Brachiaria Hybrid and Pennisetum purpureum Supplemented with Pueraria phaseoloides Increased the Concentration of Rumen-Undegradable Protein in Forages for Ruminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Clearance
2.2. Forage Samples
2.3. Forage Processing and Chemical Analysis
2.4. Nitrogen and Crude Protein Fraction
2.5. In Vitro Ruminal Crude Protein Degradability
2.6. Calculations and Statistical Analysis
- RDP = A + B [Kd/(Kd + Kp)]
- RUP = B [Kp/(Kd + Kp)] + C
3. Results
3.1. Chemical Composition
3.2. Nitrogen and Crude Protein Fractions
3.3. In Vitro Ruminal CP Degradability
4. Discussion
4.1. Chemical Composition
4.2. Nitrogen and Crude Protein Fractions
4.3. In Vitro Ruminal CP Degradability Kinetics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nepomuceno, D.D.D.; Almeida, J.C.D.C.; Carvalho, M.G.D.; Fernandes, R.D.; Catunda Júnior, F.E.A. Classes of secondary metabolites identified in three legume species. Rev. Bras. Zootec. 2013, 42, 700–705. [Google Scholar] [CrossRef]
- Leon, E.; Hughes, M.P.; Daley, O. Nutritive value and herbage mass of Pueraria phaseoloides (tropical kudzu) in un-utilized open grasslands in north-eastern and central trinidad and tobago. J. Saudi Soc. Agric. Sci. 2023, 22, 11–17. [Google Scholar] [CrossRef]
- Lallo, C.H. Towards sustainable small ruminant production system in response to climate change. In Proceedings of the Climate-Smart Agriculture Symposium, Kingston, Jamaica, 16 July 2015; pp. 1–38. [Google Scholar]
- Inyang, U.; Vendramini, J.M.B.; Sellers, B.; Silveira, M.L.A.; Lunpha, A.; Sollenberger, L.E.; Adesogan, A.; Paiva, L.M. Harvest frequency and stubble height affect herbage accumulation, nutritive value, and persistence of ‘Mulato II’ Brachiariagrass. Forage Grazinglands 2010, 8, 1–7. [Google Scholar] [CrossRef]
- Hughes, M.P.; Jennings, P.G.A.; Mlambo, V.; Lallo, C.H.O. Effect of season and harvesting method on chemical composition predicted metabolizable energy and in vitro organic matter digestibility of rotationally grazed tropical pastures. Online J. Anim. Feed Res. 2012, 1, 405–417. [Google Scholar]
- Salazar-Cubillas, K.C.; Dickhoefer, U. Evaluating the protein value of fresh tropical forage grasses and forage legumes using in vitro and chemical fractionation methods. Animals 2021, 11, 2853. [Google Scholar] [CrossRef]
- Jack, H.A.; Cranston, L.M.; Burke, J.L.; Knights, M.; Morel, P.C.H. Determining the chemical composition and in vitro digestibility of forage species used in small ruminant production systems in the english-speaking Caribbean–Part 1. Trop. Agric. 2020, 97, 32–45. [Google Scholar]
- Hughes, M.P.; Mlambo, V.; Lallo, C.H.O. Optimum nitrogen fertilization rate and nitrogen use efficiency for Brachiaria Hybrid and Megathyrsus maximus varies with stage of regrowth. JSFA Rep. 2022, 2, 168–177. [Google Scholar] [CrossRef]
- Hughes, M.P.; Mlambo, V.; Lallo, C.H. Low nitrogen fertiliser rates and stage of maturity influence nitrogen fractionation and in vitro ruminal nitrogen degradability in tropical grasses. Afr. J. Range Forage Sci. 2022, 39, 292–297. [Google Scholar] [CrossRef]
- McDonald, P.; Edwards, R.A.; Greenhalgh, G.F.D.; Morgan, C.A.; Sinclair, L.A.; Wilkinson, R.G. Animal Nutrition, 7th ed.; Prentice Hall: Harlow, UK, 2010; pp. 469–490. [Google Scholar]
- Mupangwa, J.F.; Ngongoni, N.T.; Hamudikuwanda, H. Rumen degradation and intestinal digestibility of rumen undegraded dietry nitrogen in grass-lumen mixed diets estimated by the mobile nylon bag technique. S. Afr. J. Edu. Sci. Technol. 2007, 1, 23–28. [Google Scholar]
- Rueda, B.L.; Blake, R.W.; Nicholson, C.F.; Fox, D.G.; Tedeschi, L.O.; Pell, A.N.; Fernandes, E.C.M.; Valentim, J.F.; Carneiro, J.C. Production and economic potentials of cattle in pasture-based systems of the western Amazon region of Brazil. J. Anim. Sci. 2003, 81, 2923–2937. [Google Scholar] [CrossRef] [PubMed]
- Solomon, J.; Cumberbatch, N.; Austin, R.; Gonsalves, J.; Seaforth, E. The production parameters of the Barbados Blackbelly and crossbred sheep in a controlled semi-intensive system. Livest. Res. Rural Dev. 2006, 18, 55. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Association of Official Analytical Chemists: Rockville, MD, USA, 2005. [Google Scholar]
- ANKOM Technology. Neutral Detergent Fiber in Feeds—Filter Bag Technique (for A2000 and A2000I): NDF Method 13. 2017. Available online: https://www.ankom.com/sites/default/files/documentfiles/Method_13_NDF_A2000.pdf (accessed on 26 March 2020).
