New Facets of Hematolymphoid Eponymic Diseases
Abstract
:1. Introduction
2. Hematolymphoid Non-Neoplastic Eponymic Diseases
2.1. Castleman Disease (CD)
2.1.1. Epidemiology and Pathogenesis
2.1.2. Classification of CD
- Unicentric CD (UCCD), when the disease is localized to one lymph node or a single lymph node station. This accounts for 50–70% of CD.
- Multicentric CD (MCCD), when the disease affects multiple lymph nodes or lymph node stations, including the following:
- (a)
- POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes)-associated CD.
- (b)
- iMCCD.
- (i)
- iMCCD-TAFRO (thrombocytopenia, ascites, reticulin fibrosis, renal dysfunction, organomegaly). This is a severe form of MCCD.
- (ii)
- iMCCD, not otherwise specified (NOS).
- (c)
- KSHV/HHV8-associated MCCD.
- (i)
- Human immunodeficiency virus (HIV) negative.
- (ii)
- HIV positive.
2.1.3. Pathology
- (a)
- Hyaline vascular (HV) pattern
- (b)
- Plasma cell (PC) pattern
- (c)
- Mixed pattern
- (d)
- Histologic variants
2.1.4. Diagnosis and Differential Diagnosis
- (i)
- KSHV/HHV8-associated MCCD—Positive HHV8 testing.
- (ii)
- iMCCD-TAFRO—Associated TAFRO signs and symptoms (thrombocytopenia, anarsaca, fever, renal insufficiency, organomegaly) and negative for KSHV/HHV8 and HIV.
- (iii)
- POEMS-MCCD—Associated POEM syndrome and monoclonal gammopathy, and negative for KSHV/HHV8 and HIV.
2.1.5. Treatment and Outcome
- -
- iMCCD: Anti-IL-6-directed therapy, with about one third of patients responding. Steroids, chemotherapy, rituximab, immunomodulators, intravenous immunoglobulins, and thalidomide applied singly or in combination may be required in anti-IL6 non-responders and very ill patients.
- -
- POEM-MCCD: When no bone lesions, iMCCD-like therapy.
- -
- When bone lesions present, myeloma type therapy.
- -
- HHV8 + MCCD: Anti-retrovirus therapy, rituximab.
2.1.6. Secondary Malignancies
2.2. Evans Syndrome (ES)
2.3. Kikuchi/Kikuchi–Fujimoto Disease (KFD)
2.4. Kuttner’s Disease—KT, Mikulicz’s Disease—MD, Ormond’s Disease—OD, Riedel’s Thyroiditis—RT (IgG4-Related Diseases)
Pathogenesis, Etiology, and Proposed Classification
3. Hematolymphoid Neoplastic Eponymic Diseases
3.1. Histiocytic/Dendritic Cell Neoplasm
3.1.1. Langerhans Cell Histiocytosis (LCH—Including HPD, HSCD and LSD)
Pathology
Treatment and Prognosis
3.1.2. Langerhans Cell Sarcoma (LCS)
Pathology
Treatment and Prognosis
3.1.3. Erdheim–Chester Disease (ECD)
Pathology
Treatment and Prognosis
3.1.4. Rosai-Dorfman Disease (RDD)
Pathology
Pathogenesis and Etiology
Classification
Prognosis
3.2. Hodgkin Lymphoma (HL)
3.2.1. Classic HL (CHL)
Pathogenesis and Etiology
Pathology
Prognosis and Treatment
3.2.2. Nodular Lymphocyte Predominant CHL (NLPHL)
Pathogenesis and Etiology
Pathology
Prognosis and Treatment
3.3. Burkitt Lymphoma (BL)
3.3.1. Pathology
3.3.2. Prognosis and Treatment
3.4. Stewart Granuloma (SG)
3.4.1. Etiology and Pathogenesis
3.4.2. Pathology
3.4.3. Treatment and Prognosis
3.5. Sezary Syndrome (SS)
3.5.1. Etiology and Pathogenesis
3.5.2. Pathology
3.5.3. Prognosis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anoymous. Classification and nomenclature of morphological defects. Lancet 1975, 305, 513. [Google Scholar] [CrossRef]
- Castleman, B.; Ivenon, L.; Menendez, V.P. Localized mediastinal lymph node hyperplasia resembling thymoma. Cancer 1956, 9, 822–830. [Google Scholar] [CrossRef] [PubMed]
- Keller, A.R.; Hochholzer, L.; Castleman, B. Hyaline vascular and plasma-cell types of giant lymph node hyperplasia of the mediastinum and other locations. Cancer 1972, 29, 670–683. [Google Scholar] [CrossRef]
- van Rhee, F.; Stone, K.; Szmania, S.; Barlogie, B.; Singh, Z. Castleman disease in the 21st century: An update on diagnosis, assessment, and therapy. Clin. Adv. Hematol. Oncol. 2010, 8, 486–498. [Google Scholar] [PubMed]
- Dispenzieri, A.; Fajgenbaum, D. Overview of Castleman disease. Blood 2020, 135, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lim, M.S.; Jaffe, E.S. Pathology of Castleman disease. Hematol. Oncol. Clin. N. Am. 2018, 32, 37–52. [Google Scholar] [CrossRef]
- WHO Classification of Tumours Editorial Board. WHO Classification of Tumours. Haematolymphoid Tumours, 5th ed.; Beta version ahead of print; International Agency for Research on Cancer: Lyon, French, 2024; Volume 11, Available online: https://tumourclassification.iarc.who.int (accessed on 9 February 2025).
