Seasonal Changes in the Prediction Accuracy of Hayfield Productivity Using Sentinel-2 Remote-Sensing Data in Hokkaido, Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Plots
2.2. Yield Survey
2.3. Sentinel-2 Satellite Images and Image Analysis Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter Yield and Quality
3.2. Relationship between NDVI, EVI, and Pasture Yield over the Entire Growth Period
3.3. Relationship between NDVI, EVI, and Pasture Dry Matter Yield at Pasture Harvest
3.4. Seasonal Differences of Heterogeneity of Paddocks Based on Pixel Value Data of NDVI and EVI
3.5. Relationship between Pasture Quality and Normalized Indices Calculated from Satellite Images
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ishibashi, T. Present and Problems of Feeds. Nihon Chikusan Gakkaiho 2007, 78, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, K.A.; Penno, J.W.; Lancaster, J.A.S.; Bryant, A.M.; Kidd, J.M.; Roche, J.R. Production and Economic Responses to Intensification of Pasture-Based Dairy Production Systems. J. Dairy Sci. 2017, 100, 6602–6619. [Google Scholar] [CrossRef] [PubMed]
- Okada, N.; Miyake, S. Dairy Farmers Behavior under the Conditions of Price Rising of Formula Feed. Jpn. J. Farm Manag. 2010, 48, 65–70. [Google Scholar] [CrossRef]
- Takeda, Y. Grassland Productivity and Renovation in Hokkaido (<Special Feature>Studies of Sustainable Grassland Productivity). Jpn. J. Grassl. Sci. 2004, 50, 75–82. [Google Scholar] [CrossRef]
- Miyake, S.; Sembokuya, Y.; Kanayama, T. Economic Efficiency of Self-Supplied Feed and Its Condition on Large-Scale Dairy Farm. Jpn. J. Farm Manag. 2021, 58, 3–8. [Google Scholar] [CrossRef]
- Murphy, D.J.; Murphy, M.D.; O’Brien, B.; O’Donovan, M. A Review of Precision Technologies for Optimising Pasture Measurement on Irish Grassland. Agriculture 2021, 11, 600. [Google Scholar] [CrossRef]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors Associated with Profitability in Pasture-Based Systems of Milk Production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.J. Grasses and Grassland Ecology; Oxford University Press: Oxford, UK, 2009; ISBN 978-0-19-852918-7. [Google Scholar]
- Ferris, C.P. Sustainable Pasture Based Dairy Systems—Meeting the Challenges. Can. J. Plant Sci. 2007, 87, 723–738. [Google Scholar] [CrossRef] [Green Version]
- Boschetti, M.; Bocchi, S.; Brivio, P.A. Assessment of Pasture Production in the Italian Alps Using Spectrometric and Remote Sensing Information. Agric. Ecosyst. Environ. 2007, 118, 267–272. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M.; Bai, Y.; Zhang, L. A Comparison of Two Models with Landsat Data for Estimating above Ground Grassland Biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810–1818. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Kawamura, K.; Akiyama, T. Remote Sensing for Precision Grassland Management. J. Remote Sens. Soc. Jpn. 2012, 32, 232–244. [Google Scholar] [CrossRef]
- Anderson, G.L.; Hanson, J.D.; Haas, R.H. Evaluating Landsat Thematic Mapper Derived Vegetation Indices for Estimating Above-Ground Biomass on Semiarid Rangelands. Remote Sens. Environ. 1993, 45, 165–175. [Google Scholar] [CrossRef]
- Flynn, E.S.; Dougherty, C.T.; Wendroth, O. Assessment of Pasture Biomass with the Normalized Difference Vegetation Index from Active Ground-Based Sensors. Agron. J. 2008, 100, 114–121. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef] [Green Version]
- Guillaume, A.K.; Yasuhisa, K.; Yo, T.; Natsumi, I.; Toshihiko, Y. Potentiality of Four Cool Season Grasses and Miscanthus Sinensis for Feedstock in the Cool Regions of Japan. J. Jpn. Inst. Energy 2011, 90, 59–65. [Google Scholar]
- Gargiulo, J.; Clark, C.; Lyons, N.; de Veyrac, G.; Beale, P.; Garcia, S. Spatial and Temporal Pasture Biomass Estimation Integrating Electronic Plate Meter, Planet CubeSats and Sentinel-2 Satellite Data. Remote Sens. 2020, 12, 3222. [Google Scholar] [CrossRef]
- Fernández-Habas, J.; Cañada, M.C.; Moreno, A.M.G.; Leal-Murillo, J.R.; González-Dugo, M.P.; Oar, B.A.; Gómez-Giráldez, P.J.; Fernández-Rebollo, P. Estimating Pasture Quality of Mediterranean Grasslands Using Hyperspectral Narrow Bands from Field Spectroscopy by Random Forest and PLS Regressions. Comput. Electron. Agric. 2022, 192, 106614. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Thomson, A.; Verhoef, A.; Humphries, D.J.; Reynolds, C.K. Assessing Suitability of Sentinel-2 Bands for Monitoring of Nutrient Concentration of Pastures with a Range of Species Compositions. Agronomy 2021, 11, 1661. [Google Scholar] [CrossRef]
- Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 20 January 2023).
