Characterisation and Recovery of Minerals in Silages of Sorghum IPA 2502 Irigated with Different Leaching Fractions of Brackish Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Experimental Design, and Methodology
2.2. Soil Analysis
2.3. Brackish Water
2.4. Sorghum Harvesting and Silaging
2.5. Mineral Composition of Sorghum and Silage and Nutrient Recovery
2.6. Statistical Model and Analysis
3. Results
3.1. Macro- and Micro-Minerals of Sorghum Silage
3.2. Percentages of the Recovery of Macro- and Micro-Minerals from Silage
3.3. Macro- and Micro-Minerals in Sorghum
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Gao, Y.; Zhang, X.; Tian, P.; Li, J.; Tian, Y. Comprehensive comparison of different saline water irrigation strategies for tomato production: Soil properties, plant growth, fruit yield and fruit quality. Agric. Water Manag. 2019, 213, 521–533. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Zuo, J.; Zillante, G. Transformation of water resource management: A case study of the South-to-North Water Diversion project. J. Clean. Prod. 2017, 163, 136–145. [Google Scholar] [CrossRef]
- Simões, W.L.; Brito, L.T.d.L.; Silva, M.S.L.d.; Matthiensen, A.; Coelho, E.F.; Barbosa, R.S.; Araujo, G.G.L.d.; Campeche, D.F.B.; Santos, R.D.d.; Melo, R.F.d. Eficiência do uso e o abastecimento de água na produção agropecuária. Embrapa 2018, 39–51. [Google Scholar]
- De Lima, G.S.; Nobre, R.G.; Gheyi, H.R.; Soares, L.A.A.; da Silva, A.O. Crescimento e componentes de produção da mamoneira sob estresse salino e adubação nitrogenada. Eng. Agrícola 2014, 34, 854–866. [Google Scholar] [CrossRef]
- Szymańska, S.; Borruso, L.; Brusetti, L.; Hulisz, P.; Furtado, B.; Hrynkiewicz, K. Bacterial microbiome of root-associated endophytes of Salicornia europaea in correspondence to different levels of salinity. Environ. Sci. Pollut. Res. 2018, 25, 25420–25431. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Yadav, S.; Irfan, M.; Ahmad, A.; Hayat, S. Causes of salinity and plant manifestations to salt stress: A review. J. Environ. Biol. 2011, 32, 667. [Google Scholar]
- Guimarães, M.J.M.; Simões, W.L.; Salviano, A.M.; de Oliveira, A.R.; da Silva, J.S.; Barros, J.R.A.; Willadino, L. Management for grain sorghum cultivation under saline water irrigation. Rev. Bras. Eng. Agric. E Ambient. 2022, 26, 755–762. [Google Scholar] [CrossRef]
- McDonald, P.J.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Marlow, B., Ed.; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and of silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Gois, G.C.; Matias, A.G.D.S.; de Araújo, G.G.L.; Campos, F.S.; Simões, W.L.; Lista, F.N.; Guimarães, M.J.M.; Silva, T.S.; Magalhães, A.L.R.; da Silva, J.K.B. Nutritional and fermentative profile of forage sorghum irrigated with saline water. Biol. Rhythm. Res. 2022, 53, 246–257. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.S. Evapotranspiration del Cultivo: Guias Para la Determinación de Los Requerimientos de Agua de los Cultivos (Estudio Riego e Drenaje Paper, 56); FAO: Roma, Italy, 2006; p. 298. [Google Scholar]
