Influence of Slow- or Fast-Release Nitrogen in Xaraés Grass under Tropical Conditions
Abstract
:1. Introduction
2. Material and Methods
2.1. Location of the Experiment and Climatic Conditions
2.2. Experimental Design
2.3. Grazing Management
2.4. Forage Accumulation and Production, Regrowth Days, and Dead Material
2.5. Nitrogen Utilization Efficiency
2.6. Statistical Analysis
3. Results
4. Discussion
4.1. Forage Accumulation and Production
4.2. Nitrogen Utilization Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aleman, C.C.; Rampazo, E.M.; Marques, T.A. Growth rate for the Brachiaria brizantha cv. xaraés and Brachiaria brizantha cv. marandu under fertirrigation nitrogen. Irriga 2016, 1, 23. [Google Scholar] [CrossRef]
- Cabral, W.B.; Souza, A.L.D.; Alexandrino, E.; Toral, F.L.B.; Santos, J.N.D.; Carvalho, M.V.P.D. Structural characteristics and agronomic traits of Brachiaria brizantha cv. Xaraés subjected to nitrogen levels. Rev. Bras. Zootec. 2012, 41, 846–855. [Google Scholar] [CrossRef]
- Garcez, T.B.; Monteiro, F.A. Nitrogen use of Panicum and Brachiaria cultivars vary with nitrogen supply: I. differences in plant growth. Aust. J. Crop Sci. 2016, 10, 614–621. [Google Scholar] [CrossRef]
- Martuscello, J.A.; Faria, D.J.G.; Cunha, D.D.N.F.V.D.; Fonseca, D.M.D. Nitrogen fertilization and dry matter partition in xaraes grass and massai grass. Ciênc. E Agrotecnol. 2009, 33, 663–667. [Google Scholar] [CrossRef]
- Guimarães, G.G.; Mulvaney, R.L.; Cantarutti, R.B.; Teixeira, B.C.; Vergütz, L. Value of copper, zinc, and oxidized charcoal for increasing forage efficiency of urea N uptake. Agric. Ecosyst. Environ. 2016, 224, 157–165. [Google Scholar] [CrossRef]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Bortoletto-Santos, R.; Guimarães, G.G.F.; Roncato Junior, V.; Cruz, D.F.; Polito, W.L.; Ribeiro, C. Biodegradable oil-based polymeric coatings on urea fertilizer: N release kinetic transformations of urea in soil. Sci. Agric. 2020, 77, e20180033. [Google Scholar] [CrossRef]
- Suter, H.; Sultana, H.; Turner, D.; Davies, R.; Walker, C.; Chen, D. Influence of urea fertilizer formulation, urease inhibitor and season on ammonia loss from ryegrass. Nutr. Cycl. Agroecosyst. 2013, 95, 175–185. [Google Scholar] [CrossRef]
- Gao, W.L.; Yang, H.; Kou, L.; Li, S.G. Effects of nitrogen deposition and fertilization on N transformations in forest soils: A review. J. Soils Sediments 2015, 15, 863–879. [Google Scholar] [CrossRef]
- Carmona, G.; Christianson, C.B.; Byrnes, B.H. Temperature and low concentration effects of the urease inhibitor N-(n-butyl) thiophosphoric triamide (n-BTPT) on ammonia volatilization from urea. Soil Biol. Biochem. 1990, 22, 933–937. [Google Scholar] [CrossRef]
- Watson, C.J.; Laughlin, R.J.; McGeough, K.L. Modification of nitrogen fertilizers using inhibitors: Opportunities and potentials for improving nitrogen use efficiency. In Proceedings of the International Fertiliser Society, Colchester, UK, January 2009; Available online: https://fertiliser-society.org/store/modification-of-nitrogen-fertilisers-using-inhibitors-opportunities-and-potentials-for-improving-nitrogen-use-efficiency/ (accessed on 15 December 2022).
