Effect of Light on Yield, Nutritive Value of Brachiaria decumbens, and Soil Properties in Silvopastoral Systems, Peruvian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Treatments and Sampling
2.3. Statistical Analysis
3. Results
3.1. Forage Mass
3.2. Nutritive Value (Protein, NDF, IVDMD, ME)
3.3. Soil and Forage Correlations (PCA)
4. Discussion
4.1. Forage Yield Under Shade Conditions
4.2. Forage Quality (Protein, NDF, Digestibility, ME)
4.3. Soil–Forage Interactions from the PCA
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huertas, S.M.; Bobadilla, P.E.; Alcántara, I.; Akkermans, E.; van Eerdenburg, F.J.C.M. Benefits of silvopastoral systems for keeping beef cattle. Animals 2021, 11, 992. [Google Scholar] [CrossRef] [PubMed]
- Gomes da Silva, I.A.; Dubeux, J.C.B., Jr.; De Melo, A.C.L.; Da Cunha, M.V.; Dos Santos, M.V.F.; Apolinário, V.X.O.; de Freitas, E. Tree legume enhances livestock performance in a silvopasture system. Agron. J. 2021, 113, 358–369. [Google Scholar] [CrossRef]
- Lemes, A.P.; Garcia, A.R.; Pezzopane, J.R.M.; Brandão, F.Z.; Watanabe, Y.F.; Cooke, R.F.; Sponchiado, M.; de Paz, C.C.P.; Camplesi, A.C.; Binelli, M.; et al. Silvopastoral system is an alternative to improve animal welfare and productive performance in meat production systems. Sci. Rep. 2021, 11, 14092. [Google Scholar] [CrossRef] [PubMed]
- Paiva, I.G.; Auad, A.M.; Veríssimo, B.A.; Silveira, L.C.P. Differences in the insect fauna associated to a monocultural pasture and a silvopasture in Southeastern Brazil. Sci. Rep. 2020, 10, 12112. [Google Scholar] [CrossRef] [PubMed]
- Salazar, R.; Alegre, J.; Pizarro, D.; Duff, A.J.; García, C.; Gómez, C. Soil carbon stock potential in pastoral and silvopastoral systems in the Peruvian Amazon. Agrofor. Syst. 2024, 98, 2157–2167. [Google Scholar] [CrossRef]
- Dagar, J.C.; Gupta, S.R.; Teketay, D. Silvopasture options for enhanced biological productivity of degraded pasture/grazing lands: An overview. In Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges; Springer: Singapore, 2020; Volume 2, pp. 163–227. [Google Scholar] [CrossRef]
- Navarro, E.F.; Gómez, C.; Pizarro, D.; Alegre, J.; Castillo, M.S.; Vela, J.; Vásquez, H. Development of silvopastoral systems in the Peruvian Amazon. In Silvopastoral Systems of Meso America and Northern South America; Springer: Cham, Switzerland, 2023; pp. 135–154. [Google Scholar] [CrossRef]
- Dos Reis, J.C.; Kamoi, M.Y.T.; Michetti, M.; Wruck, F.J.; Rodrigues-Filho, S. Sistema de integração lavoura-pecuária-floresta como estratégia de desenvolvimento sustentável no estado de Mato Grosso. In Repositório de Casos sobre o Big Push para a Sustentabilidade no Brasil; CEPAL: Santiago, Chile, 2020; Available online: https://biblioguias.cepal.org/bigpushparaasustentabilidade (accessed on 21 March 2025).
