Electro-Tunable Optical Cavity Filters in the Mid-Infrared Regime: A Polarization-Independent Solution for Hyperspectral Imaging
Abstract
1. Introduction
2. Theoretical Background
3. Design and Simulation
4. Experimental Work
4.1. Fabrication Process
4.1.1. Fabrication of Si-ITO-Ag
4.1.2. Fabrication of G-ITO-Ag Filter
4.2. Optical Characterization
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ilyas, N.; Wang, J.; Li, C.; Li, D.; Fu, H.; Gu, D.; Jiang, X.; Liu, F.; Jiang, Y.; Li, W. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 2022, 32, 2110976. [Google Scholar] [CrossRef]
- Yan, K.; Guo, Q.; Wu, F.; Sun, J.; Zhao, H.; Kwok, H.-S. Polarization-independent nematic liquid crystal phase modulator based on optical compensation with sub-millisecond response. Opt. Express 2019, 27, 9925–9932. [Google Scholar] [CrossRef]
- Zeng, R.; Bi, R.; Zhu, J.; Huang, X.; Wang, Q. Near-infrared tuneable filter based on polymer dispersed liquid crystals. Micro Nano Lett. 2025, 20, e70007. [Google Scholar] [CrossRef]
- Ganaraj, P.; Guha, K.; Kavicharan, M.; Iannacci, J.; Donelli, M.; Rao, K.S. Design and analysis of piezoelectric MEMS actuator based SIW filter for K/Ka band communication. Microsyst. Technol. 2025, 1–10. [Google Scholar] [CrossRef]
- Cho, S.; Ozaki, M. Blue phase liquid crystals with tailored crystal orientation for photonic applications. Symmetry 2021, 13, 1584. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, S.; Zheng, W.; Yao, L. High Light Efficiency Spectral Polarization Imaging Method Based on Mach–Zehnder Structured Liquid Crystal Tunable Filters and Variable Retarders. Photonics 2023, 10, 765. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, W.; Zhu, W.; Lu, M.; Chen, Y.; Shi, S.; Guo, C.; Hu, G.; Cui, Y.; Yun, B. Optimization and comprehensive comparison of thermo-optic phase shifter with folded waveguide on SiN and SOI platforms. Opt. Commun. 2024, 555, 130242. [Google Scholar] [CrossRef]
- Butt, M.A. Emerging Trends in Thermo-Optic and Electro-Optic Materials for Tunable Photonic Devices. Materials 2025, 18, 2782. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Wu, Y.; Li, S.; Zhu, G.; Liao, W.; Zou, Y.; Chu, T.; Fu, Q.; Dong, W. Advancing inorganic electro-optical materials for 5 G communications: From fundamental mechanisms to future perspectives. Light Sci. Appl. 2025, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; Lin, Z.; Xu, X.; Zhang, Z.; Chen, X.; He, N.; Wang, G.; Jin, Y.; Evans, J.; He, S. Broad-tuning, dichroic metagrating Fabry-Perot filter based on liquid crystal for spectral imaging. Prog. Electromagn. Res. 2023, 177, 43–51. [Google Scholar] [CrossRef]
- Nasir, R.; Saleem, M.R.; Nisar, A.; Rafiq, M.A. Electro-tunable optical cavity filters in near-infrared regime. Optik 2021, 225, 165714. [Google Scholar] [CrossRef]
- Wu, X.; Lin, Z.; Tang, S.; Chen, X.; Guo, T.; He, S. A Multi-Resonant Tunable Fabry-Pérot Cavity for High Throughput Spectral Imaging. Adv. Opt. Mater. 2025, 13, 2402784. [Google Scholar] [CrossRef]
- Yang, Y.; Forbes, A.; Cao, L. A review of liquid crystal spatial light modulators: Devices and applications. Opto-Electron. Sci. 2023, 2, 230026-1–230026-9. [Google Scholar] [CrossRef]
- Shriyan, S.K. Tunable Electro-Optic Thin Film Stack for Hyperspectral Imaging. Ph.D. Thesis, Drexel University, Philadelphia, PA, USA, 2011. [Google Scholar]
- Zhang, J.; Wang, B.; Wang, R.; Wang, J.; Wang, X.; Zhang, Y. Multiple Broadband Infrared Topological Photonic Crystal Valley States Based on Liquid Crystals. Materials 2024, 17, 5212. [Google Scholar] [CrossRef]