- ANKOM Technology. Acid Detergent Fiber in Feeds—Filter Bag Technique (for A2000 and A2000I): ADF Method 12. 2017. Available online: https://www.ankom.com/sites/default/files/document-files/Method_12_ADF_A2000.pdf (accessed on 26 March 2020).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- ANKOM Technology. Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction, Method 2, 01-30-09. 2017. Available online: https://www.ankom.com/sites/default/files/document-files/Crude_Fat_Abstract.pdf (accessed on 26 March 2020).
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th rev. ed.; National Academy Press: Washington DC, USA, 2001; pp. 46–61. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Tech. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Cudjoe, N.; Mlambo, V. Buffer nitrogen solubility, in vitro ruminal partitioning of nitrogen and in vitro ruminal biological activity of tannins in leaves of four fodder tree species. J. Anim. Physiol. Anim. Nutr. 2014, 98, 722–730. [Google Scholar] [CrossRef]
- ANKOM Technology. In Vitro True Digestibility Using the ANKOM DAISYII Incubator, Method 3. 2001. Available online: https://www.ankom.com/sites/default/files/document-files/Method_3_InVitro_D200_D200I.pdf (accessed on 26 March 2020).
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Edwards, A.; Mlambo, V.; Lallo, C.H.O.; Garcia, G.W. Yield, chemical composition and in-vitro ruminal fermentation of the leaves of Leucaena leucocephala, Gliricidia sepium and Trichanthera gigantea as influenced by harvesting frequency. J. Anim. Sci. Adv. 2012, 2, 321–331. [Google Scholar]
- Geleti, D.; Hailemariam, M.; Mengistu, A.; Adugna Tolera, A. Herbage yield and quality of selected accessions of Centrosema species grown under subhumid climatic conditions of western Oromia, Ethiopia. Glob. Vet. 2013, 11, 735–741. [Google Scholar]
- Thiam, M.; Tovignon, G.C.Z.; Toure, A.I.; Kimse, M.; Obiang, C.S.; Mboko, A.V.; Matumuini, F.N.; Nono, F.C.N.; Engonga, L.C.O.; Ondo, J.-P.; et al. Effects of incorporation levels of Pueraria phaseoloides leaf flour on carcass characteristics and chemical composition of meat from local rabbit (Oryctolagus cuniculus) in south-east Gabon. Int. J. Bio. Chem. Sci. 2021, 15, 869–878. [Google Scholar] [CrossRef]
- Ansah, T.; Osafo, E.; Hansen, H. Herbage yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agric. Biol. J. N. Am. 2010, 1, 923–929. [Google Scholar] [CrossRef]
- Berthiaume, R.; Benchaar, C.; Chaves, A.V.; Tremblay, G.F.; Castonguay, Y.; Bertrand, A.; Bélanger, G.; Michaud, R.; Lafrenière, C.; McAllister, T.A.; et al. Effects of nonstructural carbohydrate concentration in Alfalfa on fermentation and microbial protein synthesis in continuous culture. J. Dairy Sci. 2010, 93, 693–700. [Google Scholar] [CrossRef]