- Halvorson, A.D.; Snyder, C.S.; Blaylock, A.D.; Del Grosso, S.J. Enhanced-efficiency nitrogen fertilizers: Potential role in nitrous oxide emission mitigation. Agron. J. 2014, 106, 715–722. [Google Scholar] [CrossRef]
- Silva, A.G.B.; Sequeira, C.H.; Sermarini, R.A.; Otto, R. Urease Inhibitor NBPT on Ammonia Volatilization and Crop Productivity: A Meta-Analysis. Agron. J. 2017, 109, 1–13. [Google Scholar] [CrossRef]
- Cantarella, H.; Trivelin, P.C.O.; Contin, T.L.M.; Dias, F.L.F.; Rossetto, R.; Marcelino, R.; Coimbra, R.B.; Quaggio, J.A. Ammonia volatilization from urease inhibitor-treated urea applied to sugarcane trash blankets. Sci. Agric. 2008, 65, 397–401. [Google Scholar] [CrossRef]
- Soares, J.R.; Cantarella, H.; Menegale, M.L.C. Ammonia volatilization losses from surface-applied urea with urease and nitrification inhibitors. Soil Biol. Biochem. 2012, 52, 82–89. [Google Scholar] [CrossRef]
- Chagas, P.H.M.; Gouveia, G.C.C.; Costa, G.G.S.; Barbosa, W.F.S.; Alves, A.C. Volatilization of ammonia in pasture fertilized with nitrogen sources. Rev. Agric. Neotrop 2017, 4, 76–80. [Google Scholar] [CrossRef]
- Otto, R.; Zavaschi, E.; Souza, G.J.M.D.; Machado, B.D.A.; Mira, A.B.D. Ammonia volatilization from nitrogen fertilizers applied to sugarcane straw. Rev. Ciênc. Agronôm. 2017, 48, 413–418. [Google Scholar] [CrossRef]
- Mariano, E.; Sant Ana Filho, C.R.; Bortoletto-Santos, R.; Bendassoli, J.A.; Trivelin, P.C.O. Ammonia losses following surface application of enhanced-efficiency nitrogen fertilizers and urea. Atmos. Environ. 2019, 203, 242–251. [Google Scholar] [CrossRef]
- Espindula, M.C.; Rocha, V.S.; Souza, M.A.; Capanharo, M.; Paula, G.S. Rates of urea with or without urease inhibitor for topdressing wheat. Chil. J. Agric. Res. 2013, 73, 160–167. [Google Scholar] [CrossRef]
- Zavaschi, E.; Faria, L.D.A.; Vitti, G.C.; Nascimento, C.A.D.C.; Moura, T.A.D.; Vale, D.W.D.; Mendes, F.L.; Kamogawa, M.Y. Ammonia volatilization and yield components after application of polymer-coated urea to maize. Rev. Bras. Cienc. Solo 2014, 38, 1200–1206. [Google Scholar] [CrossRef]
- Silveira, M.L.; Vendramini, J.M.B.; Sellers, B.; Monteiro, F.A.; Artur, A.G.; Dupas, E. Bahiagrass response and N loss from selected N fertilized sources. Grass Forage Sci. 2015, 70, 154–160. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Schraml, M.; Gutser, R.; Maier, H.; Schmidhalter, U. Ammonia loss from urea in grassland and its mitigation by the new urease inhibitor 2-NPT. J. Agric. Sci. 2016, 154, 1453–1462. [Google Scholar] [CrossRef]
- Costa, N.L.; Paulino, V.T.; Magalhães, J.A.; Rodrigues, B.H.N.; Santos, F.J.S. Nitrogen use efficiency, forage yield and morphogenesis of massai grass under fertilization. Nucleus 2016, 13, 173–182. [Google Scholar] [CrossRef]
- Moniz, A.C.; Jorge, J.A.; Valadares, J.M.A.S. Métodos de Análise Química, Mineralógica e Física de Solos do Instituto Agronômico de Campinas. Inst. Agronômico Camp. 2009, 106, 77. [Google Scholar]
- Pedreira, B.C.; Pedreira, C.G.S.; Silva, S.C. Herbage accumulation during regrowth of Xaraés palisade grass submitted to rotational stocking strategies. Rev. Bras. Zootec. 2009, 38, 618–625. [Google Scholar] [CrossRef]
- Sousa, B.M.D.L.; Nascimento, D.D., Jr.; Rodrigues, C.S.; Monteiro, H.C.D.F.; Silva, S.C.D.; Fonseca, D.M.D.; Sbrissia, A.F. Morphogenesis and structural characteristics of grass Xaraés under different intensities of court. Rev. Bras. Zootec. 2011, 40, 53–59. [Google Scholar] [CrossRef]