- Gao, B.; Wang, T.; Chen, L.; Wang, S.; Li, C.; Xiao, F.; Liu, Y.; Yu, W. Novel Fabry-Pérot Filter Structures for High-Performance Multispectral Imaging with a Broadband from the Visible to the Near-Infrared. Sensors 2025, 25, 6123. [Google Scholar] [CrossRef]
- Mansha, S.; Moitra, P.; Xu, X.; Mass, T.W.; Veetil, R.M.; Liang, X.; Li, S.-Q.; Paniagua-Domínguez, R.; Kuznetsov, A.I. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci. Appl. 2022, 11, 141. [Google Scholar] [CrossRef]
- Batrakov, K.; Valynets, N.; Dubinetski, M.; Paddubskaya, A.; Margaryan, H.; Hakobyan, N.; Abrahamyan, V. Fabry–Perot enhancement of liquid crystals birefringence effects in terahertz range. Phys. Scr. 2024, 100, 015510. [Google Scholar] [CrossRef]
- Li, Z.; Lu, Y.; Han, Y.; Li, H.; Niu, Z.; Liu, X.; Wei, C.; Shao, J. Numerical Verification of a Polarization-Insensitive Electrically Tunable Far Infrared Band-Stop Meta-Surface Filter. Photonics 2024, 11, 1016. [Google Scholar] [CrossRef]
- Hegyi, A.; Martini, J. Hyperspectral imaging with a liquid crystal polarization interferometer. Opt. Express 2015, 23, 28742–28754. [Google Scholar] [CrossRef] [PubMed]
- Tam, A.; Qi, G.; Srivastava, A.; Wang, X.; Fan, F.; Chigrinov, V.; Kwok, H. Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter. Appl. Opt. 2014, 53, 3787–3795. [Google Scholar] [CrossRef]
- Khan, M.J.; Khan, H.S.; Yousaf, A.; Khurshid, K.; Abbas, A. Modern trends in hyperspectral image analysis: A review. IEEE Access 2018, 6, 14118–14129. [Google Scholar] [CrossRef]
- Golovynskyi, S.; Golovynska, I.; Roganova, O.; Golovynskyi, A.; Qu, J.; Ohulchanskyy, T.Y. Hyperspectral imaging of lipids in biological tissues using near-infrared and shortwave infrared transmission mode: A pilot study. J. Biophotonics 2023, 16, e202300018. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Y.; Zhao, S.; Chen, T.; Yu, K.; Wang, K.; Xie, C.; Wang, M.; Cai, B. Hyperspectral full polarization imaging system based on spatial modulation. Appl. Opt. 2023, 62, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, S.; Placido, F.; Abdulhalim, I. Investigation of liquid crystal Fabry–Perot tunable filters: Design, fabrication, and polarization independence. Appl. Opt. 2014, 53, H91–H101. [Google Scholar] [CrossRef] [PubMed]
- Ledzion, R.; Izdebski, M.; Rambo, A. Measuring the Electro-Optical Kerr Effect Against the Background of Electro-Absorption Modulation in Liquids. Materials 2024, 17, 5346. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Z.; Zhang, R.; Ding, B.; Yang, L.; Wu, K.; Xu, Y.; Zhong, G.; Ren, C.; Liu, J. An inorganic liquid crystalline dispersion with 2D ferroelectric moieties. Natl. Sci. Rev. 2024, 11, nwae108. [Google Scholar] [CrossRef]
- Pourmostafa, D.; Tajalli, H.; Vahedi, A.; Milanchian, K. Electro-optical Kerr effect of 6CHBT liquid crystal doped with MgO nanoparticles in different concentration. Opt. Mater. 2020, 107, 110061. [Google Scholar] [CrossRef]
- Li, B.-X.; Borshch, V.; Wang, H.; Li, Q.; Shiyanovskii, S.V.; Lavrentovich, O.D. Enhanced nanosecond electro-optic effect in isotropic and nematic phases of dielectrically negative nematics doped by strongly polar additive. J. Mol. Liq. 2018, 267, 450–455. [Google Scholar] [CrossRef]
- Gunyakov, V.A.; Timofeev, I.V.; Krakhalev, M.N.; Zyryanov, V.Y. Polarization exchange of optical eigenmode pair in twisted-nematic Fabry-Pérot resonator. Phys. Rev. E 2017, 96, 022711. [Google Scholar] [CrossRef] [PubMed]
