoprotein induces long-term proinflammatory cytokine production and foam cell formation via epigenetic reprogramming of monocytes. Arter. Thromb. Vasc. Biol. 2014, 34, 1731–1738. [Google Scholar] [CrossRef]
- Ma, J.; Liao, X.L.; Lou, B.; Wu, M.P. Role of apolipoprotein A-I in protecting against endotoxin toxicity. Acta Biochim. Biophys. Sin. 2004, 36, 419–424. [Google Scholar] [CrossRef]
- Bekkering, S.; Blok, B.A.; Joosten, L.A.; Riksen, N.P.; van Crevel, R.; Netea, M.G. In Vitro Experimental Model of Trained Innate Immunity in Human Primary Monocytes. Clin. Vaccine Immunol. 2016, 23, 926–933. [Google Scholar] [CrossRef]
- Varbo, A.; Benn, M.; Tybjaerg-Hansen, A.; Nordestgaard, B.G. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation 2013, 128, 1298–1309. [Google Scholar] [CrossRef]
- Lavillegrand, J.R.; Al-Rifai, R.; Thietart, S.; Guyon, T.; Vandestienne, M.; Cohen, R.; Duval, V.; Zhong, X.; Yen, D.; Ozturk, M.; et al. Alternating high-fat diet enhances atherosclerosis by neutrophil reprogramming. Nature 2024, 634, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Takaoka, M.; Zhao, X.; Lim, H.Y.; Magnussen, C.G.; Ang, O.; Suffee, N.; Schrank, P.R.; Ong, W.S.; Tsiantoulas, D.; Sommer, F.; et al. Early intermittent hyperlipidaemia alters tissue macrophages to fuel atherosclerosis. Nature 2024, 634, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, W.; Chen, D.; Wang, C.; Gao, Y.; Ran, X. Association of high-density lipoprotein cholesterol and wound healing in patients with diabetic foot ulcers. Chin. Med. J. 2022, 135, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Morin, E.E.; Guo, L.; Schwendeman, A.; Li, X.A. HDL in sepsis—Risk factor and therapeutic approach. Front. Pharmacol. 2015, 6, 244. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Yin, Y.; Chen, W.; Li, X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): A meta-analysis. Virol. J. 2021, 18, 157. [Google Scholar] [CrossRef]

| Characteristic | Data for n = 20 * | ||
|---|---|---|---|
| Age (years) † | 45 ± 13 (25–73) | ||
| Sex ‡ M/F | 2/18 (10%/90%) | ||
| Blood biochemistry † | Cut-off values | No. Participants with perturbed levels | |
| Total cholesterol (mmol/L) | 5.0 ± 1.1 (3.7–7.4) | ≤5.5 | 5 |
| LDL-C (mmol/L) | 3.1 ± 1.0 (1.9–5.2) | ≤3.0 | 10 |
| HDL-C (mmol/L) | 1.4 ± 0.3 (0.9–2) | ≥1.0 | 1 |
| TG (mmol/L) | 1.1 ± 0.6 (0.6–2.7) | ≤2 | 2 |
| Cholesterol/HDL-C | 3.7 ± 1.2 (2.4–6.1) | ||
| TG/HDL | 0.9 ± 0.7 (0.3–2.7) | ||
| ApoA1 (g/L) | 1.46 ± 0.31 (0.72–2.09) | ||
| ApoB (g/L) | 0.89 ± 0.33 (0.31–1.51) | ||
| ApoB/ApoA1 | 0.61 ± 0.19 (0.36–0.98) | ||
| Lp(a) (mg/L) § | 350 ± 297 (<20–988) | ≤300 | 8 |
| LDL particle size (Å) | 270 ± 4 (261–277) | ||
| oxLDL (IU/L) | 46 ± 28 (11–116) | ||
| hs-CRP | 1.82 ± 2.20 (0.28–6.78) | ≤3 | 3 |
| Glucose mmol/L | 4.4 ± 0.5 (3.1–5.2) | ≤5.5 | 0 |
| Insulin mIU/L | 7 ± 3 (3–12) | ≤9 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mack, C.D.; Quagliata, L.D.; Baraz, R.; Naralashetty, S.; Dervish, S.; Williams, H.; Li, S.C.H.; Medbury, H.J. Human Monocyte-Derived Macrophages Acquire an Inflammatory Phenotype Relative to Risk Factors Typical of Atherogenic Dyslipidaemia. Lipidology 2025, 2, 18. https://doi.org/10.3390/lipidology2040018
Mack CD, Quagliata LD, Baraz R, Naralashetty S, Dervish S, Williams H, Li SCH, Medbury HJ. Human Monocyte-Derived Macrophages Acquire an Inflammatory Phenotype Relative to Risk Factors Typical of Atherogenic Dyslipidaemia. Lipidology. 2025; 2(4):18. https://doi.org/10.3390/lipidology2040018
Chicago/Turabian StyleMack, Corinne D., Lily D. Quagliata, Rana Baraz, Sravanthi Naralashetty, Suat Dervish, Helen Williams, Stephen C. H. Li, and Heather J. Medbury. 2025. "Human Monocyte-Derived Macrophages Acquire an Inflammatory Phenotype Relative to Risk Factors Typical of Atherogenic Dyslipidaemia" Lipidology 2, no. 4: 18. https://doi.org/10.3390/lipidology2040018
APA StyleMack, C. D., Quagliata, L. D., Baraz, R., Naralashetty, S., Dervish, S., Williams, H., Li, S. C. H., & Medbury, H. J. (2025). Human Monocyte-Derived Macrophages Acquire an Inflammatory Phenotype Relative to Risk Factors Typical of Atherogenic Dyslipidaemia. Lipidology, 2(4), 18. https://doi.org/10.3390/lipidology2040018

