Next-Generation Visual Experience: Polarization Volume Gratings in Holographic Waveguides for AR/VR
Abstract
1. Introduction
2. Classification
2.1. Micro-Optical Solutions
2.1.1. SRG Waveguide
2.1.2. VHG Waveguide
2.1.3. PVGs Waveguide

3. Principles of PVGs
4. Fabrication Methods for PVGs
4.1. The Basic Preparation Process and Materials
4.1.1. Active and Passive PVGs
4.1.2. Gradient-Pitch PVGs

4.1.3. Liquid Crystal Materials
4.2. Polarization Exposure
5. Optical Properties
6. Applications of Polarization Volume Gratings in DOW
6.1. EPE Function and Diffractive Optical Waveguide Working Principles
6.2. Advantages of PVGs Coupler for DOW Applications
6.3. Recent Advances in PVGs-Based DOW-AR Applications
6.3.1. Full-Color Imaging and FOV Optimized
6.3.2. Uniformity Enhancement Method of the Exit Pupil
6.3.3. Two-Dimensional Pupil Expansion
7. Comparison and Prospects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, K.; He, Z.; Xiong, J.; Zou, J.; Li, K.; Wu, S.T. Virtual reality and augmented reality displays: Advances and future perspectives. J. Phys. Photonics 2021, 3, 022010. [Google Scholar] [CrossRef]
- Kaur, R.; Pensia, L.; Kumar, R. Bragg degenerate model for fabrication of holographic waveguide-based near-eye displays. Appl. Opt. 2023, 62, 3467–3476. [Google Scholar] [CrossRef]
- Al-Ansi, A.M.; Jaboob, M.; Garad, A.; Al-Ansi, A. Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Soc. Sci. Humanit. Open 2023, 8, 100532. [Google Scholar] [CrossRef]
- Cevikbas, M.; Bulut, N.; Kaiser, G. Exploring the Benefits and Drawbacks of AR and VR Technologies for Learners of Mathematics: Recent Developments. Systems 2023, 11, 244. [Google Scholar] [CrossRef]
- Zia, A.; Saeed, S.; Man, T.; Liu, H.; Chen, C.X.; Wan, Y. Next-generation interfaces: Integrating liquid crystal technologies in augmented and virtual reality–A review. Liq. Cryst. Rev. 2024, 12, 30–56. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Weng, Y.; Shen, Z.; Wei, R.; Gu, Y.; Zhang, L. Holographic waveguide display with large field of view based on volume holographic grating. J. Soc. Inf. Disp. 2023, 31, 433–442. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Y.; Wang, W.; Gu, Y.; Wang, C.; Wei, R.; Zhang, L.; Wang, B. High-efficiency and compact two-dimensional exit pupil expansion design for diffractive waveguide based on polarization volume grating. Opt. Express 2023, 31, 6601–6614. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Han, H.; Min, W.; Min, K.; Han, D.; Shin, G. Recent applications of optical elements in augmented and virtual reality displays: A review. ACS Appl. Opt. Mater. 2024, 2, 1247–1268. [Google Scholar] [CrossRef]
- Tang, M.; Sun, C.; Ding, W.; Jiang, F.; Li, Y.; Li, W.; Lu, J. Full-color augmented reality display via integrated achromatic template polarization volume grating. Displays 2025, 103190. [Google Scholar] [CrossRef]
- Iadlovska, O.S.; Maxwell, G.R.; Babakhanova, G.; Georg, H.M.; Christopher, W.; Sergij, V.S.; Oleg, D.L. Tuning selective reffection of light by surface anchoring in cholesteric cells with oblique helicoidal structures. Opt. Lett. 2018, 43, 1850–1853. [Google Scholar] [CrossRef]
- Thapa, K.; Iadlovska, O.S.; Bisoyi, H.K.; Daniel, A.P.; John, M.D.S.; Corrie, T.I.; Quan, L.; Sergij, V.S.; Oleg, D.L. Combined electric and photocontrol of selective light reffection at an oblique helicoidal cholesteric liquid crystal doped with azoxybenzene derivative. Phys. Rev. E 2021, 104, 044702. [Google Scholar] [CrossRef] [PubMed]
- Simoni, F.; Francescangeli, O. Effects of light on molecular orientation of liquid crystals. J. Phys. Condens. Matter 1999, 11, R439–R487. [Google Scholar] [CrossRef]
- Lucchetti, L.; Kushnir, K.; Zaltron, A.; Simoni, F. Liquid crystal cells based on photovoltaic substrates. J. Eur. Opt. Soc. Publ. 2016, 11, 16007. [Google Scholar] [CrossRef]
- Nava, G.; Ciciulla, F.; Simoni, F.; Iadlovska, O.; Lavrentovich, O.D.; Lucchetti, L. Heliconical cholesteric liquid crystals as electrically tunable optical fflters in notch and bandpass conffgurations. Liq. Cryst. 2021, 48, 1534–1543. [Google Scholar] [CrossRef]
- Xiang, J.; Li, Y.; Li, Q.; Paterson, D.A.; Storey, J.M.D.; Imrie, C.T.; Lavrentovich, O.D. Liquid crystals: Electrically tunable selective reffection of light from ultraviolet to visible and infrared by Heliconical Cholesterics. Adv. Mater. 2015, 27, 3013. [Google Scholar] [CrossRef]
- Francescangeli, O.; Lucchetti, L.; Simoni, F.; Stanić, V.; Mazzulla, A. Lightinduced molecular adsorption and reorientation at polyvinylcinnamate-ffuorinated/liquid-crystal interface. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2005, 71, 011702. [Google Scholar] [CrossRef]
- Iadlovska, O.S.; Thapa, K.; Rajabi, M.; Mrukiewicz, M.; Shiyanovskii, S.V.; Lavrentovich, O.D. Electrically tunable total reffection of light by oblique helicoidal cholesteric. arXiv 2024, arXiv:2024:240408768. [Google Scholar]
- Jirón, V.; Rajabi, M.; Wang, H.; Lavrentovich, O.D. Dynamic control of active droplets using light-responsive chiral liquid crystal environment. Commun. Phys. 2024, 7, 200. [Google Scholar] [CrossRef]
- Nava, G.; Barboza, R.; Simoni, F.; Iadlovska, O.; Lavrentovich, O.D.; Lucchetti, L. Optical control of light polarization in heliconical cholesteric liquid crystals. Opt. Lett. 2022, 47, 2967–2970. [Google Scholar] [CrossRef]
