Assessment of Hungarian Consumers’ Exposure to Pesticide Residues Based on the Results of Pesticide Residue Monitoring between 2017 and 2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analyses of Samples
2.2. Dietary Surveys
Conversion of Composite Food to Primary Components
2.3. Calculation of Short-Term Intake
2.4. Cumulative Acute Exposure of Consumers
3. Results
3.1. Summary of the Results of Pesticide Residue Monitoring during 2017–2021
3.2. Summary of Consumption Data
3.3. Estimation of Acute Exposure of Hungarian Consumers
3.4. Estimation of the Cumulative Acute Exposure of Consumers
- One food item contains more than one residue;
- The food items consumed within one day contain the same or different residues;
- The foods contain multiple residues.
3.4.1. Cumulative Exposure from Residues Exceeding the MRL Values
3.4.2. Cumulative Exposure from Food Items Consumed within One Day
3.4.3. Examples of Cumulative Exposure Resulting from Multiple Residues below MRL
- All residues that were investigated in the given type of sample were arranged in alphabetical order but only the first two columns were kept from Table S4;
- The residue values detected in a sample were placed in the corresponding row of the sample residue matrix;
- The residues that were detected but did not have an acute reference dose (ARfD) were deleted (crossed through in Table 16);
- The residues originally present (NRal) and remaining after removing those without ARfD value (NRr) were counted, and their concentrations (mg/kg) summed (∑Rr));
- The ratio of measured residue concentration (R) to the ARfD values (R/ARfD) and their sum (∑(R/ARfD)) were calculated;
- Samples with high ∑Rr and ∑(Ri/ARfDi) were selected for the calculation of ESTI, the hazard quotients (HQi), and the hazard index (HI = ∑HQi).
4. Discussion
4.1. Calculation of the Short-Term Intake (ESTI) Based on Single Residues Detected in Various Apple Samples
4.2. Multiple Residue Data Assessment of Pepper and Strawberry Samples
4.3. Multiple Residue Data Assessment in One Food Item or Combined Consumption of Several Food Items within One Day
4.4. Advantages and Limitations of the Assessment Using HI Values
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ARfD | Acute reference dose |
AS | Active substance |
CAG | Cumulative Assessment Group |
EFSA | European Food Safety Authority |
ESTI | Estimated short-term intake |
FAO | Food and Agriculture Organization |
HI | Hazard index |
HQ | Hazard quotient |
HBS | Household budget survey |
HCSO | Hungarian Central Statistical Office |
IC | Index compound |
JMPR | Joint Meeting on Pesticide Residues |
HFCSO | Hungarian Food Chain Safety Office |
LOD | Limit of detection |
LOQ | Limit of quantification |
MRL | Maximum residue limit |
MOE | Margin of exposure (individual) |
MOET | Margin of exposure (combined) |
NOAEL | No Observed Adverse Effect Level |
STMR | Supervised Trials Median Residue |
US FDA | United States Food and Drug Administration |
TDI | Tolerable maximum daily intake |
WHO | World Health Organization |
Nomenclature
Consumer day | From a total number of records in a food consumption survey those days on which an individual reported consuming the food or foods of interest. |
Intake | For the purpose of food or feed risk assessment, the amount of a substance (including nutrients) ingested by a person or animal as part of their diet. This term does not refer to whole foods. The intake of whole foods is termed “food consumption”. |
LP | Highest large portion reported (97.5th percentile of eaters), in kg food per day. |
HR | Highest residue in composite sample of edible portion found in the supervised trials used for estimating the maximum residue level, in mg/kg. |
Ue | Unit weight of the whole commodity (as defined for MRL setting, including inedible parts). |
TMDI | Theoretical maximum daily intake is a prediction of the maximum daily intake of, for example, a pesticide residue, assuming that residues are present at the maximum residue levels/limits and average daily consumption of foods per person. |
Ui | Median unit weight of the edible portion, in kg. |
ν (VF) | Variability factor, defined as the 97.5th percentile of residue level in the unit divided by the mean residue level for the lot of units of interest. |
References
- FAO. Pesticides Trade, Global, Regional and Country Trends 1990–2018. Available online: https://www.fao.org/documents/card/en/c/cb0488en (accessed on 6 July 2023).