- Chang, K.C.; Wang, Y.C.; Hung, L.Y.; Huang, W.T.; Tsou, J.H.; Jones, D.M.; Song, H.L.; Yeh, Y.M.; Kao, L.Y.; Medeiros, S.L.J.; et al. Monoclonality and cytogenetic abnormality in hyaline vascular Castleman disease. Mod. Pathol. 2014, 27, 823–831. [Google Scholar] [CrossRef]
- Li, Z.; Lan, X.; Li, C.; Zhang, Y.; Wang, Y.; Xue, W.; Lu, L.; Jin, M.; Zhou, Z.; Wang, X.; et al. Recurrent PDGFRB mutations in unicentric Castleman disease. Leukemia 2019, 33, 1035–1038. [Google Scholar] [CrossRef]
- Butzmann, A.; Kumar, J.; Sridhar, K.; Gallapudi, S.; Ohgami, R.S. A review of genetic abnormalities in unicentric and multicentric Castleman disease. Biology 2021, 10, 251. [Google Scholar] [CrossRef]
- Goodman, A.M.; Jeong, A.; Philips, A.; Wang, H.Y.; Sokol, E.S.; Cohen, P.R.; Sicklick, J.; Fajgenbaum, D.C.; Kurzrock, R. Novel somatic alterations in unicentric and idiopathic multicentric Castleman disease. Eur. J. Haematol. 2021, 107, 642–649. [Google Scholar] [CrossRef]
- Nishimoto, N.; Karakura, Y.; Aozasa, K.; Johkoh, T.; Nakamura, M.; Nakano, S.; Nakano, N.; Ikeda, Y.; Saski, T.; Nishioka, K.; et al. Humanized anti-interleukin 6 receptor antibody treatment of multicentric Castleman disease. Blood 2005, 106, 2627–2632. [Google Scholar] [CrossRef] [PubMed]
- van Rhee, F.; Fayad, L.; Voorhee, P.; Furman, R.; Lonial, S.; Borghaei, H.; Sokol, L.; Crawford, J.; Cornfeld, M.; Qi, M.; et al. Situximab, a novel anti-interleukin 6 monoclonal antibody for Castleman disease. J. Clin. Oncol. 2010, 28, 3701–3708. [Google Scholar] [CrossRef]
- van Rhee, F.; Oksenhendler, E.; Sokalovic, G.; Voorhees, P.; Lim, M.; Dispenzieri, A.; Ide, M.; Parente, S.; Schey, S.; Streetly, M.; et al. International evidence-based consensus diagnostic and treatment guidelines for unicentric Castleman disease. Blood. Adv. 2020, 4, 6039–6050. [Google Scholar] [CrossRef]
- Suda, T.; Katano, H.; Delso, G.; Kakiuchi, C.; Nakamura, T.; Shiota, M.; Sata, T.; Higashihara, M.; Mori, S. HHV-8 infection status of AIDS-unrelated and AIDS-associated multicentric Castleman disease. Pathol. Int. 2001, 51, 671–679. [Google Scholar] [CrossRef]
- Liu, A.Y.; Nabel, C.S.; Finkelman, B.S.; Ruth, J.R.; Kurzrock, R.; van Rhee, F.; Krymskaya, V.P.; Kelleher, D.; Rubenstein, A.H.; Fajgenbaum, D.C. Idiopathic multicentric Castleman disease: A systematic literature review. Lancet Haematol. 2016, 3, e163–e175. [Google Scholar] [CrossRef] [PubMed]
- Lin, O.; Frizzera, G. Angiomyoid and follicular dendritic cell proliferative lesions in Castleman disease of hyaline-vascular type: A study of 10 cases. Am. J. Surg. Pathol. 1997, 21, 1295–1306. [Google Scholar] [CrossRef]
- Izumi, M.; Mochizuki, M.; Kuroda, M.; Iwaya, K.; Mukai, K. Angiomyoid proliferative lesion: An unusual stroma-rich variant of Castleman disease of hyaline-vascular type. Virchow. Arch. 2002, 441, 400–405. [Google Scholar] [CrossRef]
- Walsh-Jahake, R.; Cui, W.; Zhang, D. Late recurrence of Castleman’s disease with mixed angiomyoid, histiocytic reticulum cell, follicular dendritic cell stroma-rich proliferations: A case report and review of the literature. J. Hematop. 2015, 8, 43–47. [Google Scholar] [CrossRef]
- Chan, J.K.C.; Tsang, W.Y.; Ng, C.S. Follicular dendritic cell tumor and vascular neoplasm complicating hyaline-vascular Castleman disease. Am. J. Surg. Pathol. 1994, 18, 517–525. [Google Scholar] [CrossRef]
- Chan, J.K.C.; Luk, S.C.; Ho, P.L. Stroma-rich Castleman’s disease with superimposed Kikuchi’s lymphadenitis-like changes. Int. J. Surg. Pathol. 1997, 4, 197–202. [Google Scholar] [CrossRef]
- Evans, R.S.; Takahashi, K.; Duane, R.T.; Payne, R.; Liu, C.K. Primary thrombocytopenic purpura and acquired hemolytic anemia. AMA Arch. Intern. Med. 1951, 87, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Miichel, M.; Chanet, V.; Dechartes, A.; Morin, A.-S.; Piette, J.-C.; Cirasino, L.; Emilia, G.; Zaja, F.; Ruggeri, M.; Andres, E.; et al. The spectrum of Evans syndrome in adults: New insight into the disease based on the analysis of 68 cases. Blood 2009, 114, 3167–3172. [Google Scholar] [CrossRef]