- Lavrentovich, O.D. Design of nematic liquid crystals to control microscale dynamics. Liq. Cryst. Rev. 2020, 8, 59–129. [Google Scholar] [CrossRef]
- Li, B.-X.; Borshch, V.; Xiao, R.-L.; Paladugu, S.; Turiv, T.; Shiyanovskii, S.V.; Lavrentovich, O.D. Electrically driven three-dimensional solitary waves as director bullets in nematic liquid crystals. Nat. Commun. 2018, 9, 2912. [Google Scholar] [CrossRef]
- Xiang, J.; Varanytsia, A.; Minkowski, F.; Daniel, A.P.; John MD., S.; Corrie, T.I.; Lavrentovich O., D.; Peter, P.-M. Electrically tunable laser based on oblique heliconical cholesteric liquid crystal. Proc. Natl. Acad. Sci. USA 2016, 113, 12925–12928. [Google Scholar] [CrossRef]
- Liu, S.; Yu, H.; Jiang, M.; Ma, L.L.; Lu, Y.Q.; Wei, Q.H. Dual diffraction bands of heliconical liquid crystal gratings. Phys. Rev. Mater. 2024, 8, 085201. [Google Scholar] [CrossRef]
- Guo, Y.; Jiang, M.; Peng, C.; Sun, K.; Yaroshchuk, O.; Lavrentovich, O.; Wei., Q.H. Highâ resolution and highâ throughput plasmonic photopatterning of complex molecular orientationsin liquid crystals. Adv. Mater. 2016, 28, 2353–2358. [Google Scholar]
- Guo, Y.; Jiang, M.; Afghah, S.; Peng, C.; Selinger, R.; Lavrentovich, O.D.; Wei, Q.H. Photopatterned designer disclination networks in nematic liquid crystals. Adv. Opt. Mater. 2021, 9, 2170063. [Google Scholar] [CrossRef]
- Jiang, M.; Guo, Y.; Yu, H.; Turiv, T.; Lavrentovich, O.D.; Wei, Q.H. Low f-number diffractionlimited Pancharatnam–Berry microlenses enabled by Plasmonic Photopatterning of Liquid Crystal Polymers. Adv Mater. 2019, 31, 1808028. [Google Scholar] [CrossRef]
- Sato, S. Applications of liquid crystals to variablefocusing lenses. Opt Rev. 1999, 6, 471–485. [Google Scholar] [CrossRef]
- Ye, M.; Wang, B.; Sato, S. Liquid-crystal lens with a focal length that is variable in a wide range. Appl Opt. 2004, 43, 6407–6412. [Google Scholar] [CrossRef] [PubMed]
- Perera, K.; Haputhantrige, N.; Himel, M.S.H. M Mostafa, A Adaka, EK Mann, OD Lavrentovich Electrically tunable polymer stabilized chiral ferroelectric nematic liquid crystal microlenses. Adv Opt Mater. 2024, 12, 2302500. [Google Scholar] [CrossRef]
- Adaka, A.; Guragain, P.; Perera, K.; Nepal, P.; Almatani, B.; Sprunt, S.; Gleeson, J.; Twieg, R.J.; Jákli., A. A ferroelectric nematic liquid crystal vitriffed at room temperature. Liq. Cryst. 2024, 52, 1–9. [Google Scholar]
- Perera, K.; Haputhantrige, N.; Himel, M.S.H.; Mostafa, M.; Adaka, A.; Lavrentovich, O.D. AI Jákli Electrically tunable chiral liquid crystal lens arrays. Liq. Cryst. XXVII. 2023, 12658, 67–73. [Google Scholar]
- Alyami, A.; Rajapaksha, C.H.; Feng, C.; Paudel, P.R.; Paul, A.; Adaka, A.; Dharmarathna, R.; Lüssem, B.; Jákli, A. Ionic liquid crystal elastomers for actuators, sensors, and organic transistors. Liq. Cryst. 2023, 50, 1151–1161. [Google Scholar] [CrossRef]
- Karaszi, Z.; Máthé, M.; Salamon, P.; Buka, Á.; Jakli, A. Lens-shaped nematic liquid crystal droplets with negative dielectric anisotropy in electric and magnetic ffelds. Liq. Cryst. 2023, 50, 393–402. [Google Scholar] [CrossRef]
- Salamon, P.; Karaszi, Z.; Kenderesi, V.; Buka, Á.; Jákli, A. Liquid crystal spherical caps in magnetic ffelds. Phys. Rev. Res. 2020, 2, 023261. [Google Scholar] [CrossRef]
- Aya, S.; Salamon, P.; Paterson, D.A.; Storey, J.; Imrie, C.T.; Jákli, A.; Buka, Á. High-contrast and fast photorheological switching of a twist-bend nematic liquid crystal. JoVE 2019, 152, e60433. [Google Scholar]
- Guimarães, V.G.; Wang, J.; Planitzer, S.; Fodor-Csorba, K.; Zola, R.S.; Jákli, A. Fast electrooptical switching of dichroic dye-doped antiferroelectric liquid crystals without polarizers. Phys. Rev. Appl. 2018, 10, 064008. [Google Scholar] [CrossRef]
- Perera, K.; Padmini, H.N.; Mann, E.; Jákli, A. Polymer stabilized paraboloid liquid crystal microlenses with integrated Pancharatnam–Berry phase. Adv. Opt. Mater. 2022, 10, 2101510. [Google Scholar] [CrossRef]
- Rajapaksha, C.P.H.; Gunathilaka, M.D.T.; Narute, S.; Albehaijan, H.; Piedrahita, C.; Paudel, P.; Feng, C.; Lüssem, B.; Kyu, T.; Jákli, A. FlexoIonic effect of ionic liquid crystal elastomers. Molecules 2021, 26, 4234. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Rajapaksha, C.P.H.; Cedillo, J.M.; Piedrahita, C.; Cao, J.; Kaphle, V.; Lüssem, B.; Kyu, T.; Jákli, A. Electroresponsive ionic liquid crystal elastomers. Macromol. Rapid Commun. 2019, 40, 1900299. [Google Scholar] [CrossRef] [PubMed]
- Shahsavan, H.; Yu, L.; Jákli, A.; Zhao, B. Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter 2017, 13, 8006–8022. [Google Scholar] [CrossRef]
- Salili, S.M.; Xiang, J.; Wang, H.; Li, Q.; Paterson, D.A.; Storey, J.M.D.; Imrie, C.T.; Lavrentovich, O.D.; Sprunt, S.N.; Gleeson, J.T.; et al. Magnetically tunable selective reffection of light by heliconical cholesterics. Phys. Rev. E 2016, 94, 042705. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Li, Y.; He, Z.; Wu, S.T.; Liu, S. Multispectral PancharatnamBerry phase liquid crystal lens and Its aplication in AR displays. Soc. Inf. Disp. 2024, 55, 450–452. [Google Scholar]
- Yang, Z.; Luo, Z.; Ding, Y.; Qian, Y.; Chen, S.C.; Lin, C.L.; Wu, S.T. Advances and challenges in microdisplays and imaging optics for virtual reality and mixed reality. Device 2024, 2, 100398. [Google Scholar] [CrossRef]