- FAO/WHO. Synthesis Report on the Environmental and Health Impacts of Pesticides and Fertilizers and Ways to Minimize Them. 2022. Available online: www.fao.org/pest-and-pesticide-management/resources/en/ (accessed on 9 August 2023).
- National Research Council. Future Role of Pesticides in US Agriculture; National Academies Press: Washington, DC, USA, 2020; p. 332. ISBN 0309503833. [Google Scholar]
- OECD. Test Guidelines for Chemicals. Available online: https://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm (accessed on 9 August 2023).
- Solecki, R.; Schumacher, D.; Pejl, B.R.; MacLachan, D.J. OECD Guidance documents and test guidelines. In Food Safety Assessment of Pesticide Residues; Ambrus, Á., Hamilton, D., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 13–36. [Google Scholar]
- Humphrey, P.; Margerison, S.; van der Velde-Koerts, T.; Doherty, M.; Rowland, J. Principles of safety assessment of Pesticides at National level. In Food Safety Assessment of Pesticide Residues; Ambrus, Á., Hamilton, D., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 507–510. [Google Scholar]
- European Council. Consolidated Text: Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on Maximum Residue Levels of Pesticides in or on Food and Feed of Plant and Animal Origin and Amending Council Directive 91/414/EEC (Text with EEA Relevance). Available online: http://data.europa.eu/eli/reg/2005/396/2023-02-28 (accessed on 6 July 2023).
- European Council. Consolidated Text: Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107 (accessed on 6 July 2023).
- US Environmental Protection Agency. Regulation of Pesticide Residues on Food. Available online: https://www.epa.gov/pesticide-tolerances (accessed on 6 July 2023).
- FAO/WHO. JMPR Reports and Evaluations. Available online: https://www.who.int/groups/joint-fao-who-meeting-on-pesticide-residues-(jmpr)/publications (accessed on 6 July 2023).
- ASEAN. Maximum Residue Levels. Available online: https://asean.org/wp-content/uploads/images/2015/October/outreach-document/Edited%20MRLs-2.pdf (accessed on 6 July 2023).
- CODEX MRLs. Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/ (accessed on 6 July 2023).
- Ambrus, Á.; Vásárhelyi, A.; Ripka, G.; Szemánné-Dobrik, H.; Szenczi-Cseh, J. Evaluation of the results of pesticide residue analysis in food sampled between 2017 and 2021. Agrochemicals 2023, 2, 409–435. [Google Scholar] [CrossRef]
- Cabrera, L.C.; Pastor, P.M. The 2020 European Union report on pesticide residues in food. EFSA J. 2020, 20, e07215. [Google Scholar]
- European Commission. Commission Implementing Regulation (EU) 2021/601 of 13 April 2021 Concerning A Coordinated Multiannual Control Program of the Union for 2022, 2023 and 2024 to Ensure Compliance with Maximum Residue Levels of Pesticides and to Assess the Consumer Exposure to Pesticide Residues in And on Food of Plant and Animal Origin. 2021. Available online: http://data.europa.eu/eli/reg_impl/2021/601/oj/ (accessed on 8 July 2023).