- Villalba, J.J.; Ates, S.; MacAdam, J.W. Non-fiber carbohydrates in forages and their influence on beef production systems. Front. Sustain. Food Syst. 2021, 5, 566338. [Google Scholar] [CrossRef]
- Savari, M.; Khorvash, M.; Amanlou, H.; Ghorbani, G.R.; Ghasemi, E.; Mirzaei, M. Effects of rumen-degradable protein: Rumen-undegradable protein ratio and corn processing on production performance, nitrogen efficiency, and feeding behavior of holstein dairy cows. J. Dairy Sci. 2018, 101, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.H.; Snow, V.O.; Shorten, P.R.; Welten, B.G. Can alternative forages substantially reduce N leaching? Findings from a review and associated modelling. N. Z. J. Agric. Res. 2020, 63, 3–28. [Google Scholar] [CrossRef]
- Onyeonagu, C.C.; Obute, P.N.; Eze, S.M. Seasonal variation in the anti-nutrient and mineral components of some forage legumes and grasses. Afr. J. Biotechnol. 2013, 12, 142–149. [Google Scholar] [CrossRef]
- Andrade-Montemayor, H.; García Gasca, T.; Kawas, J. Ruminal fermentation modification of protein and carbohydrate by means of roasted and estimation of microbial protein synthesis. R. Bras. Zootec. 2009, 38, 277–291. [Google Scholar] [CrossRef]
- Dewhurst, R.J.; Newbold, J.R. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 2022, 127, 847–849. [Google Scholar] [CrossRef]
- Buso, W.H.D.; França, A.F.S.; Miyagi, E.S.; Ferreira, R.N.; Corrêa, D.S. Effects of nitrogen fertilizer on carbohydrate and protein fractions in Pearl Millet (Pennisetum glaucum) Cultivars. Trop. Grass. Forr. Trop. 2016, 4, 47. [Google Scholar] [CrossRef]
- Gutierrez-Botero, M.; Ross, D.A.; Van Amburgh, M.E. Formulating diets for intestinal unavailable nitrogen using blood meal in high-producing dairy cattle. J. Dairy Sci. 2022, 105, 5738–5746. [Google Scholar] [CrossRef] [PubMed]
- Sarr, P.S.; Okon, J.W.; Begoude, D.A.B.; Araki, S.; Ambang, Z.; Shibata, M.; Funakawa, S. Symbiotic N 2-fixation estimated by the 15 N tracer technique and growth of Pueraria phaseoloides (Roxb.) Benth. inoculated with Bradyrhizobium strain in field conditions. Scientifica 2016, 2016, 1–10. [Google Scholar] [CrossRef]
- Valizadeh, A.; Kazemi-Bonchenari, M.; Khodaei-Motlagh, M.; Moradi, M.H.; Salem, A.Z.M. Effects of Different Rumen undegradable to rumen degradable protein ratios on performance, ruminal fermentation, urinary purine derivatives, and carcass characteristics of growing lambs fed a high wheat straw-based diet. Small Rumin. Res. 2021, 197, 106330. [Google Scholar] [CrossRef]
- Van Straalen, W.M.; Dooper, F.M.H.; Antoniewicz, A.M.; Kosmala, I.; Van Vuuren, A.M. Intestinal digestibility in dairy cows of protein from grass and clover measured with mobile nylon bag and other methods. J. Dairy Sci. 1993, 76, 2970–2981. [Google Scholar] [CrossRef] [PubMed]