- Qian, Y.; Chen, S.-C.; Hsiang, E.-L.; Akimoto, H.; Lin, C.L.; Wu, S.T. Enhancing a display’s sunlight read ability with tone mapping. Photonics 2024, 11, 578. [Google Scholar] [CrossRef]
- Yang, Q.; Ding, Y.; Wu, S.T. Full-color, wide ffeld-of-view single-layer waveguide for augmented reality displays. J. Soc. Inf. Disp. 2024, 32, 247–254. [Google Scholar] [CrossRef]
- Li, Y.; Semmen, J.; Wu, S.-T. Switchable flat optical elements with patterned cholesteric liquid crystal for augmented reality displays. In Proceedings of the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR, MR) IV, Virtual, 16 March 2023; Volume 12449, pp. 134–143. [Google Scholar]
- Hsiang, E.-L.; Yang, Z.; Zhan, T.; Zou, J.; Akimoto, H.; Wu, S.T. Optimizing the display performance for virtual reality systems. OSA Contin. 2021, 4, 3052–3067. [Google Scholar] [CrossRef]
- Ding, Y.; Gu, Y.; Yang, Q.; Yang, Z.; Huang, Y.; Weng, Y.; Zhang, Y.; Wu, S.T. Breaking the in-coupling efffciency limit in waveguide-based AR displays with polarization volume gratings. Light. Sci. Appl. 2024, 13, 185. [Google Scholar] [CrossRef]
- Luo, Z.; Ding, Y.; Peng, F.; He, Z.; Wang, Y.; Wu, S.T. Compact and high-efffciency liquid-crystal-on-silicon for augmented reality displays. Photonics 2024, 11, 669. [Google Scholar] [CrossRef]
- Nys, I.; Stebryté, M.; Sharma, R.; Berteloot, B.; Beeckman, J.; Neyts, K. Diffractive optical elements based on photoaligned liquid crystals: Reffective and transmissive devices with different functionalities. Liq. Cryst. Opt. Photonic Devices 2024, 13016, 49–55. [Google Scholar]
- Stebryte, M.; Berteloot, B.; Sharma, R. Chiral liquid crystal ffat optics devices for optical components and augmented reality displays. Soc. Inf. Disp. 2023, 54, 189–190. [Google Scholar]
- Nys, I.; Ropač, P.; Berteloot, B.; Ravnik, M.; Neyts, K. Highly dispersive liquid crystal diffraction gratings with continuously varying periodicity. J. Mol. Liq. 2023, 383, 122062. [Google Scholar] [CrossRef]
- Nys, I.; Liu, S.; Huang, Y.N.; Strzeżysz, O.; Kula, P.; Neyts, K. Geometric phase ffat optical gratings with high diffraction angle based on dual-frequency nematic liquid crystal. Adv. Opt. Mater. 2023, 11, 2300972. [Google Scholar] [CrossRef]
- Stebryte, M.; Nys, I.; Beeckman, J.; Neyts, K. Chiral liquid crystal based holographic reffective lens for spectral detection. Opt. Express 2022, 30, 42829–42839. [Google Scholar] [CrossRef] [PubMed]
- Barboza, R.; Bortolozzi, U.; Clerc, M.G.; Residori, S. Berry phase of light under Bragg reflection by chiral liquid-crystal media. Phys. Rev. Lett. 2016, 117, 053903. [Google Scholar] [CrossRef]
- Wang, X.Q.; Tam, A.M.W.; Yang, W.Q.; Kiselev, A.D.; Shen, D.; Chigrinov, V.; Kwok, H.S.; Li, Q. Light Reconfigurable Topological Optical Phase Structure Enabled by a Photoresponsive Chiral System. Adv. Opt. Mater. 2023, 11, 2202529. [Google Scholar] [CrossRef]
- Tecchia, F. Fundamentals of Wearable Computers and Augmented Reality; MIT Press One Rogers Street: Cambridge, MA, USA, 2016; pp. 83–100. [Google Scholar]
- Li, H.; Zhang, X.; Shi, G.; Qu, H.; Wu, Y.; Zhang, J. Review and analysis of avionic helmet-mounted displays. Opt. Eng. 2013, 52, 110901. [Google Scholar] [CrossRef]
- Cakmakci, O.; Rolland, J. Head-worn displays: A review. J. Disp. Technol. 2006, 2, 199–216. [Google Scholar] [CrossRef]
- Yang, T.; Jin, G.-F.; Zhu, J. Automated design of freeform imaging systems. Light. Sci. Appl. 2017, 6, e17081. [Google Scholar] [CrossRef]
- Wei, L.; Li, Y.; Jing, J.; Feng, L.; Zhou, J. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 2018, 26, 8550–8565. [Google Scholar] [CrossRef]
- Supranowitz, C.; Dumas, P.; Nitzsche, T.; Nelson, J.D.; Light, B.B.; Medicus, K.; Smith, N. Fabrication and metrology of high-precision freeform surfaces. Optifab 2013, SPIE 2013, 235–244. [Google Scholar]
- Cheng, D.; Wang, Q.; Liu, Y.; Chen, H.; Ni, D.; Wang, X.; Yao, C.; Hou, Q.; Hou, W.; Luo, G. Design and manufacture AR head-mounted displays: A review and outlook. Light Adv. Manuf. 2021, 2, 350–369. [Google Scholar] [CrossRef]
- Sang, X.; Chen, Z.; Gao, X.; Yan, B.; Li, H.; Wang, Y.; Zhao, L. Design and fabrication of a wide-angle off-axis three-mirror head-mounted display system. Optik 2019, 191, 139–145. [Google Scholar] [CrossRef]
- Kress, B.C. Optical waveguide combiners for AR headsets: Features and limitations. Digit. Opt. Technol. 2019, SPIE 2019, 75–100. [Google Scholar]
- Zhang, W.; Wang, Z.; Xu, J. Research on a surface-relief optical waveguide augmented reality display device. Appl. Opt. 2018, 57, 3720–3729. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.; Kaplan, N.; Grossinger, I. Using Diffractive Optical Elements: DOEs for beam shaping–fundamentals and applications. Opt. Photonik 2018, 13, 83–86. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Jiang, T.; Tian, Z.N.; Niu, L.G.; Mao, J.W.; Chen, Q.D.; Sun, H.B. Broad-Bandwidth Micro-Diffractive Optical Elements. Laser Photonics Rev. 2022, 16, 2100537. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhang, W.; Yang, J.K. Toward near-perfect diffractive optical elements via nanoscale 3D printing. ACS Nano 2020, 14, 10452–10461. [Google Scholar] [CrossRef]
