Can 100% Pasture-Based Livestock Farming Produce Enough Ruminant Meat to Meet the Current Consumption Demand in the UK?
Abstract
:1. Introduction
- What was the annual variation in areas of different grassland types, populations of different sex/age groups for cattle and sheep, and meat production from cattle and sheep farming?
- What were the equivalent standard livestock units for all of the animal numbers of cattle and sheep?
- What was the meat productivity per standard livestock unit in cattle and sheep farming systems?
- What was the total potential carrying capacity in standard livestock units for all of the UK grasslands?
- Is it possible that pasture-based-only cattle and sheep farming can produce enough cattle beef and sheep meat to meet the current UK consumption level?
2. Materials and Methods
2.1. Areas of Grasslands
2.2. Cattle Beef and Sheep Meat Production
2.3. Livestock Populations of Cattle and Sheep
2.4. Standard Livestock Unit (SLU) and Calculating Annual Total Standard Livestock Units (TSLU)
2.5. Grassland Herbal Dry Matter Yields and Calculating the UK Potential Carrying Capacity of TSLUs
2.6. Data Analysis
3. Results
3.1. Variations in Annual Areas of Different Grasslands in 2011–2020
3.2. Variations in Annual Cattle Numbers and Cattle Standard Livestock Units of Different Sex/Age Groups in 2011 to 2020
3.3. Variations in Annual Sheep Numbers and Sheep Standard Livestock Units of Different Sex/Age Groups in 2011 to 2020
3.4. Variations in Annual Meat Production from Cattle and Sheep in 2011 to 2020
3.5. Variations in Annual Cattle and Sheep Meat Productivity Per Standard Livestock Unit in 2011 to 2020
3.6. The Potential Carrying Capacity in Total Standard Livestock Units from All Grasslands in the UK
3.7. Is It Possible That Pasture-Based-Only Cattle and Sheep Systems Can Produce Enough to Satisfy the UK’s Current Ruminant Meat Demands?
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopkins, A.; Holz, B. Grassland for agriculture and nature conservation: Production, quality and multi-functionality. Agron. Res. 2006, 4, 3–20. [Google Scholar]
- Hopkins, A.; Wilkins, R.J. Temperate grassland: Key developments in the last century and future perspectives. J. Agric. Sci. 2006, 144, 503–523. [Google Scholar] [CrossRef]
- Greenwood, P.L. Review: An overview of beef production from pasture and feedlot globally, as demand for beef and the need for sustainable practices increase. Animal 2021, 15, 100295. Available online: https://www.sciencedirect.com/science/article/pii/S1751731121001385 (accessed on 22 March 2023). [CrossRef] [PubMed]
- Lee, M.R.F.; McAuliffe, G.A.; Tweed, J.K.S.; Griffith, B.A.; Morgan, S.A.; Rivero, M.J.; Harris, P.; Takahashi, T.; Cardenas, L. Nutritional value of suckler beef from temperate pasture systems. Animal 2021, 15, 100257. Available online: https://www.sciencedirect.com/science/article/pii/S1751731121000999 (accessed on 22 March 2023). [CrossRef]
- Barbour, R.; Young, R.H.; Wilkinson, J.M. Production of Meat and Milk from Grass in the United Kingdom. Agronomy 2022, 12, 914. [Google Scholar] [CrossRef]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Sones, K.; Grace, D.; Macmillan, S.; Tarawali, S.; Herrero, M. Beyond milk, meat, and eggs: Role of livestock in food and nutrition security. Anim. Front. 2013, 3, 6–13. [Google Scholar] [CrossRef]