- Szenczi-Cseh, J.; Ambrus, Á. Uncertainty of exposure assessment of consumers to pesticide residues derived from food consumed. J. Environ. Sci. Health B 2017, 52, 658–670. [Google Scholar] [CrossRef]
- FAO. Submission and evaluation of pesticide residues data for the estimation of maximum residue levels in food and feed. FAO Plant Prod. Prot. Pap. 2016, 225, 298. [Google Scholar]
- Dutra-Caldas, E.; van der Velde-Koerts, T. Dietary exposure and risk characterization for pesticide residues in food. In Food Safety Assessment of Pesticide Residues; Ambrus, Á., Hamilton, D., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 404–466. [Google Scholar]
- Dujardin, B.; Bocca, V. Cumulative dietary exposure assessment of pesticides that have acute effects on the nervous system using SAS® software. EFSA J. 2019, 17, e05764. [Google Scholar]
- Dujardin, B.; Bocca, V. Annexes to the Scientific Report on the Cumulative Dietary Exposure Assessment of Pesticides That Have Acute Effects on the Nervous System Using SAS® software—Input and Output Data Sets. EFSA J. 2019, 17, 5764, Meta data. [Google Scholar]
- Ambrus, Á.; Szenczi-Cseh, J.; Doan, V.V.N.; Vásárhelyi, A. Evaluation of monitoring data in foods. Agrochemicals 2023, 2, 69–95. [Google Scholar] [CrossRef]
- Caldas, E.D.; Boon, P.E.; Tressou, J. Probabilistic assessment of the cumulative acute exposure to organophosphorus and carbamate insecticides in the Brazilian diet. Toxicology 2006, 222, 132–142. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Protection Products and their Residues (PPR). Scientific Opinion on the Identification of Pesticides to Be Included in Cumulative Assessment Groups on the Basis of Their Toxicological Profile (2014 Update). EFSA J. 2013, 11, 3293. [Google Scholar]
- Crivellente, F.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Pedersen, R.; Terron, A.; Wolterink, G.; Mohimont, L. Scientific report on the establishment of cumulative assessment groups of pesticides for their effects on the nervous system. EFSA J. 2019, 17, e05800. [Google Scholar]
- US Environmental Protection Agency. Guidance on Cumulative Risk Assessment of Pesticide Chemicals that Have a Common Mechanism of Toxicity. Available online: https://www.federalregister.gov/documents/2002/01/16/02-959/pesticides-guidance-on-cumulative-risk-assessment-of-pesticide-chemicals-that-have-a-common (accessed on 12 July 2023).
- Environmental Protection Agency. Organophosphorus Cumulative Risk Assessment (2006 Update). Available online: https://www.regulations.gov/document?D=EPA-HQ-OPP-2006-0618-0002 (accessed on 2 August 2023).
- US Environmental Protection Agency. Revised N-methyl Carbamate Cumulative Risk Assessment. 2007. Available online: https://archive.epa.gov/pesticides/reregistration/web/pdf/nmc_revised_cra.pdf (accessed on 2 August 2023).
- US Environmental Protection Agency. Pyrethrins/Pyrethroid Cumulative Risk Assessment. 2011. Available online: https://www.regulations.gov/document?D=EPA-HQ-OPP-2011-0746-0003 (accessed on 2 August 2023).
- US Environmental Protection Agency. Chlorotriazines: Cumulative Risk Assessment—Atrazine, Propazine, and Simazine. 2018. Available online: https://www.regulations.gov/document/EPA-HQ-OPP-2013-0266-1160 (accessed on 26 July 2023).
- Kortenkamp, A.; Evans, R.; Faust, M.; Kalberlah, F.; Scholze, M.; Schuhmacher-Wolz, U. Investigation of the State of the Science on Combined Actions of Chemicals in Food through Dissimilar Modes of Action and Proposal for Science-Based Approach for Performing Related Cumulative Risk Assessment; EN-232; EFSA Supporting Publications: Parma, Italy, 2012; p. 233. Available online: http://www.efsa.europa.eu/en/supporting/doc/232e.pdf (accessed on 26 July 2023).