- Vehar, D.; Hermerschmidt, A.; Nestler, R.; Franke, K.-H. Single-shot structured light with diffractive optic elements for real-time 3D imaging in collaborative logistic scenarios. Digit. Opt. Technol. 2023, SPIE 2023, 144–159. [Google Scholar]
- Tang, R.; Zhang, B.; Jin, G.; Zhu, J. Multiple surface expansion method for design of freeform imaging systems. Opt. Express 2018, 26, 2983–2994. [Google Scholar] [CrossRef]
- Lee, Y.-H.; Yin, K.; Wu, S.-T. Reflective polarization volume gratings for high efficiency waveguide-coupling augmented reality displays. Opt. Express 2017, 25, 27008–27014. [Google Scholar] [CrossRef]
- Lee, G.-Y.; Hong, J.-Y.; Hwang, S.; Moon, S.; Kang, H.; Jeon, S.; Kim, H.; Jeong, J.-H.; Lee, B. Metasurface eyepiece for augmented reality. Nat. Commun. 2018, 9, 4562. [Google Scholar] [CrossRef] [PubMed]
- Levola, T.; Laakkonen, P. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Opt. Express 2007, 15, 2067–2074. [Google Scholar] [CrossRef]
- Ni, D.; Cheng, D.; Liu, Y.; Wang, X.; Yao, C.; Yang, T.; Chi, C.; Wang, Y. Uniformity improvement of two-dimensional surface relief grating waveguide display using particle swarm optimization. Opt. Express 2022, 30, 24523. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, J.; Han, J.; Wang, Y. Design of achromatic surface microstructure for near-eye display with diffractive waveguide. Opt. Commun. 2019, 452, 411–416. [Google Scholar] [CrossRef]
- Liu, Z.; Pan, C.; Pang, Y.; Huang, Z. A full-color near-eye augmented reality display using a tilted waveguide and diffraction gratings. Opt. Commun. 2019, 431, 45–50. [Google Scholar] [CrossRef]
- Rokhsaritalemi, S.; Abolghasem, S.N.; Choi, S.M. A review on mixed reality: Current trends, challenges and prospects. Appl. Sci. 2020, 10, 636. [Google Scholar] [CrossRef]
- Moharam, M.; Pommet, D.A.; Grann, E.B.; Gaylord, T.K. Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach. J. Opt. Soc. Am. A 1995, 12, 1077–1086. [Google Scholar] [CrossRef]
- Zhao, J.; Tian, X.; Wang, J. Conical diffractions of multilayered gratings modeled by Cartesian rigorous coupled-wave analysis. J. Opt. Soc. Am. A 2023, 40, 1940–1946. [Google Scholar] [CrossRef]
- Gu, Y.; Weng, Y.; Zhang, Y.; Wang, C.; Wei, R.; Wang, W.; Lin, N.; Zhang, L.; Wang, B. A study of the field of view performance for full-color waveguide displays based on polarization volume gratings. Crystals 2022, 12, 1805. [Google Scholar] [CrossRef]
- Gu, Y.; Weng, Y.; Wei, R.; Shen, Z.; Wang, C.; Zhang, L.; Zhang, Y. Holographic waveguide display with large field of view and high light efficiency based on polarized volume holographic grating. IEEE Photon-J. 2021, 14, 1–7. [Google Scholar] [CrossRef]
- Levola, T. Diffractive optics for virtual reality displays. J. Soc. Inf. Disp. 2006, 14, 467–475. [Google Scholar] [CrossRef]
- Luo, C. Breaking Through the Fov Limit of Augmented Reality Near-To-Eye Display with High Resolution by Digital Micromirror Device and Volume Hologram Grating. Master’s Thesis, The University of Arizona, Tucson, AZ, USA, 2020. [Google Scholar]
- Saeed, S.; Zia, A.; Liu, R.; Liu, D.; Cao, L.; Wang, Z. Optimizing broadband antireflection with Au micropatterns: A combined FDTD simulation and two-beam LIL approach. Appl. Opt. 2024, 63, 1394–1401. [Google Scholar] [CrossRef]
- Eisen, L.; Meyklyar, M.; Golub, M.; Friesem, A.A.; Gurwich, I.; Weiss, V. Planar configuration for image projection. Appl. Opt. 2006, 45, 4005–4011. [Google Scholar] [CrossRef]
- Kress, B.C.; Cummings, W.J. 11–1: Invited paper: Towards the ultimate mixed reality experience: HoloLens display architecture choices. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 127–131. [Google Scholar]
- Wang, H.; Ma, D. Surface relief grating near-eye display waveguide design. arXiv 2023, arXiv:2307.01600. [Google Scholar] [CrossRef]
- Drazic, V.; Shramkova, O.; Varghese, B.; Blondé, L.; de La Perrière, V.B.; Schiffler, J.; Twardowski, P.; Lecler, S.; Walter, B.; Mairiaux, E. Over-wavelength pitch sized diffraction gratings for augmented reality applications. Opt. Express 2022, 30, 1293–1303. [Google Scholar] [CrossRef]
- Solomashenko, A.; Kuznetsov, A.; Nikolaev, V.; Afanaseva, O. Development of a Holographic Waveguide with Thermal Compensation for Augmented Reality Devices. Appl. Sci. 2022, 12, 11281. [Google Scholar] [CrossRef]
- Saeed, S.; Liu, R.; Gao, M.; Liu, D.; Wang, Z.; Zia, A. Hierarchical and gradient Si nano wires-holes arrays by LIL and MACE. In Proceedings of the 2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), Tianjin, China, 2 August 2022; pp. 568–571. [Google Scholar]
- Shen, Z.; Wang, C.; Weng, Y.; Zhang, Y. 15.2: Design and Realization of Full-Color VHG Holographic Waveguide Display. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2022; pp. 162–165. [Google Scholar]
- Kogelnik, H. Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 1969, 48, 2909–2947. [Google Scholar] [CrossRef]
- Amitai, Y.; Friesem, A.; Weiss, V. Holographic elements with high efficiency and low aberrations for helmet displays. Appl. Opt. 1989, 28, 3405–3416. [Google Scholar] [CrossRef]
- Guo, L.J. Nanoimprint lithography: Methods and material requirements. Adv. Mater. 2007, 19, 495–513. [Google Scholar] [CrossRef]