- Kumar, D.; Prince, C.; Bennett, C.M.; Briones, M.; Lucas, L.; Russell, A.; Patel, K.; Chonat, S.; Graciaa, S.; Edington, H.; et al. T-follicular helper cell expansion and chronic T-cell activation are characteristic immune anomalies in Evans Syndrome. Blood 2022, 139, 369–383. [Google Scholar] [CrossRef]
- Hadjadj, J.; Aladjidi, N.; Fermandes, H.; members of the French Reference Center for Pediatric Autoimmune Cytopenias (CEREVANCE). Pediatric Evans Syndrome is associated with a high frequency of potentially damaging variants in immune genes. Blood 2019, 134, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M. Lymphadenitis showing focal reticulum cell hyperplasia with nuclear debris and phagocytosis. Nippo N Ketsueki Gakki Zashi 1972, 35, 379–380. [Google Scholar]
- Fujimoto, Y.; Koyima, Y.; Yamaguchi, K. Cervical subacute necrotizing lymphadenitis. Naika 1972, 30, 920–927. [Google Scholar]
- Kuo, T.T. Kikuchi’s disease (Histiocytic necrotizing lymphadenitis). A clinicopathologic study of 79 cases with an analysis of histologic subtypes, immunohistology and DNA ploidy. Am. J. Surg. Pathol. 1995, 19, 798–809. [Google Scholar] [CrossRef]
- Pileri, S.; Kikuchi, M.; Helbron, D.; Lennert, K. Histiocytic necrotizing lymphadenitis without granulocytic infiltration. Virchow. Arch. A Pathol. Anat. 1982, 395, 257–271. [Google Scholar] [CrossRef]
- Papadimitriou, C.S.; Rapacharalampous, N.X. Histiocytic necrotizing lymphadenitis without granulocytic infiltration. Arch. Pathol. Lab. Med. 1985, 109, 107–108. [Google Scholar]
- Dorfman, R.F.; Berry, G.J. Kikuchi’s histiocytic necrotizing lymphadenitis: An analysis of 108 cases with emphasis on differential diagnosis. Sem. Diagn. Pathol. 1988, 5, 329–345. [Google Scholar]
- Tsang, W.Y.W.; Chan, J.K.C.; Ng, C.S. Kikuchi’s lymphadenitis. A morphologic analysis of 75 cases with special reference to unusual features. Am. J. Surg. Pathol. 1994, 18, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Tsang, W.Y.W.; Chan, J.K.C. Fine-needle aspiration cytologic diagnosis of Kikuchi’s lymphadenitis: A report of 27 cases. Am. J. Clin. Pathol. 1994, 102, 454–458. [Google Scholar] [CrossRef]
- Deaven, D.; Horna, P.; Cualing, H.; Soloi, L. Pathogenesis, diagnosis and management of Kikuchi-Fujimoto disease. Cancer Control. 2014, 21, 313–321. [Google Scholar] [CrossRef]
- Yu, F.; Ba, X.; Yang, H.; Huang, K.; Zhang, Y.; Zhang, H.; Xu, L.; Wang, J.; Wang, L.; Wang, Z.; et al. Kikuchi disease with an exuberant proliferation of large T-cells: A study of 25 cases that can mimic T-cell lymphoma. Histopathology 2023, 82, 340–353. [Google Scholar] [CrossRef]
- Yamamoto, M.; Takahashi, H.; Ohara, M.; Suzuki, C.; Naishiro, Y.; Yamamoto, H.; Shinomura, Y.; Imai, K. A new conceptualization for Mikulicz’s diseases as an IgG4-related plasmacytic disease. Mod. Rheumatol. 2006, 16, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, V.S.; Mattoo, H.; Deshpande, V.; Pillai, S.S.; Stone, J.H. IgG4-related disease. Ann. Rev. Pathol. 2014, 9, 315–347. [Google Scholar] [CrossRef]
- Hamano, H.; Kawa, S.; Horiuchi, A.; Unno, H.; Furuya, N.; Akamatsu, T.; Fukushima, M.; Nikaido, T.; Nakayama, K.; Usuda, N.; et al. High serum IgG4 concentrations in patients with sclerosing pancreatitis. N. Eng. J. Med. 2001, 344, 732–738. [Google Scholar] [CrossRef]
- Kamisawa, T.; Funata, N.; Hayashi, Y.; Eishi, Y.; Koike, M.; Tsuruta, K.; Okamoto, A.; Egawa, N.; Nakajima, H. A new clinicopathological entity of IgG4-related autoimmune disease. J. Gastroenterol. 2003, 38, 982–984. [Google Scholar] [CrossRef]
- Cheuk, W.; Chan, J.K.C. IgG4-related sclerosing disease. A critical appraisal of an evolving clinicopathologic entity. Adv. Anat. Pathol. 2010, 17, 303–332. [Google Scholar] [CrossRef]