- Pequeno, D.N.L. Intensidade como condicionante da estrutura do dossel e da assimilação de carbono de pastos de capim Xaraés [Brachiaria brizantha (A. Rich) Stapf. cv. Xaraés] sob lotação continua. Master’s Thesis, Escola Superior de Agricultura Luiz de Queiroz—ESALQ, Piracicaba, Brazil, 25 February 2010; p. 75. [Google Scholar]
- Mislevy, P.; Mott, G.O.; Martin, F.G. Screening Perennial Forages by Mob Grazing Technique. In Proceedings of the the XIV International Grassland Congress; Smith, J.A., Hays, V.W., Eds.; Westview Press: Boulder, CO, USA; Lexington, KY, USA, 1981; pp. 516–519. [Google Scholar]
- Bircham, J.S.; Hodgson, J. The influence of sward condition on rates of herbage growth and senescence in mixed swards under continuous stocking management. Grass Forage Sci. 1983, 8, 323–331. [Google Scholar] [CrossRef]
- T’mannetje, L. Measuring biomass of grassland vegetation. In Field and Laboratory Methods for Grassland and Animal Production Research; T’Mannetje, L., Jones, R.M., Eds.; CABI: Cambridge, UK, 2000; pp. 51–178. [Google Scholar]
- Grant, A.S.; Marriott, C.A. Detailed studies of grazed sward-techniques and conclusions. J. Agric. Sci. 1994, 122, 1–6. [Google Scholar] [CrossRef]
- Marten, G.C.; Shenk, J.S.; Barton II, F.E. Near-Infrared Reflectance Spectroscopy (NIRS), Analysis of Forage Quality; ARS (Agriculture Handbook, 643); USDA: Washington, DC, USA, 1985; p. 110. [Google Scholar]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient use efficiency in plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Creason, G.L.; Schmitt, M.R.; Douglas, E.A.; Hendrickson, L.L. Urease inhibitory activity associated with N-(n-butyl) thiophosphoric triamide is due to formation of its oxon analog. Soil Biol. Biochem. 1990, 22, 209–211. [Google Scholar] [CrossRef]
- Manunza, B.; Deiana, S.; Pintore, M.; Gessa, C. The binding mechanism of urea, hydroxamic acid and N-(N-butyl)-phosphoric triamide to the urease active site. A comparative molecular dynamics study. Soil Biol. Biochem 1999, 31, 789–796. [Google Scholar] [CrossRef]
- Engel, R.; Williams, E.; Wallander, R.; Hilmer, J. Apparent Persistence of N-(-butyl) Thiophosphoric Triamide Is Greater in Alkaline Soils. Soil Sci. Soc. Am. J. 2013, 77, 1424. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Z.; Du, J.; He, A.; Yang, H.; Xue, G.; Yu, C.; Zhang, Y. Adding NBPT to urea increases N use efficiency of maize and decreases the abundance of N-cycling soil microbes under reduced fertilizer-N rate on the North China Plain. PLoS ONE 2020, 15, e0240925. [Google Scholar] [CrossRef] [PubMed]
- Engel, R.E.; Towey, B.D.; Gravens, E. Degradation of the urease inhibitor NBPT as affected by soil pH. Soil Sci. Soc. Am. J. 2015, 79, 1674–1683. [Google Scholar] [CrossRef]
- Linquist, B.A.; Liu, L.; van Kessel, C.; van Groenigen, K.J. Enhanced efficiency nitrogen fertilizers for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Res. 2013, 154, 246–254. [Google Scholar] [CrossRef]
- Suter, H.C.; Pengthamkeerati, P.; Walker, C.; Chen, D. Influence of temperature and soil type on inhibition of urea hydrolysis by N-(n-butyl) thiophosphoric triamide in wheat and pasture soils in south-eastern Australia. Soil Res. 2010, 49, 315–319. [Google Scholar] [CrossRef]