- Arevalo, L.A.; Alegre, J.C.; Bandy, D.E.; Szott, L.T. The effect of cattle grazing on soil physical and chemical properties in a silvopastoral system in the Peruvian Amazon. Agrofor. Syst. 1998, 40, 109–124. [Google Scholar] [CrossRef]
- Valqui, L.; Lopez, E.L.; Lopez, C.A.; Valqui-Valqui, L.; Bobadilla, L.G.; Vigo, C.N.; Vásquez, H.V. Influence of the arboreal component in the productive and nutritional parameters of Brachiaria mutica grass in northeastern Peru. Environ. Sci. Proc. 2022, 22, 69. [Google Scholar] [CrossRef]
- Pizarro, D.; Vásquez, H.; Bernal, W.; Fuentes, E.; Alegre, J.; Castillo, M.S.; Gómez, C. Assessment of silvopasture systems in the northern Peruvian Amazon. Agrofor. Syst. 2020, 94, 173–183. [Google Scholar] [CrossRef]
- Sanginga, N.; Mulongoy, K.; Ayanaba, A. Nitrogen fixation of field-inoculated Leucaena leucocephala (Lam.) de Wit estimated by the 15N and the difference methods. Plant Soil 1989, 117, 269–274. [Google Scholar] [CrossRef]
- Liyanage, M.d.S.; Danso, S.K.A.; Jayasundara, H.P.S. Biological nitrogen fixation in four Gliricidia sepium genotypes. Plant Soil 1994, 161, 267–274. [Google Scholar] [CrossRef]
- Cervantes, C.A. Nitrogen management in coffee–legume agroforestry systems in Costa Rica. In Management of Agroforestry Systems for Enhancing Resource Use Efficiency and Crop Productivity; International Atomic Energy Agency: Vienna, Austria, 2008; p. 175. [Google Scholar]
- Chará-Serna, A.M.; Chará, J. Efecto de los sistemas silvopastoriles sobre la biodiversidad y la provisión de servicios ecosistémicos en agropaisajes tropicales. Livest. Res. Rural Dev. 2020, 32, 184. Available online: http://www.lrrd.org/lrrd32/11/ana32184.html (accessed on 22 February 2025).
- Vásquez, H.V.; Valqui, L.; Bobadilla, L.G.; Arbizu, C.I.; Alegre, J.C.; Maicelo, J.L. Influence of arboreal components on the physical-chemical characteristics of the soil under four silvopastoral systems in northeastern Peru. Heliyon 2021, 7, e07725. [Google Scholar] [CrossRef]
- Leblanc, H.A.; McGraw, R.L.; Nygren, P.; Roux, C.L. Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant Soil 2005, 275, 123–133. [Google Scholar] [CrossRef]
- Leblanc, H.A.; Nygren, P.; McGraw, R.L. Green mulch decomposition and nitrogen release from leaves of two Inga spp. in an organic alley-cropping practice in the humid tropics. Soil Biol. Biochem. 2006, 38, 349–358. [Google Scholar] [CrossRef]
- Hernández, A.P.; Bautista, I.B.; Chávez, L.M.; Ramírez, Á.E.C.; Mateo, A.B. Sistemas silvopastoriles para la producción de rumiantes en pastoreo. Braz. J. Dev. 2023, 9, 30956–30972. [Google Scholar] [CrossRef]
- Angadi, S.V.; Umesh, M.R.; Begna, S.; Gowda, P. Light interception, agronomic performance, and nutritive quality of annual forage legumes as affected by shade. Field Crops Res. 2022, 275, 108358. [Google Scholar] [CrossRef]
- Pang, K.; Van Sambeek, J.W.; Navarrete-Tindall, N.E.; Lin, C.H.; Jose, S.; Garrett, H.E. Responses of legumes and grasses to non-, moderate, and dense shade in Missouri, USA. I. Forage yield and its species-level plasticity. Agrofor. Syst. 2019, 93, 11–24. [Google Scholar] [CrossRef]
- Mercier, K.M.; Teutsch, C.D.; Fike, J.H.; Munsell, J.F.; Tracy, B.F.; Strahm, B.D. Impact of increasing shade levels on the dry-matter yield and botanical composition of multispecies forage stands. Grass Forage Sci. 2020, 75, 291–302. [Google Scholar] [CrossRef]