- Peeters, A. Wild and Sown Grasses: Profiles of a Temperate Species Selection: Ecology, Biodiversity and Use; Blackwell/FAO: Rome, Italy, 2004. [Google Scholar]
- Bouwman, A.F.; Van der Hoek, K.W.; Eickhout, B.; Soenario, I. Exploring changes in world ruminant production systems. Agric. Syst. 2005, 84, 121–153. [Google Scholar] [CrossRef]
- Morton, D.; Rowland, C.; Wood, C.; Meek, L.; Marston, C.; Smith, G.; Wadsworth, R.; Simpson, I. Final report for LCM2007—The new UK land cover map. In CS Technical Report No 11/07; Survey, C., Ed.; NERC/Centre for Ecology & Hydrology: Wallingford, UK, 2011. [Google Scholar]
- Defra. Agriculture in the United Kingdom 2020; Defra: London, UK, 2021. [Google Scholar]
- Hopkins, A. Country Pasture/Forage Resource Profiles: United Kingdom; FAO: Rome, Italy, 2008. [Google Scholar]
- Poulton, P.R.; Johnston, A.E.; Rodger, P.W. Response of three cereal crops in continuous arable or ley-arable rotations to fertilizer nitrogen and soil nitrogen at Rothamsted’s Woburn Ley-arable experiment. Soil Use Manag. 2023, 39, 771–784. [Google Scholar] [CrossRef]
- Hopkins, A.; Gilbey, J.; Dibb, C.; Bowling, P.J.; Murray, P.J. Response of permanent and reseeded grassland to fertilizer nitrogen.1. Herbage production and herbage quality. Grass Forage Sci. 1990, 45, 43–55. [Google Scholar] [CrossRef]
- Hopkins, A.; Murray, P.J.; Bowling, P.J.; Rook, A.J.; Johnson, J. Productivity and nitrogen uptake of aging and newly sown swards of perennial ryegrass (Lolium- Perenne L) at different sites and with different nitrogen-fertilizer treatments. Eur. J. Agron. 1995, 4, 65–75. [Google Scholar] [CrossRef]
- Morrison, J.; Jackson, M.V.; Sparrow, P.E. The Response of Perennial Ryegrass to Fertilizer Nitrogen in Relation to Climate and Soil; Technical Report No 27; Grassland Research Institute: Hurley, UK, 1980. [Google Scholar]
- Murray, P.J. Response to Nitrogen and Cutting Frequency of Permanent and Reseeded Grassland in the Northern Region; Technical Report; Grassland Research Institute: Hurley, UK, 1988. [Google Scholar]
- Qi, A.; Holland, R.A.; Taylor, G.; Richter, G.M. Grassland futures in Great Britain–Productivity assessment and scenarios for land use change opportunities. Sci. Total Environ. 2018, 634, 1108–1118. [Google Scholar] [CrossRef]
- Qi, A.; Murray, P.J.; Richter, G.M. Modelling productivity and resource use efficiency for grassland ecosystems in the UK. Eur. J. Agron. 2017, 89, 148–158. [Google Scholar] [CrossRef]
- Craig, K. Farm Management Handbook 2018/19; SAC Consulting: Midlothian, UK, 2018; 532p, Available online: https://www.sruc.ac.uk/fmh (accessed on 8 December 2022).
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An International Terminology for Grazing Lands and Grazing Animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Meissner, H.H. Beef cattle C.3–Classification of farm and game animals to predict carrying capacity. Farm. S. Afr. 1982, 3, 1–4. [Google Scholar]
- Chilonda, P.; Otte, J. Indicators to monitor trends in livestock production at national, regional and international levels. Livest. Res. Rural. Dev. 2006, 8, 117. Available online: http://www.lrrd.org/lrrd18/8/chil18117.htm (accessed on 28 April 2020).
- Eurostat. Eurostat Glossary: Livestock Unit (LSU). 2022. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Livestock_unit_(LSU) (accessed on 11 December 2022).