- Cui, K.; Wu, X.; Zhang, Y.; Cao, J.; Wei, D.; Xu, J.; Dong, F.; Liu, X.; Zheng, Y. Cumulative risk assessment of dietary exposure to triazole fungicides from 13 daily-consumed foods in China. Environ. Pollut. 2021, 286, 117550. [Google Scholar] [CrossRef]
- Boon, P.E.; van der Voet, H.; van Raaij, M.T.M.; van Klaveren, J.D. Cumulative risk assessment of the exposure to organophosphorus and carbamate insecticides in the Dutch diet. Food Chem. Toxicol. 2008, 46, 3090–3098. [Google Scholar] [CrossRef] [PubMed]
- Boon, P.E.; van Donkersgoed, G.; Christodoulou, D.; Crepet, A.; D’Addezio, L.; Desvignes, V.; Ericsson, B.G.; Galimberti, F.; Ioannou-Kakouri, E.; Jensen, B.H.; et al. Cumulative dietary exposure to a selected group of pesticides of the triazole group in different European countries according to the EFSA guidance on probabilistic modelling. Food Chem. Toxicol. 2015, 79, 13–31. [Google Scholar] [CrossRef]
- Sieke, C. Probabilistic cumulative dietary risk assessment of pesticide residues in foods for the German population based on food monitoring data from 2009 to 2014. Food Chem. Toxicol. 2018, 121, 396–403. [Google Scholar] [CrossRef]
- Zentai, A.; Kerekes, K.; Szabó, I.; Ambrus, Á. Refining customer exposure due to pesticide residues–Part 1. J. Food Investig. 2015, 41, 681–719. [Google Scholar]
- Jensen, B.H.; Petersen, A.; Nielsen, E.; Christensen, T.; Poulsen, M.E.; Andersen, J.H. Cumulative dietary exposure of the population of Denmark to pesticides. Food Chem. Toxicol. 2015, 83, 300–307. [Google Scholar] [CrossRef]
- Jensen, B.H.; Petersen, A.; Petersen, P.B.; Christensen, T.; Fagt, S.; Trolle, E.; Poulsen, M.E.; Hinge Andersen, J. Cumulative dietary risk assessment of pesticides in food for the Danish population for the period 2012–2017. Food Chem. Toxicol. 2022, 168, 113359. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.O.; Sloth Nielsen, V.; Bjerre, N.; Laporte, F.; Cedergreen, N. Refined assessment and perspectives on the cumulative risk resulting from the dietary exposure to pesticide residues in the Danish population. Food Chem. Toxicol. 2018, 111, 207–267. [Google Scholar] [CrossRef]
- Wilkinson, C.F.; Christoph, G.R.; Julien, E.; Kelley, J.M.; Kronenberg, J.; McCarthy, J.; Reiss, R. Assessing the risks of exposures to multiple chemicals with a common mechanism of toxicity: How to cumulate? Regul. Toxicol. Pharmacol. 2000, 31, 30–43. [Google Scholar] [CrossRef]
- USDA. Food Composition Database. Available online: http://www.nal.usda.gov/fnic/foodcomp/search/index.html (accessed on 19 April 2023).
- USDA. Food Data Central. Available online: https://fdc.nal.usda.gov/ (accessed on 19 April 2023).
- Monroe, D. Pre-Engel studies and the work of Engel: The origins of consumption research. Home Econ. Res. J. 1974, 3, 43–64. [Google Scholar] [CrossRef]
- Peterkin, B.B. USDA food consumption research: Parade of survey greats. J. Nutr. 1994, 124, 1836S–1842S. [Google Scholar] [CrossRef]
- Borlizzi, A.; Delgrossi, M.E.; Cafiero, C. National food security assessment through the analysis of food consumption data from Household Consumption and Expenditure Surveys: The case of Brazil’s Pesquisa de Orçamento Familiares 2008/09. Food Policy 2017, 72, 20–26. [Google Scholar] [CrossRef]
- Bailey, R.L. Overview of dietary assessment methods for measuring intakes of foods, beverages, and dietary supplements in research studies. Curr. Opin. Biotechnol. 2021, 70, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Conforti, P.; Grünberger, K.; Troubat, N. The impact of survey characteristics on the measurement of food consumption. Food Policy 2017, 72, 43–52. [Google Scholar] [CrossRef]
- Engle-Stone, R.; Sununtnasuk, C.; Fiedler, J.L. Investigating the significance of the data collection period of household consumption and expenditures surveys for food and nutrition policymaking: Analysis of the 2010 Bangladesh household income and expenditure survey. Food Policy 2017, 72, 72–80. [Google Scholar] [CrossRef]
- European Food Safety Authority. General principles for the collection of national food consumption data in the view of a pan-European dietary survey. EFSA J. 2009, 7, 1435. [Google Scholar] [CrossRef]
- EFSA. Guidance on the EU Menu methodology. EFSA J. 2014, 12, 3944. [Google Scholar]
- Ocké, M.; de Boer, E.; Brants, H.; van der Laan, J.; Niekerk, M.; van Rossum, C.; Temme, L.; Freisling, H.; Nicolas, G.; Casagrande, C.; et al. PANCAKE—Pilot Study for the Assessment of Nutrient Intake and Food Consumption among Kids in Europe; EN-339; EFSA Supporting Publications: Parma, Italy, 2012; p. 120. Available online: http://www.efsa.europa.eu/en/supporting/pub/339e.htm (accessed on 17 May 2023).