- Deshpande, V.; Zea, Y.; Chan, J.K.C.; Yi, E.E.; Sato, Y.; Yoshino, Y.; Kloppel, G.; Heathcote, J.G.; Khosroshahi, A.; Ferry, J.A.; et al. Consensus statement on the pathology of IgG4-related disease. Mod. Pathol. 2012, 25, 1181–1192. [Google Scholar] [CrossRef]
- Umehara, H.; Okazaki, K.; Kawa, S.; Takahashi, H.; Goto, H.; Matsui, S.; Ishizaka, N.; Akamizu, T.; Sato, Y.; Kawano, M.; et al. The 2020 revised comprehensive diagnostic (RCD) criteria for IgG4-RD. Mod. Rheumatol. 2021, 31, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.G.; Ng, C.S.; Yin, W. A comparative study of Kimura’s disease and IgG4-related disease: Similarities, differences and overlapping features. Histopathology 2021, 79, 801–809. [Google Scholar] [CrossRef]
- Nehring, P.; Przybytkowski, A. Think twice before operating on a pancreatic mass: Could it be IgG4-related disease? Lancet 2020, 395, 816. [Google Scholar] [CrossRef] [PubMed]
- Saavedra-Perez, D.; Vaquero, E.C.; Ayuso, J.R.; Fernandez-Cruz, L. Autoimmune pancreatitis: A surgical dilemma. Cir. Esp. 2014, 92, 645–653. [Google Scholar] [CrossRef]
- Shiokawa, M.; Kodama, Y.; Sekiguchi, K.; Kuwada, T.; Tomono, T.; Kuriyama, K.; Yamzaki, H.; Morita, T.; Marui, S.; Sogabe, Y.; et al. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci. Transl. Med. 2018, 10, eaaq0997. [Google Scholar] [CrossRef]
- Hubers, L.M.; Vos, H.; Schuurman, A.L.; Erken, R.; Elferink, R.P.O.; Burgering, B.; van de Graaf, S.F.J.; Beuers, U. Annexin A11 is targeted by IgG4 and IgG1 autoantibodies in IgG4-related disease. Gut 2018, 67, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Munemura, R.; Maehara, T.; Murakami, Y.; Koga, R.; Aoyagi, R.; Kaneko, N.; Doi, A.; Perugino, C.A.; Della-Torre, E.; Saeki, T.; et al. Distinct disease-specific Tfh cell populations in 2 different fibrotic diseases: IgG4-related disease and Kimura disease. J. Allergy Clin. Immunol. 2022, 150, 440–455. [Google Scholar] [CrossRef]
- Jarrell, J.; Baker, M.C.; Perugino, C.A.; Liu, H.; Bloom, M.S.; Maehar, T.; Wong, H.H.; Lanz, T.V.; Adamska, J.Z.; Kongpachith, S.; et al. Neutralizing anti-IL-1 receptor antagonist autoantibodies include inflammatory and fibrotic mediators in IgG4-related disease. J. Allergy Clin. Immunol. 2022, 149, 358–368. [Google Scholar] [CrossRef]
- Akiyama, M.; Alshehri, W.; Ishigai, S.; Saiti, K.; Kanebo, Y. The immunological pathogenesis of IgG4-related disease categorized by clinical characteristics. Immunol. Med. 2025, 48, 11–23. [Google Scholar] [CrossRef]
- Langerhans, P. Ueber die Nerven der menschlichen Ilaut. Arch. Anat. Physiol. Kin. Med. 1868, 44, 325–338. [Google Scholar] [CrossRef]
- Rowden, G.; Lewis, M.G.; Sullivan, A.K. Ia antigen expression on human epidermal Langerhans cells. Nature 1977, 268, 192–193. [Google Scholar] [CrossRef] [PubMed]
- Kapur, P.; Reickson, C.; Rakheja, D.; Carden, K.R.; Hoang, M.P. Congenital self-healing reticulohistiocytosis (Hashimoto-Pritzker disease): Ten-year experience at Dallas Children’s Medical Center. J. Am. Acad. Derm. 2007, 56, 290–294. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Matubayashi, T.; Koizumi, M. BRAF mutation analysis in two cases of congenital self-healing Langerhans cell histiocytosis. Cureus 2022, 14, e32497. [Google Scholar] [CrossRef] [PubMed]
- Hoeffel, G.; Wang, Y.; Greter, M.; See, P.; Teo, P.; Malleret, B.; Leboeuf, M.; Low, D.; Oller, G.; Almeida, F.; et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 2012, 209, 1167–1181. [Google Scholar] [CrossRef]
- Allen, C.E.; Li, L.; Peters, T.L.; Leung, H.C.E.; Yu, A.; Man, T.K.; Gurusiddappa, S.; Phillips, M.T.; Hicks, M.J.; Gaikwad, A.; et al. Cell-specific gene expression in Langerhans cell histiocytosis lesions reveal a distinct profile compared with epidermal Langerhans cells. J. Immunol. 2010, 184, 4557–4567. [Google Scholar] [CrossRef]