- Gunyakov, V.; Timofeev, I.; Krakhalev, M.; Lee, W.; Zyryanov, V.Y. Electric field-controlled transformation of the eigenmodes in a twisted-nematic Fabry–Pérot cavity. Sci. Rep. 2018, 8, 16869. [Google Scholar] [CrossRef]
- Zhu, X.; Hong, Q.; Huang, Y.; Wu, S.-T. Eigenmodes of a reflective twisted-nematic liquid-crystal cell. J. Appl. Phys. 2003, 94, 2868–2873. [Google Scholar] [CrossRef]
- Yang, D.-K.; Wu, S.-T. Fundamentals of Liquid Crystal Devices; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Jagodič, U.; Vellaichamy, M.; Škarabot, M.; Muševič, I. Surface alignment of nematic liquid crystals by direct laser writing of photopolymer alignment layers. Liq. Cryst. 2023, 50, 1999–2009. [Google Scholar] [CrossRef]
- Patel, J.S. Electrically tunable ferroelectric liquid-crystal Fabry–Perot filter. Opt. Lett. 1992, 17, 456–458. [Google Scholar] [CrossRef] [PubMed]
- Mrukiewicz, M.; Kowiorski, K.; Perkowski, P.; Mazur, R.; Djas, M. Threshold voltage decrease in a thermotropic nematic liquid crystal doped with graphene oxide flakes. Beilstein J. Nanotechnol. 2019, 10, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Mrukiewicz, M.; Perkowski, P.; Mazur, R.; Chojnowska, O.; Piecek, W.; Dąbrowski, R. Strong modulation of electric permittivity at an isotropic-nematic phase transition in a liquid crystal mixture for optical devices based on the Kerr effect. J. Mol. Liq. 2016, 223, 873–879. [Google Scholar] [CrossRef]
- Zgłobicka, I.; Chlanda, A.; Woźniak, M.; Łojkowski, M.; Szoszkiewicz, R.; Mazurkiewicz-Pawlicka, M.; Święszkowski, W.; Wyroba, E.; Kurzydłowski, K.J. Microstructure and nanomechanical properties of single stalks from diatom Didymosphenia geminata and their change due to adsorption of selected metal ions. J. Phycol. 2017, 53, 880–888. [Google Scholar] [CrossRef] [PubMed]
- Dark, M.; Moore, M.; Shenoy, D.; Shashidhar, R. Rotational viscosity and molecular structure of nematic liquid crystals. Liq. Cryst. 2006, 33, 67–73. [Google Scholar] [CrossRef]
- Jewell, S.A.; Hendry, E.; Isaac, T.H.; Sambles, J.R. Tuneable Fabry–Perot etalon for terahertz radiation. New J. Phys. 2008, 10, 033012. [Google Scholar] [CrossRef]









Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, K.; Hassan Eisa, M.; Bhatti, M.H.; Zia, A.; Saeed, S.; Y. Ohulchanskyy, T.; Nasir, R. Electro-Tunable Optical Cavity Filters in the Mid-Infrared Regime: A Polarization-Independent Solution for Hyperspectral Imaging. Spectrosc. J. 2025, 3, 26. https://doi.org/10.3390/spectroscj3040026
Arshad K, Hassan Eisa M, Bhatti MH, Zia A, Saeed S, Y. Ohulchanskyy T, Nasir R. Electro-Tunable Optical Cavity Filters in the Mid-Infrared Regime: A Polarization-Independent Solution for Hyperspectral Imaging. Spectroscopy Journal. 2025; 3(4):26. https://doi.org/10.3390/spectroscj3040026
Chicago/Turabian StyleArshad, Kinza, Mohamed Hassan Eisa, Matloob Hussain Bhatti, Ali Zia, Sadaf Saeed, Tymish Y. Ohulchanskyy, and Rida Nasir. 2025. "Electro-Tunable Optical Cavity Filters in the Mid-Infrared Regime: A Polarization-Independent Solution for Hyperspectral Imaging" Spectroscopy Journal 3, no. 4: 26. https://doi.org/10.3390/spectroscj3040026
APA StyleArshad, K., Hassan Eisa, M., Bhatti, M. H., Zia, A., Saeed, S., Y. Ohulchanskyy, T., & Nasir, R. (2025). Electro-Tunable Optical Cavity Filters in the Mid-Infrared Regime: A Polarization-Independent Solution for Hyperspectral Imaging. Spectroscopy Journal, 3(4), 26. https://doi.org/10.3390/spectroscj3040026