- Bonod, N.; Neauport, J. Diffraction gratings: From principles to applications in high-intensity lasers. Adv. Opt. Photon 2016, 8, 156–199. [Google Scholar] [CrossRef]
- Oku, T.; Akutsu, K.; Kuwahara, M.; Yoshida, T.; Kato, E.; Aiki, K.; Matsumura, I.; Nakano, S.; Machida, A.; Mukawa, H. 15.2: High-Luminance See-Through Eyewear Display with Novel Volume Hologram Waveguide Technology. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2015; pp. 192–195. [Google Scholar]
- Liu, A.; Zhang, Y.; Shen, Z.; Weng, Y.; Xia, J.; Wang, B. 73–3: High Refractive Index Photopolymer Fabricated Holographic Grating used for RGB Waveguide-type Display. In SID Symposium Digest of Technical Papers; Wiley Online Library: Hoboken, NJ, USA, 2019; pp. 1042–1044. [Google Scholar]
- Malallah, R.E.; Li, H.; Qi, Y.; Cassidy, D.; Muniraj, I.; Al-Attar, N.; Sheridan, J.T. Improving the uniformity of holographic recording using multilayer photopolymer. Part I. Theoretical analysis. J. Opt. Soc. Am. A 2019, 36, 320–333. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, F.; Hong, Y.; Zang, J.; Kang, G.; Tan, X.; Shimura, T. Volume holographic recording in Al nanoparticles dispersed phenanthrenequinone-doped poly (methyl methacrylate) photopolymer. Nanotechnology 2018, 30, 145202. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Tokuyama, K.; Takai, Y.; Tsukuda, D.; Kaneko, T.; Suzuki, N.; Anzai, T.; Yoshikaie, A.; Akutsu, K.; Machida, A. A plastic holographic waveguide combiner for light-weight and highly-transparent augmented reality glasses. J. Soc. Inf. Disp. 2018, 26, 280–286. [Google Scholar]
- Mukawa, H.; Akutsu, K.; Matsumura, I.; Nakano, S.; Yoshida, T.; Kuwahara, M.; Aiki, K. A full-color eyewear display using planar waveguides with reflection volume holograms. J. Soc. Inf. Disp. 2009, 17, 185–193. [Google Scholar]
- Tan, G.; Lee, Y.-H.; Zhan, T.; Yang, J.; Liu, S.; Zhao, D.; Wu, S.-T. Foveated imaging for near-eye displays. Opt. Express 2018, 26, 25076–25085. [Google Scholar] [CrossRef]
- Zhan, T.; Lee, Y.-H.; Tan, G.; Xiong, J.; Yin, K.; Gou, F.; Zou, J.; Zhang, N.; Zhao, D.; Yang, J. Pancharatnam–Berry optical elements for head-up and near-eye displays. J. Opt. Soc. Am. B 2019, 36, D52–D65. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, S.; Zhang, L. Design and optimization of a collimating lens for ultra-small μLED displays using FDTD simulation. Opt. Express 2024, 32, 46021–46032. [Google Scholar] [CrossRef]
- Weng, Y.; Xu, D.; Zhang, Y.; Li, X.; Wu, S.-T. Polarization volume grating with high efficiency and large diffraction angle. Opt. Express 2016, 24, 17746–17759. [Google Scholar] [CrossRef]
- Wang, J.; McGinty, C.; West, J.; Bryant, D.; Finnemeyer, V.; Reich, R.; Berry, S.; Clark, H.; Yaroshchuk, O.; Bos, P. Effects of humidity and surface on photoalignment of brilliant yellow. Liq. Cryst. 2017, 44, 863–872. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Y.; Cui, J.; Liu, A.; Shen, Z.; Li, X.; Wang, B. Liquid-crystal-based polarization volume grating applied for full-color waveguide displays. Opt. Lett. 2018, 43, 5773–5776. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, J.; Yoshida, H.; Ozaki, M. Planar optics with patterned chiral liquid crystals. Nat. Photon. 2016, 10, 389–392. [Google Scholar]
- Lee, Y.-H.; Tan, G.; Zhan, T.; Weng, Y.; Liu, G.; Gou, F.; Peng, F.; Tabiryan, N.V.; Gauza, S.; Wu, S.-T. Recent progress in Pancharatnam–Berry phase optical elements and the applications for virtual/augmented realities. Opt. Data Process. Storage 2017, 3, 79–88. [Google Scholar] [CrossRef]
- McManamon, P.F.; Bos, P.J.; Escuti, M.J.; Heikenfeld, J.; Serati, S.; Xie, H.; Watson, E.A. A review of phased array steering for narrow-band electrooptical systems. Proc. IEEE 2009, 97, 1078–1096. [Google Scholar] [CrossRef]
- Yin, K.; Zhan, T.; Xiong, J.; He, Z.; Wu, S.-T. Polarization volume gratings for near-eye displays and novel photonic devices. Crystals 2020, 10, 561. [Google Scholar] [CrossRef]
- Lee, Y.-H.; He, Z.; Wu, S.-T. Optical properties of reflective liquid crystal polarization volume gratings. J. Opt. Soc. Am. B 2019, 36, D9–D12. [Google Scholar] [CrossRef]
- Li, Y.; Semmen, J.; Yang, Q.; Wu, S.T. Switchable polarization volume gratings for augmented reality waveguide displays. J. Soc. Inf. Disp. 2023, 31, 328–335. [Google Scholar] [CrossRef]
- Yin, K.; Lin, H.Y.; Wu, S.T. Chirped polarization volume grating with ultra-wide angular bandwidth and high efficiency for see-through near-eye displays. Opt. Express 2019, 27, 35895–35902. [Google Scholar] [CrossRef]
- Lin, W.K.; Zhou, S.K.; Liang, Y.Y.; Sun, C.; Lin, S.H.; Yu, Y.W.; Su, W.C.; Sun, C.C. Crosstalk noise reduction of angle-multiplexed volume-holographic gratings for see-through lightguide display. Opt. Express 2025, 33, 20951–20963. [Google Scholar]
- Mitov, M. Cholesteric liquid crystals with a broad light reflection band. Adv. Mater. 2012, 24, 6260–6276. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, C.; Ho, J.Y.-L.; Vashchenko, V.V.; Srivastava, A.K.; Chigrinov, V.G.; Kwok, H.-S.; Song, F.; Luo, D. Exotic property of azobenzenesulfonic photoalignment material based on relative humidity. Langmuir 2017, 33, 3968–3974. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wang, J.; Zhang, W. Gradient polarization volume grating with wide angular bandwidth for augmented reality. Opt. Express 2023, 31, 35282–35292. [Google Scholar] [CrossRef]