- Kemps, P.G.; Hebeda, K.; Pals, S.T.; Verdijk, R.M.; Lam, K.H.; Bruggink, A.H.; de Lil, H.S.; Ruiterkamp, B.; de Heer, K.; van Laar, J.; et al. Spectrum of histiocytic neoplasms associated with diverse haematological malignancies bearing the same oncogenic mutation. J. Pathol. Clin. Res. 2021, 7, 10–26. [Google Scholar] [CrossRef]
- Badalian-Veoy, G.; Verogilo, J.-A.; Degar, B.A.; MacConaill, L.E.; Brandner, B.; Calicchio, M.L.; Kuo, F.; Ligon, A.H.; Stevenson, K.E.; Kehoe, S.M.; et al. Recurrent BRAF mutations in Langerhans cell histiocytosis. Blood 2010, 116, 1919–1923. [Google Scholar] [CrossRef]
- Yousem, S.A.; Dacic, S.; Nikiforov, Y.E.; Nikiforov, M. pulmonary Langerhans cell histiocytosis: Profiling of multifocal tumors using next-generation sequencing identifies concordant occurrence of BRAFV600E mutations. Chest 2013, 143, 1679–1684. [Google Scholar] [CrossRef]
- Brown, N.A.; Furtado, L.V.; Betz, B.L.; Kiel, M.J.; Weigelin, H.C.; Lim, M.S.; Elenitoba-Johnson, K.C.J. High prevalence of somatic MAP2k1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood 2014, 124, 1655–1658. [Google Scholar] [CrossRef]
- Harmon, C.M.; Brown, N. Langerhans cell histiocytosis. A clinicopathologic review and molecular pathogenetic update. Arc. Pathol. Lab. Med. 2015, 139, 1211–1214. [Google Scholar] [CrossRef]
- Allen, C.E.; Ladisch, S.; McClain, K.L. How I treat Langerhans cell histiocytosis. Blood 2015, 126, 26–35. [Google Scholar] [CrossRef]
- Hutter, C.; Minkoy, M. Insights into the pathogenesis of Langerhans cell histiocytosis: The development of targeted therapies. Immunotargets Ther. 2016, 5, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Mazor, R.D.; Manerish-Mazor, M.; Shoenfield, Y. Erdheim-Chester disease: A comprehensive review of the literature. Orphanet. J. Rare. Ds. 2013, 8, 137. [Google Scholar] [CrossRef]
- Bruce-Brand, C.; Schneider, J.W.; Schubert, P. Rosai-Dorfman disease: An overview. J. Clin. Pathol. 2020, 73, 697–705. [Google Scholar] [CrossRef] [PubMed]
- Garces, S.; Medeiros, L.J.; Patel, K.P.; Li, S.; Pina-Oviedo, S.; Li, J.; Garces, J.C.; Khoury, J.D.; Yin, C.C. Mutually exclusive recurrent KRAS and MAP2K1 mutations in Rosai-Dorfman disease. Mod. Pathol. 2017, 30, 1367–1377. [Google Scholar] [CrossRef]
- Maric, I.; Pittaluga, S.; Dale, J.K.; Niemela, J.E.; Delsol, G.; Diment, J.; Rosai, J.; Raffeld, M.; Puck, J.M.; Straus, S.E.; et al. Histologic features of sinus histiocytosis with massive lymphadenopathy in patients with autoimmune lymphoproliferative syndrome. Am. J. Surg. Pathol. 2005, 29, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Emile, J.-F.; Abla, O.; Fraitag, S.; Horne, A.; Haroche, J.; Donadieu, J.; Requena-Caballero, L.; Jordan, M.B.; Abdal-Wahab, O.; Allen, C.E.; et al. Revised classification of histiocytosis and neoplasms of the macrophage-dendritic cell lineages. Blood 2016, 127, 2672–2681. [Google Scholar] [CrossRef]
- Hodgkin, T. On some morbid appearance of the absorbent glands and spleen. Med. Chir. Trans. 1832, 17, 68–114. [Google Scholar] [CrossRef]
- Lakhtakia, R.; Burney, I. A historical tale of two lymphomas. Sultan. Quaboos. Uni. Med. J. 2015, 15, e202–e206. [Google Scholar]
- Kanzler, H.; Kuppers, R.; Hansmann, M.L.; Rajewshy, K. Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 1996, 184, 1495–1505. [Google Scholar] [CrossRef]
- Kuppers, R.; Schwering, I.; Brauninger, A.; Rajewsky, K.; Hansmann, M.-L. Biology of Hodgkin’s lymphoma. Ann. Oncol. 2002, 13, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Marafiot, T.; Hummel, M.; Foss, H.D.; Laumen, H.; Korbjuhn, P.; Anagnostopoulos, I.; Lammert, H.; Demel, G.; Thiel, J.; Wirth, T.; et al. Hodgkin and reed-sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 2000, 95, 1443–1450. [Google Scholar] [CrossRef] [PubMed]