- Forbes, T.J.; Dibb, C.; Green, J.O.; Hopkins, A.; Peel, S. Factors Affecting the Productivity of Permanent Grassland—A National Farm Study; Crown Copyright; The Dorset Press: Dorset, UK, 1980. [Google Scholar]
- Redman, G. John Nix Pocketbook for Farm Management 2022, 52nd ed.; Melton Mowbray, Agro Business Consultants Ltd.: Leicestershire, UK, 2021; 306p. [Google Scholar]
- Wilkins, P.W. Breeding perennial ryegrass for agriculture. Euphytica 1991, 52, 201–214. [Google Scholar] [CrossRef]
- Humphreys, M.O. Genetic improvement of forage crops-past, present and future. J. Agric. Sci. 2005, 143, 441–448. [Google Scholar] [CrossRef]
- Nixon, P.; Ramaswami, A. County-level analysis of current local capacity of agriculture to meet household demand: A dietary requirements perspective. Environ. Res. Lett. 2022, 17, 044070. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/ac5208 (accessed on 16 September 2022). [CrossRef]
- Strassburg, B.B.; Latawiec, A.E.; Barioni, L.G.; Nobre, C.A.; Da Silva, V.P.; Valentim, J.F.; Vianna, M.; Assad, E.D. When enough should be enough: Improving the use of current agricultural lands could meet production demands and spare natural habitats in Brazil. Glob. Environ. Chang. 2014, 28, 84–97. [Google Scholar] [CrossRef]
- Chang, J.; Viovy, N.; Vuichard, N.; Ciais, P.; Campioli, M.; Klumpp, K.; Martin, R.; Leip, A.; Soussana, J.-F. Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961–2010. PLoS ONE 2015, 10, e0127554. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Richter, G.M.; Holland, R.A.; Eigenbrod, F.; Taylor, G.; Shah, N. Implementing land-use and ecosystem service effects into an integrated bioenergy value chain optimisation framework. Comput. Chem. Eng. 2016, 91, 392–406. [Google Scholar] [CrossRef]
- Albanito, F.; Jordon, M.; Abdalla, M.; Mcbey, D.; Kuhnert, M.; Vetter, S.; Oyesiku-Blakemore, J.; Smith, P. Agroecology—A Rapid Evidence Review—Report prepared for the Committee on Climate Change. 2022. Available online: https://www.theccc.org.uk/publication/agroecology-a-rapid-evidence-review-university-of-aberdeen (accessed on 12 December 2022).
- Wilkinson, J.M.; Chamberlain, A.T.; Rivero, M.J. The Case for Grazing Dairy Cows. Agronomy 2021, 11, 2466. [Google Scholar] [CrossRef]
- Clark, M.; Tilman, D. Comparative analysis of environmental impacts of agricultural production systems, agricultural input efficiency, and food choice. Environ. Res. Lett. 2017, 12, 064016. [Google Scholar] [CrossRef]
- Gates, M.C. Evaluating the reproductive performance of British beef and dairy herds using national cattle movement records. Vet. Rec. 2013, 173, 499. [Google Scholar] [CrossRef]
- Smith, L.G.; Jones, P.J.; Kirk, G.J.; Pearce, B.D.; Williams, A.G. Modelling the production impacts of a widespread conversion to organic agriculture in England and Wales. Land Use Policy 2018, 76, 391–404. [Google Scholar] [CrossRef]
- PFLA. About Us. 2022. Available online: https://www.pastureforlife.org/about-us/ (accessed on 22 February 2023).
- Committee on Climate Change. The Sixth Carbon Budget, Agriculture and Land Use, Land Use Change and Forestry—Committee on Climate Change. 2021. Available online: https://www.theccc.org.uk/wp-content/uploads/2020/12/Sector-summary-Agriculture-land-use-land-use-change-forestry.pdf (accessed on 4 January 2021).
- Committee on Climate Change. Land Use: Policies for a Net-zero UK—Committee on Climate Change. 2022. Available online: https://www.theccc.org.uk/publication/land-use-policies-for-a-net-zero-uk/ (accessed on 22 March 2023).