- De Oliveira, A.F.; Menezes, G.L.; Goncalves, L.C.; de Araujo, V.E.; Ramirez, M.A.; Júnior, R.G.; Jayme, D.G.; Lana, A.M.Q. Pasture traits and cattle performance in silvopastoral systems with Eucalyptus and Urochloa: Systematic review and meta-analysis. Livest. Sci. 2022, 262, 104973. [Google Scholar] [CrossRef]
- Sarmin, I.J.; Rahman, M.S.; Amin, M.H.; Ahmed, K. Effects of bark and stem exudates of eucalyptus on three crop plants. J. Sci. Technol. 2020, 17, 24. [Google Scholar]
- Bosi, C.; Pezzopane, J.R.M.; Sentelhas, P.C.; Santos, P.M.; Nicodemo, M.L.F. Productivity and biometric characteristics of signal grass in a silvopastoral system. Pesqui. Agropecu. Bras. 2014, 49, 449–456. [Google Scholar] [CrossRef]
- Stewart, A.; Coble, A.; Contosta, A.R.; Orefice, J.N.; Smith, R.G.; Asbjornsen, H. Forest conversion to silvopasture and open pasture: Effects on soil hydraulic properties. Agrofor. Syst. 2020, 94, 869–879. [Google Scholar] [CrossRef]
- Fuentes, E.; Gómez, C.; Pizarro, D.; Alegre, J.; Castillo, M.; Vela, J.; Huaman, E.; Vásquez, H. A review of silvopastoral systems in the Peruvian Amazon region. Trop. Grassl.-Forraj. Trop. 2022, 10, 78–88. [Google Scholar] [CrossRef]
- Lima, M.A.; Paciullo, D.S.; Morenz, M.J.; Gomide, C.A.; Rodrigues, R.A.; Chizzotti, F.H. Productivity and nutritive value of Brachiaria decumbens and performance of dairy heifers in a long-term silvopastoral system. Grass Forage Sci. 2019, 74, 160–170. [Google Scholar] [CrossRef]
- Guamán-Rivera, S.A.; Herrera-Feijoo, R.J.; Velepucha-Caiminagua, H.J.; Avalos-Peñafiel, V.G.; Aguilar-Miranda, G.J.; Melendres-Medina, E.M.; Baquero-Tapia, M.F.; Cajamarca Carrazco, D.I.; Fernández-Vinueza, D.F.; Montero-Arteaga, A.A.; et al. Silvopastoral systems as a tool for recovering degraded pastures and improving animal thermal comfort indexes in Northern Ecuador. Braz. J. Biol. 2024, 84, e286137. [Google Scholar] [CrossRef] [PubMed]
- Sunariyo, S.; Firdausi, R.Z. Community-based agro-silvopastoral systems: Integrating forestry, agriculture, and livestock for sustainable rural development in forest regions. Serunai 2024, 4, 45–57. [Google Scholar] [CrossRef]
- SENAMHI. Servicio Nacional de Meteorología e Hidrología del Perú. 2018. Available online: https://www.senamhi.gob.pe/?p=pronostico-meteorologico (accessed on 21 March 2025).
- Irigoin, V.; Pizarro, D.; Fuentes, E.; García, C.; Wattiaux, M.; Picasso, V.; Arango, J.; Romero, G.; Gómez-Bravo, C. Biotechnical, economic, and environmental assessment of dairy systems in the Peruvian Amazon utilizing the CLEANED tool. Agrofor. Syst. 2025, 99, 32. [Google Scholar] [CrossRef]
- Díaz Pablo, M.E.; Alegre Orihuela, J.C.; Gómez Bravo, C.A.; Mendoza Tamani, P.; Arévalo-Hernández, C.O. Reservas de carbono en tres sistemas silvopastoriles de la Amazonía peruana. Manglar 2024, 21, 305–311. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2001; Methods 950.46, 2001.11. [Google Scholar]
- Tilley, J.M.A.; Terry, D.R. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- ANKOM. In Vitro Digestibility using the Daisy II Incubator. 2017. Available online: https://www.ankom.com/sites/default/files/documentfiles/Method_3_Invitro_D200_D200I.pdf (accessed on 21 March 2025).