- Ambrus, Á.; Horváth, Z.; Farkas, Z.; Cseh, J.; Petrova, S.; Dimitrov, P.; Duleva, V.; Rangelova, L.; ChikovaIscener, E.; Ovaskainen, M.-L.; et al. Pilot study in the view of a Pan-European dietary survey—Adolescents, adults and elderly. EFSA Support. Publ. 2013, 10, 508E. [Google Scholar] [CrossRef]
- Szeitz-Szabó, M.; Bíró, L.; Bíró, G.; Sali, J. Dietary survey in Hungary, 2009. Part I. Macronutrients, alcohol, caffeine, fibre. Acta Aliment. 2011, 40, 142–152. [Google Scholar] [CrossRef]
- Biró, L.; Szeitz-Szabó, M.; Biró, G.; Sali, J. Dietary survey in Hungary, 2009. Part II: Vitamins, macro- and microelements, food supplements and food allergy. Acta Aliment. 2011, 40, 301–312. [Google Scholar] [CrossRef]
- HFCSO. Food Consumption Survey 2018–2020 Supported by the EFSA EU Menu Project. (unpublished).
- FAO. Report of the First Meeting of the Codex Committee on Pesticide Residues. Available online: https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FMeetings%252FCX-718-01%252Fal66_24e.pdf (accessed on 17 May 2023).
- FAO/WHO. IEDI Calculation Template 17-Cluster Diet. Available online: https://cdn.who.int/media/docs/default-source/food-safety/gems-food/iedi-calculation-vs04-17clusters.xlsx (accessed on 17 May 2023).
- WHO. GEMS/Food Cluster Diets. 2012. Available online: https://www.who.int/data/gho/samples/food-cluster-diets (accessed on 17 May 2023).
- Anastassiadou, M.; Brancato, A.; Carrasco Cabrera, L.; Ferreira, L.; Greco, L.; Jarrah, S.; Kazocina, A.; Leuschner, R.; Magrans, J.O.; Miron, I.; et al. Pesticide Residue Intake Model-EFSA PRIMo Revision 3.1 (Update of EFSA PRIMo Revision 3); EFSA Supporting Publications: Parma, Italy, 2019; p. 15. [Google Scholar]
- Commission Implementing Regulation (EU) 2016/662 of 1 April 2016 Concerning A Coordinated Multiannual Control Program of the Union for 2017, 2018 and 2019 to Ensure Compliance with Maximum Residue Levels of Pesticides and to Assess the Consumer Exposure to Pesticide Residues in and on Food of Plant and Animal Origin (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32016R0662 (accessed on 1 June 2023).
- Commission Implementing Regulation (EU) 2018/555 of 9 April 2018 Concerning A Coordinated Multiannual Control Program of the Union for 2019, 2020 and 2021 to Ensure Compliance with Maximum Residue Levels of Pesticides and to Assess the Consumer Exposure to Pesticide Residues in and on Food of Plant and Animal Origin (Text with EEA Relevance). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0555 (accessed on 1 June 2023).
- European Commission Directive 2002/63/EK Establishing Community Methods of Sampling for the Official Control of Pesticide Residues in and on Products of Plant and Animal Origin and Repealing Directive 79/700/EEC. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32002L0063 (accessed on 1 June 2023).