- Schwering, I.; Brauninger, A.; Klein, U.; Jungnickel, B.; Tinguely, M.; Diehl, V.; Hansmann, M.-L.; Dalla-Favera, R.; Rajewsky, K.; Kuppers, R.L. Loss of the B-lineage –specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 2003, 101, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Marafiot, T.; Hummel, M.; Anagnostopoulos, I.; Foss, H.D.; Falini, B.; Delsol, G.; Isaacson, P.G.; Pileri, S.; Stein, H. Origin of nodular lymphocyte-predominant Hodgkin’s disease from a clonal expansion of highly mutated germinal center B cells. N. Engl. J. Med. 1997, 33, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Braeuninger, A.; Kuppers, R.; Strickler, J.G.; Wacker, H.H.; Rajewsky, K.; Hansmann, M.-L. Hodgkin and Reed-Sternberg cells in predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc. Natl. Acad. Sci. USA 1997, 94, 9337–9342. [Google Scholar] [CrossRef]
- Saarinen, S.; Aavikko, M.; Aittomaki, K.; Launonen, V.; Lehtonen, R.; Franssila, K.; Lehtonen, H.J.; Kassinen, E.; Broderick, P.; Tarkkanen, J.; et al. Exome sequencing reveals germline NPAT mutation as a candidate risk factor for Hodgkin lymphoma. Blood 2011, 118, 493–498. [Google Scholar] [CrossRef]
- Strobbe, L.; Valke, L.L.F.G.; Diets, I.J.; van den Brand, M.; Aben, K.; Raemaekers, J.M.M.; Hebeda, K.M.; van Krieken, H.J.M. A 20-year population-based study on the epidemiology, clinical features, treatment, and outcome of nodular lymphocyte predominant Hodgkin lymphoma. Ann. Hematol. 2016, 95, 417–423. [Google Scholar] [CrossRef]
- Van den Berg, A.; Maggio, E.; Diepstra, A.; de Jong, D.; van Krieken, J.; Poppema, S. Germline FAS gene mutation in a case of ALPS and NLP Hodgkin lymphoma. Blood 2002, 15, 1492–1494. [Google Scholar] [CrossRef]
- Elodarska, I.; Nooyen, P.; Maes, B.; Martin-Subero, J.I.; Siebert, R.; Pauwels, P.; DeWolf-Peters, C.; Hagemeijer, A. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 2003, 101, 706–710. [Google Scholar] [CrossRef]
- Thurner, L.; Hartmann, S.; Fadle, N.; Regitz, E.; Kemele, M.; Kim, Y.-J.; Bohle, R.M.; Nimmesgern, A.; von Muller, L.; Kempf, V.A.J.; et al. Lymphocyte predominant cells detect Moraxella catarrhalis-derived antigens in nodular lymphocyte predominant Hodgkin lymphoma. Nat. Commun. 2020, 11, 2465. [Google Scholar] [CrossRef]
- Al-Mansour, M.; Connors, J.M.; Gasciyne, R.D.; Skinner, B.; Savage, K.J. Transformation to aggressive lymphoma in nodular lymphocyte-predominant Hodgkin lymphoma. J. Clin. Oncol. 2010, 28, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Paschold, L.; Willscher, E.; Bein, J.; Vornanen, M.; Eichenauer, D.A.; Simnica, D.; Thiele, B.; Wickenhauser, C.; Rosenwald, A.; Bernd, H.W.; et al. Evolutionary clonal trajectories in nodular lymphcyte-predominant Hodglin lymphoma with high risk transformation. Haematologica 2021, 106, 2654–2666. [Google Scholar] [CrossRef]
- Burkitt, D. A sarcoma involving the jaws in African childen. Br. J. Surg. 1958, 46, 218–223. [Google Scholar] [CrossRef]
- Roschewski, M.; Dunleavy, K.; Abramson, J.S.; Powell, B.L.; Link, B.K.; Patel, P.; Bierman, P.J.; Jagadeesh, D.; Mitsuyasu, R.T.; Peace, D.; et al. Multicenter study of risk-adapted therapy with dose-adjusted EPOCH-R in adults with intreated Burkitt lymphoma. J. Clin. Oncol. 2020, 38, 2519–2529. [Google Scholar] [CrossRef]
- Salzburg, J.; Burkhardt, B.; Zimmermann, M.; Wachowski, O.; Woessmann, W.; Oschlies, I.; Klapper, W.; Wacker, H.-H.; Ludwig, W.-D.; Niggli, F.; et al. Prevalence, clinical pattern and outcome of CNS involvement in childhood and adolescent non-Hodgkin’s lymphoma differ by non-Hodgkin’s lymphoma subtype: A Berlin-Frankfurt-Munster Group Report. J. Clin. Oncol. 2007, 25, 3915–3922. [Google Scholar] [CrossRef]