- Cheng, M.; McCarl, B.; Fei, C. Climate Change and Livestock Production: A Literature Review. Atmosphere 2022, 13, 140. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Semenov, M.A.; Semeradova, D.; Belinova, M.; Hlavinka, P.; Olesen, J.E.; Eitzinger, J.; Schaumberger, A.; Zahradnicek, P.; et al. Future agroclimatic conditions and implications for European grasslands. Biol. Plant 2021, 64, 865–880. Available online: http://bp.ueb.cas.cz/doi/10.32615/bp.2021.005.html (accessed on 21 April 2021). [CrossRef]
Class of Cattle/Sheep | SLU | MJ d−1 | DM (kg d−1) ** |
---|---|---|---|
Female cattle ≥ 2 Yr | 1.00 | 134.6 | 12.8 |
Female cattle 1–2 Yr | 0.65 | 85.5 | 8.1 |
Female cattle < 1 Yr | 0.34 | 44.7 | 4.3 |
Male cattle ≥ 2 Yr | 0.80 | 105.2 | 10.0 |
Male cattle 1–2 Yr | 0.65 | 85.5 | 8.1 |
Male cattle < 1 Yr | 0.34 | 44.7 | 4.3 |
Ewes ≥ 1 Yr * | 0.10 | 13.2 | 1.3 |
Rams ≥ 1 Yr | 0.08 | 10.5 | 1.0 |
Lambs < 1 Yr | 0.04 | 5.3 | 0.5 |
Other sheep ≥ 1 Yr | 0.08 | 10.5 | 1.0 |
Grassland Type | Herbal Dry Matter Yield |
---|---|
Temporary | 12.46 |
Permanent | 8.71 |
Rough grazing | 2.76 |
Year | Rough Grazing | Permanent | Temporary | Total Grassland Area |
---|---|---|---|---|
2011 | 5.18 | 5.88 | 1.28 | 12.34 |
2012 | 5.13 | 5.80 | 1.36 | 12.28 |
2013 | 5.14 | 5.80 | 1.39 | 12.33 |
2014 | 5.13 | 5.82 | 1.40 | 12.35 |
2015 | 5.00 | 6.08 | 1.17 | 12.25 |
2016 | 5.16 | 6.12 | 1.14 | 12.42 |
2017 | 5.20 | 6.14 | 1.14 | 12.48 |
2018 | 5.09 | 6.18 | 1.15 | 12.42 |
2019 | 5.18 | 6.21 | 1.19 | 12.58 |
2020 | 5.12 | 6.12 | 1.18 | 12.42 |
Mean | 5.13 (41.4) | 6.02 (48.6) | 1.24 (10.0) | 12.39 |
SD | 0.06 (0.4) | 0.17 (1.1) | 0.11 (0.9) | 0.10 |
CV% | 1.11 (0.9) | 2.8 (2.3) | 8.64 (9.1) | 0.80 |
Statistic | Female | Male | Total Cattle | ||||
---|---|---|---|---|---|---|---|
≥2 Yrs | 1–2 Yrs | <1 Yr | ≥2 Yrs | 1–2 Yrs | <1 Yr | ||
Mean | 4,165,701.4 (42.3) | 1,418,828 (14.3) | 1,558,385.8 (15.7) | 369,496.4 (3.75) | 1,024,541.2 (10.4) | 1,333,204.4 (13.5) | 9,870,157.3 |
SD | 81,264.5 (0.53) | 31,236.5 (0.38) | 38,879.8 (0.43) | 26,698.7 (0.25) | 23,442.8 (0.18) | 36,413.1 (0.21) | 131,312.5 |
CV% | 1.95 (1.25) | 2.20 (2.69) | 2.49 (2.7) | 7.23 (6.68) | 2.289 (1.78) | 2.73 (1.55) | 1.33 |
Year | Female | Male | Overall TSLUs | ||||
---|---|---|---|---|---|---|---|
≥2 Yrs | 1–2 Yrs | <1 Yr | ≥2 Yrs | 1–2 Yrs | <1 Yr | ||
2011 | 4,304,822 | 891,773 | 521,039 | 308,402 | 682,651 | 456,728 | 7,165,416 |
2012 | 4,229,230 | 906,239 | 526,667 | 295,254 | 669,289 | 469,410 | 7,096,088 |