- Yun, C.-J.; Song, J.-K. Functional films using reactive mesogens for display applications. J. Inf. Disp. 2017, 18, 119–129. [Google Scholar] [CrossRef]
- Liu, D.; Broer, D.J. Liquid crystal polymer networks: Preparation, properties, and applications of films with patterned molecular alignment. Langmuir 2014, 30, 13499–13509. [Google Scholar] [CrossRef]
- Weng, Y.; Zhang, Y.; Wang, W.; Wang, C.; Gu, Y.; Wei, R.; Lin, N.; He, N.; Zhang, L.; Wang, B. Liquid-Crystal Polarization Volume Gratings Technology and its Applications in Diffractive Optical Waveguides Systems for Augmented Reality. IEEE J. Sel. Top. Quantum Electron. 2023, 30, 1–15. [Google Scholar] [CrossRef]
- Broer, D.; Crawford, G.P.; Zumer, S. Cross-Linked Liquid Crystalline Systems: From Rigid Polymer Networks to Elastomers; CRC press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Chen, R.; Lee, Y.H.; Zhan, T.; Yin, K.; An, Z.; Wu, S.T. Multistimuli-responsive self-organized liquid crystal Bragg gratings. Adv. Opt. Mater. 2019, 7, 1900101. [Google Scholar] [CrossRef]
- Zia, A.; Wu, H.; Saeed, S.; Man, T.; Liu, H.; XiaoChen, C.; Wan, Y. Three-layer polarization volume grating with enhanced diffraction efficiency and FOV in AR and VR applications. Liq. Cryst. 2024, 185–194. [Google Scholar] [CrossRef]
- Nersisyan, S.R.; Tabiryan, N.V.; Steeves, D.M.; Kimball, B.R. Characterization of optically imprinted polarization gratings. Appl. Opt. 2009, 48, 4062–4067. [Google Scholar] [CrossRef] [PubMed]
- Fang, Q.; Lv, Y.; Yan, Z.; Sun, X.; Shen, J.; Liu, M.; Wang, T.; Chen, J.; Yin, S. Photoalignment of sub-micrometer periodic liquid crystal polarization grating by using the optical imprinting method. Opt. Express 2023, 31, 13428–13435. [Google Scholar] [CrossRef]
- Ye, X.; Zeng, T.; Liu, S.; Fan, F.; Wen, S. Optical imprinting subwavelength-period liquid crystal polarization gratings with dual-twist templates. Opt. Lett. 2023, 48, 2078–2081. [Google Scholar] [CrossRef]
- Xiong, J.; Yang, Q.; Li, Y.; Wu, S.-T. Holo-imprinting polarization optics with a reflective liquid crystal hologram template. Light Sci. Appl. 2022, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Blanche, P.-A.; Gailly, P.; Habraken, S.; Lemaire, P.; Jamar, C. Volume phase holographic gratings: Large size and high diffraction efficiency. Opt. Eng. 2004, 43, 2603–2612. [Google Scholar] [CrossRef]
- Tseng, M.-C.; Yaroshchuk, O.; Bidna, T.; Srivastava, A.K.; Chigrinov, V.; Kwok, H.-S. Strengthening of liquid crystal photoalignment on azo dye films: Passivation by reactive mesogens. RSC Adv. 2016, 6, 48181–48188. [Google Scholar] [CrossRef]
- Wang, J.; McGinty, C.; Reich, R.; Finnemeyer, V.; Clark, H.; Berry, S.; Bos, P. Process for a reactive monomer alignment layer for liquid crystals formed on an azodye sublayer. Materials 2018, 11, 1195. [Google Scholar] [CrossRef] [PubMed]
- Ouskova, E.; Vergara, R.; Hwang, J.; Roberts, D.; Steeves, D.M.; Kimball, B.R.; Tabiryan, N. Dual-function reversible/irreversible photoalignment material. J. Mol. Liq. 2018, 267, 205–211. [Google Scholar] [CrossRef]
- Sakhno, O.; Gritsai, Y.; Sahm, H.; Stumpe, J. Fabrication and performance of efficient thin circular polarization gratings with Bragg properties using bulk photo-alignment of a liquid crystalline polymer. Appl. Phys. B Laser Opt. 2018, 124, 52. [Google Scholar] [CrossRef]
- McDonald, L.T.; Finlayson, E.D.; Wilts, B.D.; Vukusic, P. Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: Light scattering by a dual photonic structure. Interface Focus 2017, 7, 20160129. [Google Scholar] [CrossRef]
- Emoto, A.; Matsumoto, T.; Yamashita, A.; Shioda, T.; Ono, H.; Kawatsuki, N. Large birefringence and polarization holographic gratings formed in photocross-linkable polymer liquid crystals comprising bistolane mesogenic side groups. J. Appl. Phys. 2009, 106, 073505. [Google Scholar] [CrossRef]
- Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Gao, K.; McGinty, C.; Payson, H.; Berry, S.; Vornehm, J.; Finnemeyer, V.; Roberts, B.; Bos, P. High-efficiency large-angle Pancharatnam phase deflector based on dual-twist design. Opt. Express 2017, 25, 6283–6293. [Google Scholar] [CrossRef] [PubMed]
- Crawford, G.P.; Eakin, J.N.; Radcliffe, M.D.; Callan-Jones, A.; Pelcovits, R.A. Liquid-crystal diffraction gratings using polarization holography alignment techniques. J. Appl. Phys. 2005, 98. [Google Scholar] [CrossRef]
- Wu, H.; Hu, W.; Hu, H.-C.; Lin, X.-W.; Zhu, G.; Choi, J.-W.; Chigrinov, V.; Lu, Y.-Q. Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system. Opt. Express 2012, 20, 16684–16689. [Google Scholar] [CrossRef]
- Chen, P.; Wei, B.Y.; Hu, W.; Lu, Y.Q. Liquid-crystal-mediated geometric phase: From transmissive to broadband reflective planar optics. Adv. Mater. 2020, 32, e1903665. [Google Scholar] [CrossRef]
- Zhang, L.; Weng, Y.; Wei, R.; Wang, C.; Gu, Y.; Huang, C.; Zhang, Y. Off-axis polarization volume lens for diffractive waveguide. Crystals 2023, 13, 390. [Google Scholar] [CrossRef]
- Xiang, X.; Kim, J.; Komanduri, R.; Escuti, M.J. Nanoscale liquid crystal polymer Bragg polarization gratings. Opt. Express 2017, 25, 19298–19308. [Google Scholar] [CrossRef]