- Tasca, F.A.; Ernani, P.R.; Rogeri, D.A.; Gatiboni, L.C.; Cassol, P.C. Ammonia volatilization following soil application of conventional urea or urea with urease inhibitor. Rev. Bras. Cienc. Solo 2011, 35, 493–502. [Google Scholar] [CrossRef]
- Mira, A.B.; Cantarella, H.; Souza-Netto, G.J.M.; Moreira, L.A.; Kamogawa, M.Y.; Otto, R. Optimizing urease inhibitor usage to reduce ammonia emission following urea application over crop residues. Agric. Ecosyst Environ. 2017, 248, 105–112. [Google Scholar] [CrossRef]
- Cantarutti, R.B.; Martins, C.E.; Carvalho, M.M.; Fonseca, D.M.; Arruda, M.L.; Vilela Oliveira, F.T.T. Pastagens. In Recomendações Para O Uso de Corretivos E Fertilizantes Em Minas Gerais; Comissão de Fertilidade do Solo do Estado de Minas Gerais: Viçosa, Brazil, 1999; p. 359. [Google Scholar]
- Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E.; Ludkiewicz, M.G.Z. Application of different nitrogen doses to increase nitrogen efficiency in Mombasa guinea grass (Panicum maximum cv. mombaça) at dry and rainy seasons. Aust. J. Crop Sci. 2017, 11, 1657–1664. [Google Scholar] [CrossRef]
- Delevatti, L.M.; Cardoso, A.S.; Barbero, R.P.; Leite, R.G.; Romanzini, E.P.; Ruggieri, A.C.; Reis, R.A. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 2019, 9, 7596. [Google Scholar] [CrossRef]
- Janusckiewicz, E.R. 2011. Compostos de reserva das plantas e atividade enzimática do solo em pastos de Brachiaria manejados sob ofertas de forragem e lotação rotacionada. Ph.D. Thesis, Universidade Estadual Paulista—UNESP, Rio Claro, Brazil, 28 July 2011; p. 162. [Google Scholar]
- Cruz, P.; Boval, M.C. Effect of nitrogen on some morphogenetical traits of temperate and tropical perennial forage grasses. In Grassland Ecophysiology and Grazing Ecology Symposium; UFPR: Curitiba, Brazil, 1999; pp. 134–150. [Google Scholar]
- Germano, L.H.E.; Vendruscolo, M.C.; Daniel, D.F.; Dalbianco, A.B. Productivity and agronomic characteristics of Brachiaria brizantha cv. Paiaguás exposed to different nitrogen doses under cutting. Bol. Ind. Anim. 2018, 75, 1–14. [Google Scholar] [CrossRef]
- Galindo, F.S.; Buzetti, S.; Teixeira Filho, M.C.M.; Dupas, E.; Ludkiewicz, M.G.Z. Dry matter and nutrients accumulation in mombasa guineagrass in function of nitrogen fertilization management. Rev. Agric. Neotrop. 2018, 5, 1–9. [Google Scholar] [CrossRef]
- Bonfim-Silva, E.M.; Monteiro, F.A. Nitrogen and sulphur in the fertilization and in diagnostic leaves and in degrading roots of signal grass. Rev. Bras. Zootec. 2010, 39, 1641–1649. [Google Scholar] [CrossRef]
- Martha Junior, G.B.; Vilela, L.; Barioni, L.G.; Sousa, D.M.G.; Barcellos, A.O. Manejo da adubação nitrogenada em pastagem. In Simpósio Sobre Manejo Da Pastagem; FEALQ: Piracicaba, Brazil, 2004; pp. 155–215. [Google Scholar]
Item | Source | Season | Dose (kg/ha/year) | SEM | ||||||
---|---|---|---|---|---|---|---|---|---|---|
NBPT | Urea | Rainy | Dry | Transition | 0 | 80 | 160 | 240 | ||
Regrowth days | 50.41 | 50.60 | 33.18 | 94.04 | 24.29 | 54.20 | 50.46 | 48.91 | 48.43 | 0.55 |
Forage accumulation (kg DM/ha/day) | 52.35 | 51.45 | 59.19 | 11.89 | 84.62 | 34.29 | 48.79 | 51.35 | 73.15 | 3.11 |
Percentage of dead material | 29.54 | 29.69 | 17.13 | 51.27 | 20.45 | 33.26 | 30.24 | 27.69 | 27.28 | 2.58 |
p-Value | ||||||||||
Source (S) | Season (P) | Dose (D) | S × D | S × P | P × D | S × P × D | ||||