- Fitzsimmons, L.; Boyce, A.J.; Wei, W.; Chang, C.; Croomo-Cartet, D.; Tierney, R.J.; Herold, M.J.; Bell, A.I.; Strasser, A.; Kelly, G.L.; et al. Coordinated repression of BIM and PUMA by Epstein-Barr virus latent genes maintains the survival of Burkitt lymphoma cells. Cell Death Differ. 2018, 25, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Bellan, C.; Lazzi, S.; Hummel, M.; Palwmmo, N.; de Santi, M.; Amato, T.; Nyagol, J.; Sabattini, E.; Lazure, T.; Pileri, S.A.; et al. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphoma. Blood 2005, 106, 1031–1036. [Google Scholar] [CrossRef]
- Grande, B.M.; Gerhard, D.S.; Jiang, A.; Griner, N.B.; Abramson, J.S.; Alexander, T.B.; Allen, H.; Ayers, L.W.; Bathony, J.M.; Bhatia, K.; et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood 2019, 133, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Robbiani, D.; Deroubaix, S.; Feldhahn, N.; Oliveira, T.Y.; Callen, E.; Wang, Q.; Jankovic, M.; Silva, I.T.; Rommel, P.C.; Bosque, D.; et al. Plasmodium infection promotes genomic instability and AID-dependent B cell lymphoma. Cell 2015, 162, 727–737. [Google Scholar] [CrossRef]
- Schmitz, R.; Young, R.M.; Ceribelli, M.; Jhavar, S.; Xiao, W.; Zhang, M.; Wright, G.; Shaffer, A.L.; Hodson, D.J.; Bursa, E.; et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 2012, 290, 116–120. [Google Scholar] [CrossRef]
- Saleh, K.; Michot, J.M.; Camara-Clayette, V.; Vassetsky, Y.; Ribrag, V. Burkitt and Burkitt-like lymphomas: A systematic review. Currr. Oncol. Rep. 2020, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- McBride, P. Case of rapid destruction of the Nose and Face. J. Laryngol. Otol. 1897, xii, 64. [Google Scholar]
- Stewart, J.P. The Hisopathology of Mastoiditis. J. Laryngol. Otol. 1928, 43, 689–712. [Google Scholar] [CrossRef]
- Ng, C.S.; Chan, J.K.C.; Cheng, P.N.M.; Szeto, S.C. Nasal T cell lymphoma associated with hemophagocytic sundrome. Cancer 1986, 58, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.S. From the midfacial destructive drama to the unfolding EBV story: A short history of EBV-positive NK-cell and T-cell lymphoproliferative diseases. Pathology 2024, 56, 773–785. [Google Scholar] [CrossRef]
- Ng, C.S.; Chan, J.K.C.; Lo, S.T.H. Expression of natural killer cell markers in non-Hodgkin’s lymphoma. Hum. Pathol. 1987, 18, 1257–1262. [Google Scholar] [CrossRef]
- Tse, E.; Kwong, Y.L. The diagnosis and management of NK/T-cell lymphomas. J. Hematol. Oncol. 2017, 10, 85. [Google Scholar] [CrossRef]
- Harabuchi, Y.; Imai, S.; Wakashima, J.; Hirao, M.; Kataura, A.; Osato, T.; Kon, S. Nasal T-cell lymphoma causally associated with Epstein-Barr virus: Clinicopathologic, phenotypic and genotypic studies. Cancer 1996, 77, 2137–2149. [Google Scholar] [CrossRef]
- Yoon, T.Y.; Lee, H.T.; Chang, S.H. Nasal type T/natural killer cell angiocentric lymphoma. Epstein Barr virus associated and showing clonal T-cell receptor gamma gene rearrangement. Br. J. Dermatol. 1999, 140, 505–508. [Google Scholar]
- Nagata, H.; Konno, A.; Kimura, N.; Zhang, Y.; Kimura, M.; Demachi, A.; Sekine, T.; Yamaoto, K.; Shimizu, N. Characterization of novel natural killer (NK)—Cell and gammadelta T-cell lines established from primary lesions of nasal T/NK-cell lymphomas associated with Epstein-Barr Virus. Blood 2001, 97, 708–713. [Google Scholar] [CrossRef]
- Wang, H.; Fu, B.B.; Gale, R.P.; Liang, Y. NK/T-cell lymphomas. Leukemia 2021, 35, 2460–2468. [Google Scholar] [CrossRef] [PubMed]
- Qi, S.-N.; Yang, Y.; Zhang, Y.-J.; Huang, H.-Q.; Wang, Y.; He, X.; Zhang, L.-N.; Wu, G.; Qu, B.-L.; Qian, L.-T.; et al. Risk-based, response-adapted therapy for early stage extranodal nasal-type NK/T-cell lymphoma in the modern chemotherapy era: A China Lymphoma Collaborative Group (CLCG) study. Am. J. Hematol. 2020, 95, 1046–1057. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Yang, D.H.; Kim, J.S.; Kwak, J.Y.; Eoni, H.S.; Hong, D.S.; Won, J.H.; Lee, J.H.; Yoon, D.H.; Cjo, J.; et al. Concurrent chemoraiotherapyfollowed by L-asparaginase-containing chemotherapy, VIDL, for localised nasal extranodal NK/T cell lymphoma, phase II study. Ann. Hematol. 2014, 93, 1895–1901. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, J.; Liu, P.; Zhou, S.; Gui, L.; He, X.; Qin, Y.; Zhang, C.; Yang, S.; Xing, P.; et al. Intensity-modulated radiation therapy followed by GDP chemotherapy for newly diagnosed Stage I/II extranodal natural killer/T cell lymphoma, naal type. Ann. Hematol. 2017, 96, 1477–1483. [Google Scholar] [CrossRef]