2013 | 4,177,037 | 919,154 | 507,252 | 307,410 | 688,964 | 447,541 | 7,047,358 |
2014 | 4,227,609 | 892,407 | 509,705 | 339,238 | 657,298 | 442,745 | 7,069,003 |
2015 | 4,238,467 | 896,574 | 533,922 | 310,117 | 650,499 | 456,275 | 7,085,854 |
2016 | 4,204,392 | 937,478 | 545,009 | 291,510 | 670,873 | 471,388 | 7,120,650 |
2017 | 4,192,951 | 951,868 | 538,113 | 283,979 | 683,307 | 461,465 | 7,111,684 |
2018 | 4,149,039 | 938,018 | 535,571 | 284,313 | 673,057 | 453,066 | 7,033,064 |
2019 | 4,078,305 | 932,925 | 531,573 | 284,437 | 658,115 | 439,912 | 6,925,267 |
2020 | 3,994,283 | 925,480 | 540,848 | 264,117 | 642,164 | 437,804 | 6,804,696 |
Mean | 4,179,613.5 (59.3) | 919,191.7 (13.0) | 528,970.0 (7.5) | 296,877.67 (4.2) | 667,621.8 (9.5) | 453,633.3 (6.4) | 7,045,908.0 |
SD | 88,349.3 (0.47) | 21,430.1 (0.40) | 12,770.9 (0.24) | 20,540.5 (0.26) | 15,306.3 (0.17) | 11,722.9 (0.11) | 106,325.8 |
CV% | 2.11 (0.79) | 2.33 (3.10) | 2.41 (3.16) | 6.92 (6.21) | 2.29 (1.74) | 2.58 (1.77) | 1.51 |
Year | Ewes | Lambs < 1 Yr | Rams > 1 Yr | Other Sheep ≥ 1 Yr | Total Sheep | |
---|---|---|---|---|---|---|
≥1 Yr Breeding and Slaughter | ≥1 Yr First-Time Breeding | |||||
Mean | 13,228,359.0 (39.8) | 2,608,892.8 (7.8) | 16,602,444.7 (49.9) | 406,517.9 (1.2) | 415,554.2 (1.3) | 33,261,768.6 |
SD | 384,912.4 (0.29) | 202,440.8 (0.45) | 380,151.7 (0.43) | 15,481.8 (0.04) | 44,827.7 (0.14) | 928,878.2 |
CV% | 2.91 (0.75) | 7.76 (5.8) | 2.28 (0.86) | 3.81 (3.03) | 10.78 (11.09) | 2.79 |
Year | Ewes | Lambs < 1 Yr | Rams > 1 Yr | Other Sheep ≥ 1 Yr | Overall TSLUs | |
---|---|---|---|---|---|---|
≥1 Yr Breeding and Slaughter | ≥1 Yr First-Time Breeding | |||||
2011 | 1,264,435 | 222,413 | 639,580 | 30,218 | 31,861 | 2,188,507 |
2012 | 1,279,859 | 243,086 | 649,177 | 31,353 | 29,131 | 2,232,606 |
2013 | 1,299,757 | 256,372 | 655,237 | 34,578 | 38,562 | 2,284,507 |
2014 | 1,351,478 | 251,133 | 677,441 | 33,395 | 29,102 | 2,342,549 |
2015 | 1,327,778 | 274,594 | 661,117 | 32,636 | 30,161 | 2,326,285 |
2016 | 1,346,006 | 284,383 | 673,619 | 32,743 | 31,108 | 2,367,859 |
2017 | 1,376,198 | 290,745 | 693,614 | 33,338 | 32,439 | 2,426,334 |
2018 | 1,357,156 | 271,399 | 664,845 | 32,571 | 37,361 | 2,363,332 |
2019 | 1,343,968 | 259,537 | 666,897 | 32,964 | 36,809 | 2,340,174 |
2020 | 1,281,723 | 255,230 | 659,452 | 31,419 | 35,910 | 2,263,734 |
Mean | 1,322,835.9 (57.2) | 260,889.3 (11.3) | 664,097.8 (28.7) | 32,521.4 (1.4) | 33,244.3 (1.4) | 2,313,588.7 |