- Solos, E. Embrapa, Proposta de Atualização da Quinta Edição do Sistema Brasileiro de Classificação de Solos-Ano 2022, 5th ed.; Empresa Brasileira de Pesquisa Agropecuária Solos: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; US Deparment of Agriculture: Washington, DC, USA, 1954; Volume 78. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; de Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios e Aplicações, 2nd ed.; Potafos: Piracicaba, Brazil, 1997. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 20th ed.; AOAC Int.: Gaithersburg, MD, USA, 2016. [Google Scholar]
- Campos, F.S.; Araújo, G.G.L.; Simões, W.L.; Gois, G.C.; Guimarães, M.J.M.; da Silva, T.G.F.; Magãlhaes, A.L.R.; Oliveira, G.F.; Araujo, C.D.A.; Silva, T.S.; et al. Mineral and Fermentative Profile of Forage Sorghum Irrigated with Brackish Water. Commun. Soil Sci. Plant Anal. 2021, 52, 1353–1362. [Google Scholar] [CrossRef]
- Der, G.; Everitt, B.S. Essential Statistics Using SAS® University Edition; SAS Institute: Cary, NC, USA, 2015. [Google Scholar]
- Tavakkoli, E.; Fatehi, F.; Coventry, S.; Rengasamy, P.; McDonald, G.K. Additive effects of Na+ and Cl− ions on barley growth under salinity stress. J. Exp. Bot. 2011, 62, 2189–2203. [Google Scholar] [CrossRef]
- Cao, Y.; Gao, Y.; Li, J.; Tian, Y. Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation. Agric. Water Manag. 2019, 223, 105721. [Google Scholar] [CrossRef]
- Rodrigues, C.R.F.; Silva, E.N.; Ferreira-Silva, S.L.; Voigt, E.L.; Viégas, R.A.; Silveira, J.A.G. High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+: Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatropha curcas plants. J. Plant Nutr. Soil Sci. 2013, 176, 157–164. [Google Scholar] [CrossRef]
- Lindsay, W.L. Chemical Equilibria in Soils; John Wiley and Sons Ltd.: London, UK, 1979. [Google Scholar]
- Marschner, H.; Römheld, V. Strategies of plants for acquisition of iron. Plant Soil 1994, 165, 261–274. [Google Scholar] [CrossRef]
- Lemanceau, P.; Bauer, P.; Kraemer, S.; Briat, J.-F. Iron Dynamics in the Rhizosphere as a Case Study for Analyzing Interactions between Soils, Plants and Microbes; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef]
- Guerinot, M. Microbial iron transport. Annu. Rev. Microbiol. 1994, 48, 743–772. [Google Scholar] [CrossRef] [PubMed]
- Kulakouskaya, T. Chemical composition and nutritive value of different plant species used for forage production in South Karelia, Russia. In Proceedings of the XVI International Silage Conference, Hämeenlinna, Finland, 2–4 July 2012. [Google Scholar]
- Schwab, A.P.; Lindsay, W.L. The Effect of Redox on the Solubility and Availability of Manganese in a Calcareous Soil. Soil Sci. Soc. Am. J. 1983, 47, 217–220. [Google Scholar] [CrossRef]