Regrowth days | 0.6535 | <0.0001 | <0.0001 | 0.7024 | 0.0720 | <0.0001 | 0.0534 | |||
Forage accumulation | 0.7892 | <0.0001 | <0.0001 | 0.4654 | 0.7050 | <0.0001 | 0.8505 | |||
Percentage of dead material | 0.8723 | <0.0001 | <0.0001 | 0.9545 | 0.1204 | <0.0001 | 0.3441 |
Season | Dose (kg/ha/year) | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 80 | 160 | 240 | Linear | Quadratic | ||
Forage accumulation per day (kg DM/ha/day) | |||||||
Rainy | 42.1 a | 53.6 b | 63.4 a | 77.7 b | 5.33 | <0.0001 1 | 0.1147 |
Dry | 11.7 b | 13.7 c | 10.5 b | 11.6 c | 0.47 | 0.8939 | 0.9295 |
Transition | 49.1 a | 79.1 a | 80.1 a | 130.1 a | 11.90 | <0.0001 2 | 0.8033 |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
Percentage of dead material | |||||||
Rainy | 24.5 b | 15.0 c | 16.0 b | 13.1 b | 1.78 | <0.0001 3 | 0.0784 |
Dry | 46.8 a | 54.5 a | 50.1 a | 53.7 a | 1.25 | 0.1833 | 0.2580 |
Transition | 28.6 b | 21.3 b | 17.0 b | 15.0 b | 2.12 | <0.0001 4 | 0.1605 |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | |||
Regrowth days | |||||||
Rainy | 41.6 b | 32.4 b | 29.8 b | 28.9 b | 2.05 | <0.0001 | 0.0046 5 |
Dry | 91.7 a | 94.3 a | 95.2 a | 95.0 a | 0.57 | 0.0017 6 | 0.0629 |
Transition | 29.3 c | 24.7 c | 21.7 c | 21.4 c | 1.30 | <0.0001 | <0.0001 7 |
p-Value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Source (S) | Dose (D) | SEM | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Source | Dose | S × D | |||||||||
Item | Urea | NBPT | 0 | 80 | 160 | 240 | Linear | Quadratic | |||
FP | 15,374 | 15,504 | 9825 | 15,050 | 16,667 | 20,217 | 830.30 | 0.8905 | 0.0001 1 | 0.3833 | 0.8726 |
NA | 205.6 | 212.0 | 125.9 | 184.2 | 226.3 | 298.9 | 10.88 | 0.5778 | 0.0001 2 | 0.5389 | 0.8205 |
NER | 76.9 | 74.6 | 80.4 | 81.5 | 73.6 | 67.7 | 2.45 | 0.8964 | 0.0292 3 | 0.1649 | 0.8731 |
EAN | 50.3 | 50.6 | - | 65.3 | 42.8 | 43.3 | 5.46 | 0.9603 | 0.0013 4 | 0.1376 | 0.8321 |
RNE | 66.5 | 75.9 | - | 76.4 | 64.2 | 73.0 | 6.58 | 0.2801 | - | - | 0.4840 |
PE | 78.2 | 65.4 | - | 90.3 | 65.9 | 59.3 | 4.99 | 0.0695 | 0.0121 5 | 0.1521 | 0.0619 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, C.S.; Matos, L.H.A.d.; Pina, D.d.S.; Leite, V.M.; Silva, P.d.A.; Silva, R.R.; Pereira, T.C.d.J.; Alba, H.D.R.; Carvalho, G.G.P.d. Influence of Slow- or Fast-Release Nitrogen in Xaraés Grass under Tropical Conditions. Grasses 2023, 2, 47-56. https://doi.org/10.3390/grasses2010005
Rodrigues CS, Matos LHAd, Pina DdS, Leite VM, Silva PdA, Silva RR, Pereira TCdJ, Alba HDR, Carvalho GGPd. Influence of Slow- or Fast-Release Nitrogen in Xaraés Grass under Tropical Conditions. Grasses. 2023; 2(1):47-56. https://doi.org/10.3390/grasses2010005
Chicago/Turabian StyleRodrigues, Carlindo S., Luís H. A. de Matos, Douglas dos S. Pina, Vagner M. Leite, Paula de A. Silva, Robério R. Silva, Taiala C. de J. Pereira, Henry D. R. Alba, and Gleidson G. P. de Carvalho. 2023. "Influence of Slow- or Fast-Release Nitrogen in Xaraés Grass under Tropical Conditions" Grasses 2, no. 1: 47-56. https://doi.org/10.3390/grasses2010005
APA StyleRodrigues, C. S., Matos, L. H. A. d., Pina, D. d. S., Leite, V. M., Silva, P. d. A., Silva, R. R., Pereira, T. C. d. J., Alba, H. D. R., & Carvalho, G. G. P. d. (2023). Influence of Slow- or Fast-Release Nitrogen in Xaraés Grass under Tropical Conditions. Grasses, 2(1), 47-56. https://doi.org/10.3390/grasses2010005