SD | 38,491.2 (0.41) | 20,244.1 (0.59) | 15,206.1 (0.36) | 1238.5 (0.04) | 3586.2 (0.16) | 71,003.0 |
CV% | 2.91 (0.71) | 7.76 (5.21) | 2.29 (1.26) | 3.81 (2.93) | 10.79 (10.99) | 3.07 |
Livestock | Year | Production | Import | Export | Consumption | Self-Sufficiency *(%) |
---|---|---|---|---|---|---|
Cattle | 2011 | 931,478 | 301,735 | 170,826 | 1,062,388 | 87.7 |
2012 | 876,928 | 305,122 | 142,147 | 1,039,903 | 84.3 | |
2013 | 840,228 | 309,428 | 126,241 | 1,023,414 | 82.1 | |
2014 | 871,373 | 325,992 | 136,715 | 1,060,650 | 82.2 | |
2015 | 880,410 | 342,526 | 128,397 | 1,094,539 | 80.4 | |
2016 | 916,443 | 331,388 | 139,948 | 1,107,883 | 82.7 | |
2017 | 904,344 | 344,427 | 132,894 | 1,115,877 | 81.0 | |
2018 | 900,574 | 364,725 | 139,918 | 1,125,380 | 80.0 | |
2019 | 917,132 | 317,168 | 167,119 | 1,067,182 | 85.9 | |
2020 | 934,859 | 317,472 | 167,538 | 1,084,794 | 86.2 | |
Mean | 897,377 | 325,998 | 145,174 | 1,078,201 | 83.3 | |
SD | 29,867.61 | 19,975.93 | 16,885.66 | 33,307.86 | 2.64 | |
CV% | 3.33 | 6.13 | 11.63 | 3.09 | 3.17 | |
Sheep | 2011 | 300,740 | 109,609 | 111,361 | 298,988 | 100.6 |
2012 | 285,717 | 105,990 | 108,419 | 283,289 | 100.9 | |
2013 | 300,323 | 119,732 | 119,343 | 300,712 | 99.9 | |
2014 | 306,316 | 112,072 | 116,142 | 302,245 | 101.4 | |
2015 | 309,496 | 114,834 | 90,802 | 333,527 | 92.8 | |
2016 | 300,087 | 115,520 | 90,974 | 324,632 | 92.4 | |
2017 | 308,785 | 100,398 | 103,401 | 305,783 | 101.0 | |
2018 | 298,521 | 97,280 | 96,677 | 299,124 | 99.8 | |
2019 | 317,701 | 79,518 | 106,772 | 290,446 | 109.4 | |
2020 | 306,301 | 79,518 | 106,716 | 279,102 | 109.7 | |
Mean | 303,399 | 103,447 | 105,061 | 301,785 | 100.8 | |
SD | 8508.72 | 14,344.73 | 9764.89 | 16,822.45 | 5.67 | |
CV% | 2.80 | 13.87 | 9.29 | 5.57 | 5.63 |
Year | Cattle | Sheep |
---|---|---|
2011 | 130.0 | 137.4 |
2012 | 123.6 | 128.0 |
2013 | 119.2 | 131.5 |
2014 | 123.3 | 130.8 |
2015 | 124.3 | 133.0 |
2016 | 128.7 | 126.7 |
2017 | 127.2 | 127.3 |
2018 | 128.1 | 126.3 |
2019 | 132.4 | 135.8 |
2020 | 137.4 | 135.3 |
Mean | 127.4 | 131.2 |
SD | 5.19 | 4.08 |
CV% | 4.07 | 3.11 |
Year | Herbal Dry Matter (t) | SLU | ||||||
---|---|---|---|---|---|---|---|---|
TG | PG | RG | Total | TG | PG | RG | Total | |
2011 | 15,923,880 | 51,188,670 | 14,296,800 | 81,409,350 | 3,483,675 | 11,198,571 | 3,127,718 | 17,809,965 |
2012 | 16,908,220 | 50,509,290 | 14,147,760 | 81,565,270 | 3,699,020 | 11,049,943 | 3,095,113 | 17,844,076 |