- Kim, H.J.; Ock, C.Y.; Kim, T.M.; Lee, S.H.; Lee, J.-Y.; Jung, S.H.; Cho, Y.S.; Kim, M.; Keam, B.; Kim, D.-W.; et al. Comparison of native Escheria Coli L-asparaginase versus pegylated asparaginase in combination with ifosfamide, methotrexate, ectoposide and prednisolone (IMEP), I extranodal NK/T cell lymphoma, nasal type (NTCL). Cancer Res. Treat. 2018, 50, 670–680. [Google Scholar] [CrossRef]
- Suzuki, R. Pathogenesis and treatment of extranodal natural killer/T-cell lymphoma. Semin. Hematol. 2014, 51, 42–51. [Google Scholar] [CrossRef]
- Kwong, Y.L.; Chan, T.S.Y.; Tan, D.; Kim, S.J.; Poon, L.-M.; Mow, B.; Khong, P.-L.; Loong, F.; Au-Yeung, R.; Iqbal, J.; et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing L-asparaginase. Blood 2017, 129, 2437–2442. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-G.; Kim, N.; Sohn, H.-J.; Lee, S.K.; Oh, S.T.; Lee, H.-J.; Cho, H.-I.; Yim, H.W.; Jung, S.E.; Park, G.; et al. Long-term outcome of extranodal NK/T cell lymphoma patients treated with postremission therapy using EBV LMP1 and LMP2a-specific CTLs. Mod. Ther. 2015, 23, 1501–1509. [Google Scholar] [CrossRef]
- Steffen, C. The man behind the eponym dermatology in historical perspective: Albert Sezary and the Sezary syndrome. Am. J. Dermatopathol. 2006, 28, 357–367. [Google Scholar] [CrossRef]
- Jones, L.; Degasperi, A.; Grandi, V.; Amarante, T.D.; Genomics England Research Consortium; Mitchell, T.J.; Nik-Zainal, S.; Whittaker, J.S. Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci. Rep. 2021, 11, 3962. [Google Scholar] [CrossRef]
- Park, J.; Daniels, J.; Wartewig, T.; Ringbloom, K.G.; Martinez-Escala, M.E.; Choi, S.; Thomas, J.J.; Doukas, P.G.; Yang, J.; Snowden, C.; et al. Integrated genomic analysis of cutaneous T-cell lymphomas reveals the molecular basis for disease heterogeneity. Blood 2021, 138, 1225–1236. [Google Scholar] [CrossRef] [PubMed]
- Da Silva Almeida, A.C.; Abate, F.; Khiabanian, H.; Martinez-Escala, E.; Guitart, J.; Jensen, C.P.; Vermeer, M.H.; Rabadan, R.; Fernando, A.; Palomero, T. The mutational landscape of cutaneous T cell lymphoma and sezart syndrome. Nat. Genet. 2015, 47, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Williamze, R.; Jaffe, E.S.; Burg, G.; Cerroni, G.; Berti, E.; Swerdlow, S.H.; Ralfkiaer, E.; Chimenti, S.; Diaz-Perez, J.L.; Duncan, L.M.; et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005, 105, 3768–3785. [Google Scholar] [CrossRef] [PubMed]
Eponymic Disease | Cell Lineage/Histogenesis | Pathogenesis | Classification/Nomenclature/ Subtyping |
---|---|---|---|
Castleman disease |
|
|
|
Evans syndrome |
|
|
|
Kikuchi–Fujimoto disease |
|
|
|
Knutter’s disease, Mikulicz’s disease, Ormond disease, Riedel’s thyroiditis |
|
|
|
LC/LS/ECD/RDD |
|
|
|
Hodgkin lymphoma (HL) |
|
|
|
Burkitt lymphoma |
|
|
|
Stewart granuloma |
|
|
|
Sezary Syndrome |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, C.S.; Qin, J. New Facets of Hematolymphoid Eponymic Diseases. Lymphatics 2025, 3, 9. https://doi.org/10.3390/lymphatics3020009
Ng CS, Qin J. New Facets of Hematolymphoid Eponymic Diseases. Lymphatics. 2025; 3(2):9. https://doi.org/10.3390/lymphatics3020009
Chicago/Turabian StyleNg, Chi Sing, and Jilong Qin. 2025. "New Facets of Hematolymphoid Eponymic Diseases" Lymphatics 3, no. 2: 9. https://doi.org/10.3390/lymphatics3020009
APA StyleNg, C. S., & Qin, J. (2025). New Facets of Hematolymphoid Eponymic Diseases. Lymphatics, 3(2), 9. https://doi.org/10.3390/lymphatics3020009