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- European Commission. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed SANTE 11312/2021. Available online: https://food.ec.europa.eu/system/files/2022-02/pesticides_mrl_guidelines_wrkdoc_2021-11312.pdf (accessed on 25 May 2023).
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed]
- Anastassiades, M.; Scherbaum, E.; Tasdelen, B.; Stajnbaher, D. Recent developments in QuEChERS methodology for pesticide multiresidue analysis. In Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; WILEY-VCH Verlag GmbH & Co.: Weinheim, Germany, 2007; pp. 439–458. [Google Scholar]
- Anastassiades, M.; Wachtler, A.K.; Kolberg, D.I.; Eichhorn, E.; Marks, H.; Benkenstein, A.; Zechmann, S.; Mack, D.; Wildgrube, C.; Barth, A.; et al. Quick Method for the Analysis of Highly Polar Pesticides in Food Involving Extraction with Acidified Methanol and LC-or IC-MS/MS Measurement I. Food of Plant Origin (QuPPe-PO-Method). Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlSRM/EurlSrm_meth_QuPPe_PO_V11_1.pdf (accessed on 27 June 2023).
- FAO. Portion of Commodities to which Codex MRLs Apply and Which is Analyzed (CAC/GL 41-1993). Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B41-1993%252FCXG_041e.pdf (accessed on 25 May 2023).
- Rodler, I.; Biró, L.; Greiner, E.; Zajkás, G.; Szórád, I.; Varga, A.; Domonkos, A.; Ágoston, H.; Balázs, A.; Vitray, J.; et al. Dietary survey in Hungary, 2003–2004. Orvosi Hetil. 2005, 146, 1781–1789. [Google Scholar]
- Biró, L.; Kicsák, M.; Sági, K. Multicenter investigation of energy- and nutrient intake of type 1 diabetics. Results and relationships. Diabetol. Hung. 1999, 7, 243–251. [Google Scholar]
- Biró, L.; Rabin, B.; Regöly-Mérei, A.; Nagy, K.; Pintér, B.; Beretvás, E.; Morava, E.; Antal, M. Dietary habits of medical and pharmacy students at Semmelweis University, Budapest. Acta Aliment. 2005, 34, 463–471. [Google Scholar] [CrossRef]
- Harrell, F.E.; Davis, C.E. A new distribution-free quantile estimator. Biometrika 1982, 69, 635–640. [Google Scholar] [CrossRef]
- Zaiontz, C. Real Statistics. Available online: https://real-statistics.com/descriptive-statistics/ranking-function-excel/harrell-davis-quantiles/ (accessed on 8 May 2023).
- Hamilton, D.; Ambrus, Á.; Dieterle, R.; Felsot, A.; Harris, C.; Petersen, B.; Racke, K.; Wong, S.-S.; Gonzales, R.; Tanaka, K.; et al. Pesticide residues in food—Acute dietary exposure. Pest Manag. Sci. 2004, 60, 311–339. [Google Scholar] [CrossRef]
- EFSA. Opinion of the Scientific Panel on Plant Health, Plant Protection Products and their Residues on a request from the Commission related to the appropriate variability factor(s) to be used for acute dietary exposure assessment of pesticide residues in fruit and vegetables. EFSA J. 2005, 3, 177. [Google Scholar]
- Klaveren, J.D.; van Donkersgoed, G.H.; van der Voet, H.; Stephenson, C.; Boon, P.E. Cumulative Exposure Assessment of Triazole Pesticides scientific/technical report submitted to EFSA, 2009, RIKILT—Institute of Food Safety, Wageningen University and Research Centre. Available online: https://edepot.wur.nl/11984 (accessed on 6 August 2023).
- WHO. Inventory of Evaluations Performed by the Joint Meeting on Pesticide Residues (JMPR). Available online: https://apps.who.int/pesticide-residues-jmpr-database/Home/Range/All (accessed on 6 August 2023).