2013 | 17,319,400 | 50,535,420 | 14,180,880 | 82,035,700 | 3,788,974 | 11,055,660 | 3,102,358 | 17,946,992 |
2014 | 17,394,160 | 50,727,040 | 14,156,040 | 82,277,240 | 3,805,329 | 11,097,580 | 3,096,924 | 17,999,834 |
2015 | 14,540,820 | 52,939,380 | 13,800,000 | 81,280,200 | 3,181,103 | 11,581,575 | 3,019,033 | 17,781,711 |
2016 | 14,254,240 | 53,287,780 | 14,241,600 | 81,783,620 | 3,118,407 | 11,657,795 | 3,115,642 | 17,891,844 |
2017 | 14,254,240 | 53,435,850 | 14,354,760 | 82,044,850 | 3,118,407 | 11,690,188 | 3,140,398 | 17,948,994 |
2018 | 14,353,920 | 53,810,380 | 14,048,400 | 82,212,700 | 3,140,214 | 11,772,124 | 3,073,376 | 17,985,714 |
2019 | 14,864,780 | 54,062,970 | 14,305,080 | 83,232,830 | 3,251,975 | 11,827,384 | 3,129,530 | 18,208,889 |
2020 | 14,715,260 | 53,287,780 | 14,125,680 | 82,128,720 | 3,219,265 | 11,657,795 | 3,090,282 | 17,967,342 |
Mean | 15,452,892 (18.8) | 52,378,456 (63.9) | 14,165,700 (17.3) | 81,997,048 | 3,380,637 (18.8) | 11,458,861 (63.9) | 3,099,037 (17.3) | 17,938,536 |
SD | 1,307,895.1 (1.61) | 1,453,263.8 (1.65) | 159,116.1 (0.18) | 554,229.3 | 286,128.9 (1.61) | 317,931.3 (1.65) | 34,809.9 (0.18) | 121,249.1 |
CV% | 8.46 (8.54) | 2.77 (2.57) | 1.12 (1.05) | 0.68 | 8.46 (8.54) | 2.77 (2.57) | 1.12 (1.05) | 0.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, A.; Whatford, L.; Payne-Gifford, S.; Cooke, R.; Van Winden, S.; Häsler, B.; Barling, D. Can 100% Pasture-Based Livestock Farming Produce Enough Ruminant Meat to Meet the Current Consumption Demand in the UK? Grasses 2023, 2, 185-206. https://doi.org/10.3390/grasses2030015
Qi A, Whatford L, Payne-Gifford S, Cooke R, Van Winden S, Häsler B, Barling D. Can 100% Pasture-Based Livestock Farming Produce Enough Ruminant Meat to Meet the Current Consumption Demand in the UK? Grasses. 2023; 2(3):185-206. https://doi.org/10.3390/grasses2030015
Chicago/Turabian StyleQi, Aiming, Louise Whatford, Sophie Payne-Gifford, Richard Cooke, Steven Van Winden, Barbara Häsler, and David Barling. 2023. "Can 100% Pasture-Based Livestock Farming Produce Enough Ruminant Meat to Meet the Current Consumption Demand in the UK?" Grasses 2, no. 3: 185-206. https://doi.org/10.3390/grasses2030015
APA StyleQi, A., Whatford, L., Payne-Gifford, S., Cooke, R., Van Winden, S., Häsler, B., & Barling, D. (2023). Can 100% Pasture-Based Livestock Farming Produce Enough Ruminant Meat to Meet the Current Consumption Demand in the UK? Grasses, 2(3), 185-206. https://doi.org/10.3390/grasses2030015