- He, L.; Chen, N.; Lv, H.; Wang, C.; Zhou, W.; Chen, X.; Zhang, Q. Gallic acid influencing fermentation quality, nitrogen distribution and bacterial community of high-moisture mulberry leaves and stylo silage. Bioresour. Technol. 2020, 295, 122255. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Oude Elferink, S.J.W.H.; Spoelstra, S.F. Microbiology of Ensiling. in Silage Science and Technology, 42, no. January, Madison, Wisconsin: American Society of Agronomy, Crop Science Society of America. Soil Sci. Soc. Am. 2003, 42, 31–94. [Google Scholar] [CrossRef]
- Carneiro, E.W.; Schmidt, P.; de Novinski, R.A.C.O. Potassium, sulphur, chlorine and sodium levels in maize silage from five regions in Brazil. In Proceedings of the XVI International Silage Conference, Hämeenlinna, Finland, 2–4 July 2012. [Google Scholar]
- Todd, J.R. Magnesium in forage plants. II. Magnesium distribution in grasses and clovers. J. Agric. Sci. 1961, 57, 35–38. [Google Scholar] [CrossRef]
- Zhao, Z.-Y.; Che, P.; Glassman, K.; Albertsen, M. Nutritionally enhanced sorghum for the arid and semiarid tropical areas of Africa. Sorghum Methods Protoc. 2019, 1931, 197–207. [Google Scholar] [CrossRef]
- Zhou, J.R.; Erdman, J.W.E., Jr. Phytic acid in health and disease. Crit. Rev. Food Sci. Nutr. 1995, 35, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Torre, M.; Rodriguez, A.R.; Saura-Calixto, F. Effects of dietary fiber and phytic acid on mineral availability. Crit. Rev. Food Sci. Nutr. 1991, 30, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.; Weinand, T.; Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009, 32, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef]
- Prado, R.D.M. Manual de nutrição de plantas forrageiras. Jaboticabal Funep. 2008, 1, 261–280. [Google Scholar]
- Shrivastava, P.; Kumar, R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2014, 22, 123–131. [Google Scholar] [CrossRef]
- Fernandes, F.E.P.; Garcia, R.; Pires, A.J.V.; Pereira, O.G.; de Carvalho, G.G.P.; de Souza Olivindo, C. Ensilagem de sorgo forrageiro com adição de ureia em dois períodos de armazenamento. Rev. Bras. Zootec. 2009, 38, 2111–2115. [Google Scholar] [CrossRef]
- Cruz, S.; Pascoaloto, I.; Andreotti, M.; Lima, G.; Lattari, J.; Soares, D.; Morais, G.; Dickmann, L. Teor proteico e mineral das silagens de sorgo consorciadas com gramíneas aditivadas com ureia. Arch. Zootec. 2019, 68, 252–258. [Google Scholar] [CrossRef]
- Emanuele, S.M.; Staples, C.R. Ruminal release of minerals from six forage species. J. Anim. Sci. 1990, 68, 2052–2060. [Google Scholar] [CrossRef]
- Alvarez-Pizarro, J.C.; Gomes-Filho, E.; de Lacerda, C.F.; Alencar, N.L.M.; Prisco, J.T. Salt-induced changes on H+-ATPase activity, sterol and phospholipid content and lipid peroxidation of root plasma membrane from dwarf-cashew (Anacardium occidentale L.) seedlings. Plant Growth Regul. 2009, 59, 125–135. [Google Scholar] [CrossRef]