- Reffstrup, T.K.; Larsen, J.C.; Meyer, O. Risk assessment of mixtures of pesticides. Current approaches and future strategies. Regul. Toxicol. Pharmacol. 2010, 56, 174–192. [Google Scholar] [CrossRef]
- Jardim, A.N.O.; Caldas, E.D. Brazilian monitoring programs for pesticide residues in food—Results from 2001 to 2010. Food Control 2012, 25, 607–616. [Google Scholar] [CrossRef]
- Mac Loughlin, T.M.; Peluso, L.; Etchegoyen, A.; Alonso, L.L.; de Castro, C.; Percudani, C.; Marino, D.J.G. Pesticide residues in fruits and vegetables of the Argentine domestic market: Occurrence and quality. Food Control 2018, 93, 129–138. [Google Scholar] [CrossRef]
- Ramadan, M.F.A.; Abdel-Hamid, M.M.A.; Altorgoman, M.M.F.; AlGaramah, H.A.; Alawi, M.A.; Shati, A.A.; Shweeta, H.A.; Awwad, N.S. Evaluation of Pesticide Residues in Vegetables from the Asir Region Saudi Arabia. Molecules 2020, 25, 205. [Google Scholar] [CrossRef] [PubMed]
- Galani, Y.J.H.; Houbraken, M.; Wumbei, A.; Djeugap, J.F.; Fotio, D.; Gong, Y.Y.; Spanoghe, P. Monitoring and dietary risk assessment of 81 pesticide residues in 11 local agricultural products from the 3 largest cities of Cameroon. Food Control. 2020, 118, 107416. [Google Scholar] [CrossRef]
- Vu-Duc, N.; Nguyen-Quang, T.; Le-Minh, T.; Nguyen-Thi, X.; Tran, T.M.; Vu, H.A.; Chu, D.B. Multiresidue Pesticides Analysis of Vegetables in Vietnam by Ultrahigh-Performance Liquid Chromatography in Combination with High-Resolution Mass Spectrometry (UPLC-Orbitrap MS). J. Anal. Methods Chem. 2019, 2019, 3489634. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Silipunyo, T.; Huang, H.; Yin, Q.; Han, B.; Wang, M. Risk Assessment of Triflumezopyrim and Imidacloprid in Rice through an Evaluation of Residual Data. Molecules 2022, 27, 5685. [Google Scholar] [CrossRef] [PubMed]
- Osaili, T.M.; Al Sallagi, M.S.; Dhanasekaran, D.K.; Bani Odeh, W.A.M.; Al Ali, H.J.; Al Ali, A.A.S.A.; Radwan, H.; Obaid, R.S.; Holley, R. Pesticide residues in fresh vegetables imported into the United Arab Emirates. Food Control 2022, 133, 108663. [Google Scholar] [CrossRef]
- Wang, F.; Li, S.; Feng, H.; Yang, Y.; Xiao, B.; Chen, D. An enhanced sensitivity and cleanup strategy for the nontargeted screening and targeted determination of pesticides in tea using modified dispersive solid-phase extraction and cold-induced acetonitrile aqueous two-phase systems coupled with liquid chromatography-high resolution mass spectrometry. Food Chem. 2019, 275, 530–538. [Google Scholar]
- Geissen, V.; Silva, V.; Lwanga, E.H.; Beriot, N.; Oostindie, K.; Bin, Z.; Pyne, E.; Busink, S.; Zomer, P.; Mol, H.; et al. Cocktails of pesticide residues in conventional and organic farming systems in Europe—Legacy of the past and turning point for the future. Environ. Pollut. 2021, 278, 116827. [Google Scholar] [CrossRef]
- Khazaal, S.; El Darra, N.; Kobeissi, A.; Jammoul, R.; Jammoul, A. Risk assessment of pesticide residues from foods of plant origin in Lebanon. Food Chem. 2022, 374, 131676. [Google Scholar] [CrossRef]
- Pham, U.T.; Phan, Q.H.T.; Nguyen, L.P.; Luu, P.D.; Doan, T.D.; Trinh, H.T.; Dinh, C.T.; Nguyen, T.V.; Tran, T.Q.; Le, D.X. Rapid Quantitative Determination of Multiple Pesticide Residues in Mango Fruits by Surface-Enhanced Raman Spectroscopy. Processes 2022, 10, 442. [Google Scholar] [CrossRef]