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Justice, C.; Liu, H. Development of Vegetation and Soil Indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A Comparison of Vegetation Indices over a Global Set of TM Images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Christen, A.-M.; Seoane, J.R.; Leroux, G.D. The Nutritive Value for Sheep of Quackgrass and Timothy Hays Harvested at Two Stages of Growth1. J. Anim. Sci. 1990, 68, 3350–3359. [Google Scholar] [CrossRef]
- Martineau, Y.; Leroux, G.D.; Seoane, J.R. Forage Quality, Productivity and Feeding Value to Beef Cattle of Quackgrass (Elytrigia repens (L.) Nevski.) Compared with Timothy (Phleum pratense L.). Anim. Feed Sci. Technol. 1994, 47, 53–60. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship Between Remotely-Sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef] [Green Version]
- Deguchi, K. Invasion of Rhizomatous Grasses on Timothy Grassland in Hokkaido. Jpn. J. Grassl. Sci. 2016, 62, 153–157. [Google Scholar] [CrossRef]
Study Point | Area (ha) | Renewal Date | Main Pasture Species | |
---|---|---|---|---|
A | 43.25343 N 143.26831 E | 4.62 | Before 2011 | Quackgrass |
B | 43.25098 N 143.26704 E | 4.68 | 2018 | Timothy |
C | 43.25214 N 143.26906 E | 2.73 | 2018 | Quackgrass |
D | 43.25167 N 143.27086 E | 1.97 | Before 2011 | Quackgrass |
E | 43.24998 N 143.27061 E | 1.51 | Before 2011 | Quackgrass |
F | 43.24914 N 143.26701 E | 2.44 | 2016 | Quackgrass |
G | 43.24855 N 143.26672 E | 2.68 | 2018 | Timothy |
H | 43.24943 N 143.26494 E | 4.53 | 2016 | Quackgrass |
I | 43.24989 N 143.26341 E | 4.65 | Before 2011 | Timothy |
J | 43.24399 N 143.29668 E | 1.43 | 2011 | Timothy, Dandelion |
K | 43.24409 N 143.2951 E | 2.39 | 2011 | Quackgrass |
L | 43.22238 N 143.27747 E | 6.79 | 2012 | Timothy, Alfalfa |
M | 43.22305 N 143.27351 E | 3.33 | 2011 | Quackgrass |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiyama, R.; Uchida, Y. Seasonal Changes in the Prediction Accuracy of Hayfield Productivity Using Sentinel-2 Remote-Sensing Data in Hokkaido, Japan. Grasses 2023, 2, 57-67. https://doi.org/10.3390/grasses2020006
Kiyama R, Uchida Y. Seasonal Changes in the Prediction Accuracy of Hayfield Productivity Using Sentinel-2 Remote-Sensing Data in Hokkaido, Japan. Grasses. 2023; 2(2):57-67. https://doi.org/10.3390/grasses2020006
Chicago/Turabian StyleKiyama, Ruka, and Yoshitaka Uchida. 2023. "Seasonal Changes in the Prediction Accuracy of Hayfield Productivity Using Sentinel-2 Remote-Sensing Data in Hokkaido, Japan" Grasses 2, no. 2: 57-67. https://doi.org/10.3390/grasses2020006
APA StyleKiyama, R., & Uchida, Y. (2023). Seasonal Changes in the Prediction Accuracy of Hayfield Productivity Using Sentinel-2 Remote-Sensing Data in Hokkaido, Japan. Grasses, 2(2), 57-67. https://doi.org/10.3390/grasses2020006