- de Lacerda, C.F.; Cambraia, J.; Oliva, M.A.; Ruiz, H.A. Influência do cálcio sobre o crescimento e solutos em plântulas de sorgo estressadas com cloreto de sódio. Rev. Bras. Cienc. Solo 2004, 28, 289–295. [Google Scholar] [CrossRef]
- Puga, A.P.; Prado, R.D.M.; Melo, D.M.; Guidi, I.M.; Ortega, K.; Cardoso, S.S.; Almeida, T.B. Efeitos da aplicação de manganês no crescimento, na nutrição e na produção de matéria seca de plantas de Brachiaria brizantha (cv. MG4) em condições de casa de vegetação. Rev. Ceres 2011, 58, 811–816. [Google Scholar] [CrossRef]
Sample (cm) | pH | K+ | Na2+ | Ca2+ | Mg2+ | Al3+ | CEC | SB | H + Al |
cmol dm−3 | |||||||||
0–20 | 4.60 | 0.23 | 0.27 | 1.60 | 0.60 | 0.05 | 4.20 | 2.70 | 1.50 |
20–40 | 5.70 | 0.16 | 0.68 | 1.40 | 0.60 | 0.00 | 5.60 | 2.80 | 2.70 |
40–60 | 5.00 | 0.15 | 1.12 | 2.40 | 1.50 | 0.20 | 7.70 | 5.20 | 2.50 |
60–80 | 4.50 | 0.11 | 1.40 | 2.80 | 2.20 | 0.15 | 8.80 | 6.50 | 2.30 |
80–100 | 4.50 | 0.08 | 1.18 | 3.20 | 2.00 | 0.05 | 8.70 | 6.50 | 2.30 |
Sample (cm) | P | Cu | Fe | Mn | Zn | EC | V | Total C | |
mg dm−3 | m Scm−1 | % | g kg−1 | ||||||
0–20 | 6.14 | 1.07 | 21.40 | 18.20 | 4.54 | 1.33 | 64.00 | 4.60 | |
20–40 | 1.22 | 1.65 | 23.00 | 14.60 | 3.13 | 2.20 | 50.90 | 4.10 | |
40–60 | 0.55 | 1.49 | 8.50 | 12.90 | 2.07 | 2.41 | 67.40 | 3.70 | |
60–80 | 1.69 | 1.37 | 6.00 | 7.00 | 2.05 | 2.50 | 74.30 | 2.30 | |
80–100 | 0.21 | 1.18 | 9.50 | 8.10 | 2.82 | 2.60 | 74.20 | 2.10 |
pH | EC | Ca2+ | Na+ | Mg2+ | K+ | Cl− | SO42 | CO32 | HCO3 | SAR | TH |
ds/m | mmol L−1 | mg L−1 | |||||||||
7.37 | 4.19 | 15.83 | 14.80 | 14.49 | 0.52 | 55.79 | 4.26 | 4.30 | 4.25 | 3.80 | 140.65 |
Minerals | Leach Fractions | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | L | Q | ||
Macro-minerals (g kg−1) | |||||||
Nitrogen 1 | 9.17 | 9.76 | 10.99 | 11.59 | 0.40 | 0.021 | 0.994 |
Phosphorus 2 | 2.40 | 1.79 | 1.71 | 1.52 | 0.30 | 0.036 | 0.760 |
Potassium 3 | 9.00 | 8.00 | 7.00 | 5.00 | 0.52 | 0.002 | 0.473 |
Calcium 4 | 8.01 | 4.86 | 4.34 | 6.07 | 0.51 | 0.065 | 0.006 |
Magnesium 5 | 8.29 | 8.90 | 7.93 | 8.20 | 0.30 | 0.687 | 0.050 |
Sulfur 6 | 0.82 | 0.45 | 0.29 | 0.24 | 0.26 | 0.025 | 0.949 |
Sodium 7 | 0.90 | 0.90 | 0.85 | 0.82 | 0.69 | <0.001 | <0.001 |
Micro-minerals (mg kg−1) | |||||||
Boron 8 | 27.12 | 19.36 | 18.11 | 15.80 | 0.36 | 0.037 | 0.360 |
Copper 9 | 10.49 | 9.90 | 11.84 | 9.96 | 5.35 | 0.315 | 0.042 |
Iron 10 | 144.72 | 128.07 | 172.55 | 130.27 | 1.85 | 0.713 | <0.001 |
Manganese 11 | 45.99 | 46.15 | 47.04 | 60.37 | 0.33 | <0.001 | <0.001 |
Zinc 12 | 20.54 | 20.88 | 20.09 | 19.36 | 10.31 | 0.083 | 0.044 |
Chloride 13 | 16.90 | 18.00 | 13.50 | 19.10 | 0.78 | 0.470 | 0.009 |
Minerals | Leach Fractions | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | L | Q | ||