- Braga, E.; Braga, F.E.; Silva, J.A.R.D.; Faturi, C.; Domingues, F.N.; Lourenço Júnior, J.D.B. Ruminal degradability of tropical leguminous plants from eastern Amazonia. SCA 2018, 39, 845. [Google Scholar] [CrossRef]
Forages | Grass/Legume Combinations | |||
---|---|---|---|---|
Brac.4 + Kudzu | Brac.8 + Kudzu | EG.8 + Kudzu | EG.12 + Kudzu | |
Kudzu | 285 | 363 | 412 | 467 |
Brac.4 | 715 | - | - | - |
Brac.8 | - | 637 | - | - |
EG.8 | - | - | 588 | - |
EG.12 | - | - | - | 533 |
Forages | Chemical Compositions (g/kg DM) | |||||||
---|---|---|---|---|---|---|---|---|
DM (g/kg) | Ash | EE | CP | NDF | ADF | Lignin | NFC | |
Kudzu | 926 ab | 70.5 c | 16.9 b | 217 a | 620 c | 562 d | 124 a | 76.0 a |
Brac.4 | 936 a | 129 ab | 20.7 ab | 109 c | 668 ab | 572 cd | 75.0 d | 73.0 a |
Brac.8 | 923 b | 115 ab | 19.0 b | 96.6 d | 706 a | 606 abc | 83.7 cd | 63.9 ab |
EG.8 | 927 ab | 145 a | 16.4 b | 112 c | 702 a | 614 ab | 90.7 bcd | 24.8 b |
EG.12 | 931 ab | 148 a | 19.9 b | 79.9 d | 694 a | 622 a | 99.2 bc | 58.7 ab |
Brac.4 + Kudzu | 931 ab | 118 ab | 27.5 a | 133 b | 643 bc | 578 bcd | 87.2 cd | 78.9 a |
Brac.8 + Kudzu | 929 ab | 107 b | 20.8 ab | 134 b | 667 abc | 587 abcd | 105 abc | 71.1 a |
EG.8 + Kudzu | 930 ab | 120 ab | 19.0 b | 131 b | 661 abc | 597 abcd | 110 ab | 68.2 ab |
EG.12 + Kudzu | 934 a | 119 ab | 21.1 ab | 133 b | 666 abc | 602 abc | 109 ab | 60.0 ab |
SEM | 1.56 | 5.39 | 1.22 | 1.54 | 8.94 | 6.64 | 3.91 | 8.19 |
Significance | * | *** | ** | *** | *** | *** | *** | * |
Forages | Total Nitrogen and N Fractions (g/kg DM) | |||||
---|---|---|---|---|---|---|
Total N | NDIN | ADIN | BISN | BSN | NPN | |
Kudzu | 34.7 a | 18.3 a | 16.9 a | 25.4 a | 10.5 a | 8.8 a |
Brac.4 | 17.5 c | 7.3 c | 4.9 e | 13.6 bc | 5.1 b | 7.1 ab |
Brac.8 | 15.5 d | 7.4 c | 6.5 d | 11.8 cd | 4.9 b | 4.9 cd |
EG.8 | 17.9 c | 8.3 c | 6.5 d | 13.7 bc | 5.3 b | 6.8 abc |
EG.12 | 12.8 e | 5.8 d | 4.0 e | 9.3 d | 4.7 b | 3.9 d |
Brac.4 + Kudzu | 21.2 b | 11.2 b | 9.4 c | 16.7 b | 5.7 b | 4.8 cd |
Brac.8 + Kudzu | 21.5 b | 11.8 b | 9.4 c | 16.6 b | 6.1 b | 5.0 bcd |
EG.8 + Kudzu | 21.0 b | 11.8 b | 9.9 bc | 16.2 b | 6.0 b | 4.6 d |
EG.12 + Kudzu | 21.3 b | 11.7 b | 10.8 b | 16.6 b | 5.9 b | 4.9 cd |
SEM | 0.25 | 0.18 | 0.13 | 0.50 | 0.48 | 0.33 |
Significance | *** | *** | *** | *** | *** | *** |
Forages | CP fractions (g/kg DM) | ||||||
---|---|---|---|---|---|---|---|
A | B1 | B2 | B3 | C | RDP | RUP | |
Kudzu | 54.8 a | 65.7 a | 44.4 a | 8.42 | 105.9 a | 92.7 a | 124.1 a |
Brac.4 | 44.4 ab | 31.8 b | 39.9 ab | 14.6 | 30.7 e | 85.6 ab | 23.9 c |
Brac.8 | 30.6 cd | 30.4 b | 27.9 ab | 5.4 | 40.5 d | 64.1 bcd | 32.5 c |
EG.8 | 42.6 abc | 33.4 b | 33.8 ab | 11.5 | 40.6 d | 80.2 abc | 31.6 c |
EG.12 | 24.2 d | 29.5 b | 21.8 b | 11.3 | 24.9 e | 50.9 d | 29.0 c |