- Yin, K.; Hsiang, E.-L.; Zou, J.; Li, Y.; Yang, Z.; Yang, Q.; Lai, P.-C.; Lin, C.-L.; Wu, S.-T. Advanced liquid crystal devices for augmented reality and virtual reality displays: Principles and applications. Light. Sci. Appl. 2022, 11, 161. [Google Scholar] [CrossRef]
- Xiong, J.; Hsiang, E.-L.; He, Z.; Zhan, T.; Wu, S.-T. Augmented reality and virtual reality displays: Emerging technologies and future perspectives. Light. Sci. Appl. 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, Q.; Xiong, J.; Yin, K.; Wu, S.-T. 3D displays in augmented and virtual realities with holographic optical elements. Opt. Express 2021, 29, 42696–42712. [Google Scholar] [CrossRef]
- He, J.; He, Z.; Towers, A.; Zhan, T.; Chen, H.; Zhou, L.; Zhang, C.; Chen, R.; Sun, T.; Gesquiere, A.J. Ligand assisted swelling–deswelling microencapsulation (LASDM) for stable; color tunable perovskite–polymer composites. Nanoscale Adv. 2020, 2, 2034–2043. [Google Scholar] [CrossRef]
- Cheng, B.; Sun, L.; Yu, G.; Sun, T.X. A novel emissive projection display (EPD) on transparent phosphor screen. In Proceedings of the Emerging Digital Micromirror Device Based Systems and Applications IX, SPIE, San Francisco, CA, USA, 21 March 2017; pp. 120–127. [Google Scholar]
- Yin, K.; Lin, H.Y.; Wu, S.T. Chirped polarization volume grating for wide FOV and high-efficiency waveguide-based AR displays. J. Soc. Inf. Disp. 2020, 28, 368–374. [Google Scholar] [CrossRef]
- He, Z.; Gou, F.; Chen, R.; Yin, K.; Zhan, T.; Wu, S.-T. Liquid crystal beam steering devices: Principles, recent advances, and future developments. Crystals 2019, 9, 292. [Google Scholar] [CrossRef]
- Yin, K.; Lee, Y.H.; He, Z.; Wu, S.T. Stretchable; flexible, and adherable polarization volume grating film for waveguide-based augmented reality displays. J. Soc. Inf. Disp. 2019, 27, 232–237. [Google Scholar] [CrossRef]
- Kim, J.; Komanduri, R.K.; Lawler, K.F.; Kekas, D.J.; Escuti, M.J. Efficient and monolithic polarization conversion system based on a polarization grating. Appl. Opt. 2012, 51, 4852–4857. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Tam, A.; Sun, J.; Chigrinov, V. Complex Nanoscale-Ordered Liquid Crystal Polymer Film for High Transmittance Holographic Polarizer. Adv. Mater. 2015, 27, 7191–7195. [Google Scholar]
- Zhan, T.; Zou, J.; Lu, M.; Chen, E.; Wu, S.-T. Wavelength-multiplexed multi-focal-plane seethrough near-eye displays. Opt. Express 2019, 27, 27507–27513. [Google Scholar] [CrossRef]
- Xiang, X.; Kim, J.; Escuti, M.J. Bragg polarization gratings for wide angular bandwidth and high efficiency at steep deflection angles. Sci. Rep. 2018, 8, 7202. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Chen, Y.; Wang, F.; Wang, J.; Zhu, X.; Hong, R.; Tao, C.; Zhang, D.; Lian, Y.; et al. Broadband high efficiency polarization grating with continuously varying periodicity based on liquid crystal polymer. J. Mol. Liq. 2025, 426, 127482. [Google Scholar] [CrossRef]
- Saarikko, P. Diffractive exit-pupil expander with a large field of view. In Proceedings of the SPlE-The International Society for Optical Engineering, Photonics in Multimedia II, Strasbourg, France, 25 April 2008; pp. 34–39. [Google Scholar]
- Cui, J.; Zhang, Y. Exit pupil expansion based on polarization volume grating. Crystals 2021, 11, 333. [Google Scholar] [CrossRef]
- Äyräs, P.; Saarikko, P.; Levola, T. Exit pupil expander with a large field of view based on diffractive optics. J. Soc. Inf. Disp. 2009, 17, 659–664. [Google Scholar] [CrossRef]
- Lee, Y.H.; Tan, G.; Yin, K.; Zhan, T.; Wu, S.T. Compact see-through near-eye display with depth adaption. J. Soc. Inf. Disp. 2018, 26, 64–70. [Google Scholar] [CrossRef]
- Yin, K.; He, Z.; Wu, S.T. Reflective polarization volume lens with small f-number and large diffraction angle. Adv. Opt. Mater. 2020, 8, 2000170. [Google Scholar] [CrossRef]
- Hoffman, D.M.; Girshick, A.R.; Akeley, K.; Banks, M.S. Vergence–accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 2008, 8, 33. [Google Scholar] [CrossRef]
- Hua, H. Enabling focus cues in head-mounted displays. Proc. IEEE 2017, 105, 805–824. [Google Scholar] [CrossRef]
- Huang, F.-C. The Light Field Stereoscope–Immersive Computer Graphics Via Factored Near-Eye Field Displays with Focus Cues; Association for Computing Machinery: New York, NY, USA, 2015. [Google Scholar]
- Wakunami, K.; Hsieh, P.-Y.; Oi, R.; Senoh, T.; Sasaki, H.; Ichihashi, Y.; Okui, M.; Huang, Y.-P.; Yamamoto, K. Projection-type see-through holographic three-dimensional display. Nat. Commun. 2016, 7, 12954. [Google Scholar] [CrossRef]
- Li, G.; Lee, D.; Jeong, Y.; Cho, J.; Lee, B. Holographic display for see-through augmented reality using mirror-lens holographic optical element. Opt. Lett. 2016, 41, 2486–2489. [Google Scholar] [CrossRef] [PubMed]
- Kress, B.; Raulot, V.; Grossman, M. Exit pupil expander for wearable see-through displays. Photonic Appl. Aerosp. Transp. Harsh Environ. III 2012, 8368 SPIE, 123–130. [Google Scholar]
- Solomashenko, A.; Lushnikov, D.; Shishova, M.; Afanaseva, O.; Zlokazov, E. Image quality for near-eye display based on holographic waveguides. Appl. Sci. 2022, 12, 1136. [Google Scholar] [CrossRef]
- Vostrikov, G.N.; Muravyev, N.V.; Angervaks, A.E.; Okun, R.A.; Perevoznikova, A.S.; Ryu, J.; Putilin, A.N. Method for compensating aberrations of a virtual image formed by an augmented reality display based on a cylindrical diffractive waveguide. Appl. Sci. 2023, 13, 2400. [Google Scholar] [CrossRef]