Macro-minerals (%) | |||||||
Nitrogen 1 | 98.23 | 95.35 | 106.13 | 101.36 | 1.23 | <0.001 | 0.205 |
Phosphorus 2 | 39.30 | 65.12 | 59.08 | 69.93 | 3.52 | <0.001 | <0.001 |
Potassium 3 | 67.36 | 50.96 | 51.32 | 32.17 | 3.76 | <0.001 | 0.072 |
Calcium 4 | 89.82 | 76.88 | 75.21 | 69.30 | 2.27 | <0.001 | 0.001 |
Magnesium 5 | 95.46 | 102.33 | 97.78 | 85.89 | 1.83 | <0.001 | <0.001 |
Sodium 6 | 62.18 | 61.42 | 81.02 | 53.76 | 3.12 | 0.019 | <0.001 |
Micro-minerals (%) | |||||||
Manganese 7 | 89.80 | 119.43 | 105.74 | 113.81 | 1.83 | <0.001 | <0.001 |
Zinc 8 | 58.57 | 80.51 | 60.03 | 62.80 | 2.67 | 0.030 | <0.001 |
Chloride 9 | 89.82 | 84.93 | 54.46 | 90.08 | 4.46 | <0.001 | <0.001 |
Minerals | Leach Fractions | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 5 | 10 | 15 | L | Q | ||
Macro-minerals (g kg−1) | |||||||
Nitrogen | 8.38 | 9.78 | 9.87 | 10.30 | 0.35 | 0.084 | 0.486 |
Phosphor | 1.11 | 1.22 | 1.12 | 1.18 | 0.27 | 0.976 | 0.974 |
Potassium | 12.00 | 15.00 | 13.00 | 14.00 | 0.44 | 0.215 | 0.170 |
Calcium | 5.63 | 6.04 | 5.50 | 7.89 | 0.40 | 0.069 | 0.174 |
Magnesium | 7.80 | 8.31 | 7.73 | 8.60 | 0.30 | 0.557 | 0.793 |
Sulfur | 0.84 | 0.80 | 0.86 | 0.82 | 0.20 | 0.383 | 0.502 |
Sodium 1 | 1.30 | 1.40 | 1.00 | 1.40 | 49.42 | <0.001 | <0.001 |
Micro-minerals (mg kg−1) | |||||||
Copper | 4.36 | 4.59 | 4.23 | 4.76 | 0.31 | 0.553 | 0.356 |
Iron 2 | 90.16 | 89.27 | 95.68 | 106.97 | 2.14 | <0.001 | <0.001 |
Manganese 3 | 46.00 | 36.92 | 42.40 | 47.78 | 1.28 | 0.007 | <0.001 |
Zinc | 31.50 | 24.78 | 31.90 | 27.70 | 0.92 | 0.208 | 0.087 |
Chloride 4 | 16.87 | 20.25 | 23.62 | 19.125 | 0.78 | 0.009 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campos, F.S.; Araújo, G.G.L.d.; Simões, W.L.; Silva, T.G.F.d.; Guimarães, M.J.M.; Araújo, C.d.A.; Macedo, A.d.; Oliveira, G.F.d.; Silva, T.S.; Zanine, A.d.M.; et al. Characterisation and Recovery of Minerals in Silages of Sorghum IPA 2502 Irigated with Different Leaching Fractions of Brackish Water. Grasses 2023, 2, 68-77. https://doi.org/10.3390/grasses2020007
Campos FS, Araújo GGLd, Simões WL, Silva TGFd, Guimarães MJM, Araújo CdA, Macedo Ad, Oliveira GFd, Silva TS, Zanine AdM, et al. Characterisation and Recovery of Minerals in Silages of Sorghum IPA 2502 Irigated with Different Leaching Fractions of Brackish Water. Grasses. 2023; 2(2):68-77. https://doi.org/10.3390/grasses2020007
Chicago/Turabian StyleCampos, Fleming Sena, Gherman Garcia Leal de Araújo, Welson Lima Simões, Thieres George Freire da Silva, Miguel Júlio Machado Guimarães, Cleyton de Almeida Araújo, Amélia de Macedo, Getúlio Figueiredo de Oliveira, Tiago Santos Silva, Anderson de Moura Zanine, and et al. 2023. "Characterisation and Recovery of Minerals in Silages of Sorghum IPA 2502 Irigated with Different Leaching Fractions of Brackish Water" Grasses 2, no. 2: 68-77. https://doi.org/10.3390/grasses2020007