Brac.4 + Kudzu | 29.8 cd | 35.8 b | 34.0 ab | 11.5 | 58.8 c | 58.7 cd | 73.9 b |
Brac.8 + Kudzu | 31.5 bcd | 38.0 b | 30.3 ab | 15.1 | 58.7 c | 58.8 cd | 75.6 b |
EG.8 + Kudzu | 28.5 d | 37.6 b | 27.5 ab | 11.7 | 61.9 bc | 59.0 cd | 72.0 b |
EG.12 + Kudzu | 30.4 cd | 36.7 b | 30.7 ab | 5.8 | 67.5 b | 53.2 d | 79.9 b |
SEM | 2.1 | 3.0 | 3.0 | 1.8 | 0.8 | 4.7 | 4.1 |
Significance | *** | *** | * | NS | *** | *** | *** |
Forages | Ruminal CP Degradability (g/kg) and CP Degradation Rate (g/h) | ||
---|---|---|---|
6 h | 24 h | CP Degradation Rate | |
Kudzu | 245 b | 508 abc | 10.0 a |
Brac.4 | 350 ab | 590 a | 7.1 bcd |
Brac.8 | 313 ab | 560 ab | 8.1 abc |
EG.8 | 393 a | 541 ab | 6.6 cd |
EG.12 | 290 ab | 450 c | 5.2 d |
Brac.4 + Kudzu | 249 b | 496 bc | 8.8 abc |
Brac.8 + Kudzu | 260 b | 507 abc | 9.2 ab |
EG.8 + Kudzu | 246 b | 541 ab | 9.7 a |
EG.12 + Kudzu | 255 b | 549 ab | 10.4 a |
SEM | 17.4 | 14.4 | 0.41 |
Significance | ** | ** | *** |
Forage/Diets | In Vitro Ruminal CP Degradability (g/kg) Parameters | ||||
---|---|---|---|---|---|
a | b | PD | c (g/h) | l (hours) | |
P. phaseoloides | 209 ab | 661 a | 870 ab | 2.6 b | 1.9 |
Brac.4 | 276 a | 365 bcd | 642 bcd | 5.2 ab | 1.1 |
Brac.8 | 176 b | 411 bcd | 587 cd | 6.3 a | 1.0 |
EG.8 | 276 a | 338 cd | 613 bcd | 5.2 ab | 0.67 |
EG.12 | 221 ab | 316 d | 539 d | 4.4 ab | 1.2 |
Brac.4 + Kudzu | 202 ab | 557 abcd | 759 abcd | 3.2 ab | 1.6 |
Brac.8 + Kudzu | 215 ab | 599 ab | 814 abc | 2.8 b | 1.7 |
EG.8 + Kudzu | 146 b | 580 abc | 726 abcd | 3.8 ab | 0.27 |
EG.12 + Kudzu | 214 ab | 706 a | 919 a | 2.6 b | 2.1 |
SEM | 14.5 | 46.2 | 48.8 | 0.66 | 0.49 |
Significance | ** | *** | ** | * | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leon, E.; Hughes, M.; Daley, O. Brachiaria Hybrid and Pennisetum purpureum Supplemented with Pueraria phaseoloides Increased the Concentration of Rumen-Undegradable Protein in Forages for Ruminants. Grasses 2023, 2, 207-217. https://doi.org/10.3390/grasses2040016
Leon E, Hughes M, Daley O. Brachiaria Hybrid and Pennisetum purpureum Supplemented with Pueraria phaseoloides Increased the Concentration of Rumen-Undegradable Protein in Forages for Ruminants. Grasses. 2023; 2(4):207-217. https://doi.org/10.3390/grasses2040016
Chicago/Turabian StyleLeon, Elisha, Martin Hughes, and Oral Daley. 2023. "Brachiaria Hybrid and Pennisetum purpureum Supplemented with Pueraria phaseoloides Increased the Concentration of Rumen-Undegradable Protein in Forages for Ruminants" Grasses 2, no. 4: 207-217. https://doi.org/10.3390/grasses2040016
APA StyleLeon, E., Hughes, M., & Daley, O. (2023). Brachiaria Hybrid and Pennisetum purpureum Supplemented with Pueraria phaseoloides Increased the Concentration of Rumen-Undegradable Protein in Forages for Ruminants. Grasses, 2(4), 207-217. https://doi.org/10.3390/grasses2040016