- Mattelin, M.-A.; Radosavljevic, A.; Missinne, J.; Cuypers, D.; Van Steenberge, G. Design and fabrication of blazed gratings for a waveguide-type head mounted display. Opt. Express 2020, 28, 11175–11190. [Google Scholar] [CrossRef] [PubMed]
- Waldern, J.D.; Morad, R.; Popovich, M.M. Waveguide manufacturing for AR displays, past, present and future. In Frontiers in Optics; Optica Publishing Group: Washington, DC, USA, 2018; p. FW5A-1. [Google Scholar] [CrossRef]
- Sim, I.; Choi, K.; Baek, Y.; Choi, J.H.; Jo, J.; Yeom, J.; Kim, B.; Cho, Y.; Lee, H.; Bang, H.; et al. Microdisplay technologies in augmented reality and virtual reality headsets. Nat. Rev. Electr. Eng. 2025, 2, 634–650. [Google Scholar] [CrossRef]
- Xiong, J.; Yin, K.; Li, K.; Wu, S.-T. Holographic optical elements for augmented reality: Principles, present status, and future perspectives. Adv. Photon-Res. 2021, 2, 2000049. [Google Scholar]
- Li, Y.C.; Lin, B.H.; Neyts, K.; Beeckman, J.; Wang, C.T. Multiband reflectors based on stacked Single-Pitch cholesteric liquid crystal films. Opt. Laser Technol. 2025, 190, 113290. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; Liu, A.; Weng, Y.; Li, X. Volume holographic waveguide display with large field of view using a Au-NPs dispersed acrylate-based photopolymer. Opt. Mater. Express 2020, 10, 312–322. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Y.; Yang, Q.; Wu, S.T. Design optimization of polarization volume gratings for full-color waveguide-based augmented reality displays. J. Soc. Inf. Disp. 2023, 31, 380–386. [Google Scholar] [CrossRef]
- Chen, C.P.; Cui, Y.; Chen, Y.; Meng, S.; Sun, Y.; Mao, C.; Chu, Q. Near-eye display with a triple-channel waveguide for metaverse. Opt. Express 2022, 30, 31256–31266. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Zhang, E.; Guo, J.; Jia, P.; Yang, K.; Kong, L. Eyebox uniformity optimization over the full field of view for optical waveguide displays based on linked list processing. Opt. Express 2022, 30, 38139–38151. [Google Scholar] [CrossRef]
- Feng, X.; Lu, L.; Lee, Y.-H.; Bos, P.J. Compensator design for polarization state management in waveguide displays based on polarization volume gratings. Opt. Express 2021, 29, 8809–8815. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Tan, G.; Zhan, T.; Wu, S.-T. Breaking the field-of-view limit in augmented reality with a scanning waveguide display. OSA Contin. 2020, 3, 2730–2740. [Google Scholar] [CrossRef]
- Weng, J.; Li, H.; Wu, R.; Liu, X. Single-image-source binocular waveguide display based on polarization volume gratings and lenses. Opt. Lett. 2023, 48, 2050–2053. [Google Scholar] [CrossRef]
- Ding, Y.; Yang, Q.; Li, Y.; Yang, Z.; Liang, H. Waveguide-based augmented reality displays: Perspectives and challenges. eLight 2023, 3, 24. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, Z.; Xu, C.T.; Li, J.; Lu, Y.Q. Colorless and unidirectional diffractive-type solar concentrators compatible with existing windows. PhotoniX 2025, 6, 20. [Google Scholar] [CrossRef]

















| Type | Bandwidth | Angular Width | Diffraction Efficiency | FOV | Refractive Index | Material Thickness | Form Factor | Fabrication Requirements | Recent Developments | Latest Performance Metrics |
|---|---|---|---|---|---|---|---|---|---|---|
| SRG | Medium | Wider | 70% | 56° | Low | Thin | Small | RIE and EBL; nanoimprinting. (machining precision < 100 nm) | Enhanced nanoimprint techniques have improved diffraction efficiency by 5% and expanded FOV by 4° through optimized grating structures. | Diffraction efficiency 70–75% FOV 56°–60°. |
| VHG | Small | Narrow | 85% | 40° | High | Thick | Small | Laser exposure (submicron machining precision) | Introduction of high refractive index materials and advanced laser machining has increased diffraction efficiency to 85–90% and slightly widened FOV. | Diffraction efficiency 85–90% FOV 40°–45°. |
| PVGs | Medium | Narrow | 90% | 50° | High | Thin | Small | Laser exposure (submicron machining precision) | Recent phase modulation technique have pushed diffraction efficiency to 90–95% and more widened FOV. | Diffraction efficiency 90–95% FOV 50°–55°. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zia, A.; Hassan Eisa, M.; Saeed, S.; Arshad, K. Next-Generation Visual Experience: Polarization Volume Gratings in Holographic Waveguides for AR/VR. Spectrosc. J. 2025, 3, 25. https://doi.org/10.3390/spectroscj3040025
Zia A, Hassan Eisa M, Saeed S, Arshad K. Next-Generation Visual Experience: Polarization Volume Gratings in Holographic Waveguides for AR/VR. Spectroscopy Journal. 2025; 3(4):25. https://doi.org/10.3390/spectroscj3040025
Chicago/Turabian StyleZia, Ali, Mohamed Hassan Eisa, Sadaf Saeed, and Kinza Arshad. 2025. "Next-Generation Visual Experience: Polarization Volume Gratings in Holographic Waveguides for AR/VR" Spectroscopy Journal 3, no. 4: 25. https://doi.org/10.3390/spectroscj3040025
APA StyleZia, A., Hassan Eisa, M., Saeed, S., & Arshad, K. (2025). Next-Generation Visual Experience: Polarization Volume Gratings in Holographic Waveguides for AR/VR. Spectroscopy Journal, 3(4), 25. https://doi.org/10.3390/spectroscj3040025