- Indah, A.S.; Permana, I.G.; Despal, D. Correlation and determination of the metabolizable energy (ME) of tropical forage with nutrient content for ruminants. Aceh J. Anim. Sci. 2023, 8, 34–38. [Google Scholar] [CrossRef]
- Blake, G.R. Bulk density. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy: Madison, WI, USA, 1965; Volume 9, pp. 374–390. [Google Scholar]
- Danielson, R.E.; Sutherland, P.L. Porosity. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods; American Society of Agronomy: Madison, WI, USA, 1986; Volume 5, pp. 443–461. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Rhoades, J.D. Cation exchange capacity. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; ASA and SSSA: Madison, WI, USA, 1982; Volume 9, pp. 149–157. [Google Scholar] [CrossRef]
- De Freitas, A.F.; Junqueira Carneiro, J.; Venturin, N.; de Souza Moreira, F.M.; Guimaraes Ferreira, A.I.; de Oliveira Lara, G.P.; Cardoso, I.M. Inga edulis Mart. intercropped with pasture improves soil quality without compromising forage yields. Agrofor. Syst. 2020, 94, 2355–2366. [Google Scholar] [CrossRef]
- Alegre, J.C.; Weber, J.C.; Bandy, D.E. The potential of Inga species for improved woody fallows and multistrata agroforest in the Peruvian Amazon Basin. In The Genus Inga—Utilization; Pennington, T.D., Fernández, E.C.M., Eds.; The Royal Botanic Garden: Kew, UK, 1998; Chapter 6; pp. 87–100. [Google Scholar]
- Nichols, J.D.; Carpenter, F.L. Interplanting Inga edulis yields nitrogen benefits to Terminalia amazonia. For. Ecol. Manag. 2006, 233, 344–351. [Google Scholar] [CrossRef]
- da Silva, E.R.; da Costa Ayres, M.I.; Neves, A.L.; Uguen, K.; de Oliveira, L.A.; Alfaia, S.S. Organic fertilization with residues of cupuassu (Theobroma grandiflorum) and inga (Inga edulis) for improving soil fertility in central Amazonia. In New Generation of Organic Fertilizers; IntechOpen: London, UK, 2021. [Google Scholar]
- Soper, F.M.; Sparks, J.P. Estimating ecosystem nitrogen addition by a leguminous tree: A mass balance approach using a woody encroachment chronosequence. Ecosystems 2017, 20, 1164–1178. [Google Scholar] [CrossRef]
- Van Chuong, N. Effect of three different nitrogen rates and three rhizosphere N2-fixing bacteria on growth, yield and quality of peanuts. Trends Sci. 2024, 21, 7281. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Kohli, R.K. Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Crit. Rev. Plant Sci. 2003, 22, 239–311. [Google Scholar] [CrossRef]
- Harper, K.J.; McNeill, D.M. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef]
- Baldissera, T.C.; da Silveira Pontes, L.; Giostri, A.F.; Barro, R.S.; Lustosa, S.B.C.; de Moraes, A.; de Faccio Carvalho, P.C. Sward structure and relationship between canopy height and light interception for tropical C₄ grasses growing under trees. Crop Pasture Sci. 2016, 67, 1199–1207. [Google Scholar] [CrossRef]
- Banakar, P.S.; Anand Kumar, N.; Shashank, C.G. Physically effective fiber in ruminant nutrition. J. Pharmacogn. Phytochem. 2018, 7, 303–308. [Google Scholar]
- Reinbothe, S.; Reinbothe, C. The regulation of enzymes involved in chlorophyll biosynthesis. Eur. J. Biochem. 1996, 237, 323–343. [Google Scholar] [CrossRef]
- Foyer, C.H.; Shigeoka, S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol. 2011, 155, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Lojka, B.; Preininger, D.; Van Damme, P.; Rollo, A.; Banout, J. Use of the Amazonian tree species Inga edulis for soil regeneration and weed control. J. Trop. For. Sci. 2012, 24, 89–101. [Google Scholar]
- Zhang, X.; Zhao, Q.; Wei, L.M.; Sun, Q.Y.; Zeng, D.H. Tree roots exert greater impacts on phosphorus fractions than aboveground litter in mineral soils under a Pinus sylvestris var. mongolica plantation. For. Ecol. Manag. 2023, 545, 121242. [Google Scholar] [CrossRef]
- Gaind, S. Phosphorus mobilization strategies of grain legumes: An overview. J. Adv. Microbiol. 2017, 3, 1–15. [Google Scholar] [CrossRef]
- Lebrazi, S.; Fikri-Benbrahim, K. Potential of tree legumes in agroforestry systems and soil conservation. In Advances in Legumes for Sustainable Intensification; Academic Press: Cambridge, MA, USA, 2022; pp. 461–482. [Google Scholar] [CrossRef]
Variable | System | p Value | Light Condition | p Value | ||||
---|---|---|---|---|---|---|---|---|
Guaba | Eucalyptus | Tornillo | System | Shaded | Open field | Light Condition | Interaction SPS × Light | |
FM (kg DM ha−1) | 1051 | 1051 | 1280 | 0.5975 | 1164 | 1090 | 0.7284 | 0.8233 |
FMH (kg DM ha−1) | 1210 | 1085 | 1161 | 0.6384 | 1256 | 1047 | 0.0585 | 0.0328 * |
Protein (%) | 8.57 b | 7.17 b | 10.63 a | 0.0045 * | 9.55 a | 8.03 b | 0.0431 * | 0.8764 |
NDF (%) | 65.39 b | 69.72 a | 68.16 ab | 0.0215 * | 67.46 | 68.04 | 0.5981 | 0.9439 |
IVDMD (%) | 41.96 | 37.62 | 40.72 | 0.2017 | 40.68 | 39.53 | 0.5574 | 0.8637 |
ME (MJ kg−1 of DM) | 8.08 a | 7.69 b | 7.77 a | 0.0214 * | 7.85 | 7.78 | 0.5974 | 0.9437 |
Item | Principal Component | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
DM (%) | 0.11 | 0.15 | −0.43 | 0.08 | 0.47 |
Protein (%) | −0.14 | 0.41 | 0.19 | −0.06 | −0.18 |
NDF (%) | −0.19 | −0.25 | −0.35 | −0.34 | −0.08 |
IVDMD (%) | 0.08 | 0.36 | 0.26 | 0.32 | 0.13 |
Bulk_density g/cm3 | −0.35 | −0.26 | 0.13 | 0.19 | 0.21 |
Hg (%) | 0.38 | 0.07 | −0.12 | −0.13 | −0.22 |
Porosity (%) | 0.35 | 0.26 | −0.13 | −0.19 | −0.21 |
pH | 0.35 | −0.12 | −0.07 | 0.20 | 0.21 |
OM (%) | 0.30 | 0.06 | −0.39 | 0.22 | −0.13 |
P mg/kg | −0.30 | 0.17 | −0.22 | −0.14 | −0.25 |
CEC (cmolc/kg) | 0.31 | −0.11 | 0.29 | −0.33 | 0.17 |
Ca (cmolc/kg) | 0.26 | −0.35 | −0.06 | 0.00 | −0.04 |
Mg (cmolc/kg) | 0.15 | −0.42 | 0.19 | 0.09 | 0.11 |
K (cmolc/kg) | 0.18 | −0.01 | 0.36 | 0.30 | −0.37 |
Na (cmolc/kg) | −0.05 | −0.34 | −0.07 | 0.10 | −0.53 |
Al (cmolc/kg) | 0.11 | 0.02 | 0.29 | −0.60 | 0.10 |
Eigenvalue | 2.12 | 1.86 | 1.57 | 1.34 | 1.05 |
Variance Explained (%) | 28.1 | 21 | 15.6 | 10.7 | 6.9 |
Cumulative Variance (%) | 28.1 | 49.1 | 64.7 | 75.4 | 82.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, M.; Alegre, J.; Gómez, C.; García, C.; Arévalo-Hernández, C. Effect of Light on Yield, Nutritive Value of Brachiaria decumbens, and Soil Properties in Silvopastoral Systems, Peruvian Amazon. Grasses 2025, 4, 18. https://doi.org/10.3390/grasses4020018
Díaz M, Alegre J, Gómez C, García C, Arévalo-Hernández C. Effect of Light on Yield, Nutritive Value of Brachiaria decumbens, and Soil Properties in Silvopastoral Systems, Peruvian Amazon. Grasses. 2025; 4(2):18. https://doi.org/10.3390/grasses4020018
Chicago/Turabian StyleDíaz, María, Julio Alegre, Carlos Gómez, Carlos García, and Cesar Arévalo-Hernández. 2025. "Effect of Light on Yield, Nutritive Value of Brachiaria decumbens, and Soil Properties in Silvopastoral Systems, Peruvian Amazon" Grasses 4, no. 2: 18. https://doi.org/10.3390/grasses4020018
APA StyleDíaz, M., Alegre, J., Gómez, C., García, C., & Arévalo-Hernández, C. (2025). Effect of Light on Yield, Nutritive Value of Brachiaria decumbens, and Soil Properties in Silvopastoral Systems, Peruvian Amazon. Grasses, 4(2), 18. https://doi.org/10.3390/grasses4020018