- Philippe, V.; Neveen, A.; Marwa, A.; Basel, A.Y.A. Occurrence of pesticide residues in fruits and vegetables for the Eastern Mediterranean Region and potential impact on public health. Food Control 2021, 119, 107457. [Google Scholar] [CrossRef]
- Tripathy, V.; Sharma, K.K.; Sharma, K.; Gupta, R.; Yadav, R.; Singh, G.; Aggarwal, A.; Walia, S. Monitoring and dietary risk assessment of pesticide residues in brinjal, capsicum, tomato, and cucurbits grown in Northern and Western regions of India. J. Food Compos. Anal. 2022, 110, 104543. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Huynh Nguyen, K.; Duong, T.; Tran, V.D.; Kim, K.H.; Pham, L.T. Evaluation of pesticide residues in vegetables from Mekong, Delta, Vietnam using LC-MS/MS. Trop. J. Pharm. Res. 2021, 20, 1497–1504. [Google Scholar] [CrossRef]
- Pang, G.-F.; Fan, C.-L.; Liu, Y.-M.; Cao, Y.-Z.; Zhang, J.-J.; Fu, B.-L.; Li, X.-M.; Li, Z.-Y.; Wu, Y.-P. Multi-residue method for the determination of 450 pesticide residues in honey, fruit juice and wine by double-cartridge solid-phase extraction/gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Food Addit. Contam. 2006, 23, 777–810. [Google Scholar] [CrossRef] [PubMed]
- Le, L.H.T.; Tran-Lam, T.T.; Cam, T.Q.; Nguyen, T.N.; Dao, Y.H. Pesticides in edible mushrooms in Vietnam. Food Addit. Contam. Part B 2021, 14, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Murcia-Morales, M.; Heinzen, H.; Parrilla-Vázquez, P.; Gómez-Ramosa, M.M.; Fernández-Alba, A.R. Presence and distribution of pesticides in apicultural products: A critical appraisal. TrAC 2022, 146, 116506. [Google Scholar] [CrossRef]
- Calderon, R.; García-Hernández, J.; Palma, P.; Leyva-Morales, J.B.; Zambrano-Soria, M.; Bastidas-Bastidas, P.J.; Godoy, M. Assessment of pesticide residues in vegetables commonly consumed in Chile and Mexico: Potential impacts for public health. J. Food Compos. Anal. 2022, 108, 104420. [Google Scholar] [CrossRef]
- Kottadiyil, D.; Mehta, T.; Thasale, R.; Sivaperumal, P. Determination and dietary risk assessment of 52 pesticide residues in vegetable and fruit samples by GC-MS/MS and UHPLC-QTOF/MS from Gujarat, India. J. Food Compos. Anal. 2023, 115, 104957. [Google Scholar] [CrossRef]
- Fatunsin, O.T.; Oyeyiola, A.O.; Moshood, M.O.; Akanbi, L.M.; Fadahunsi, D.E. Dietary risk assessment of organophosphate and carbamate pesticide residues in commonly eaten food crops. Sci. Afr. 2020, 8, e00442. [Google Scholar] [CrossRef]
- Petrarca, M.H.; Fernandes, J.O.; Marmelo, I.; Marques, A.; Cunha, S.C. Multi-analyte gas chromatography-mass spectrometry method to monitor bisphenols, musk fragrances, ultraviolet filters, and pesticide residues in seafood. J. Chromatogr. A 2022, 1663, 462755. [Google Scholar] [CrossRef]
- Rahman, M.; Hoque, M.S.; Bhowmik, S.; Ferdousi, S.; Kabiraz, M.P.; van Brakel, M.L. Monitoring of pesticide residues from fish feed, fish and vegetables in Bangladesh by GC-MS using the QuEChERS method. Heliyon 2021, 7, e06390. [Google Scholar] [CrossRef]
- Ngabirano, H.; Birungi, G. Pesticide residues in vegetables produced in rural south-western Uganda. Food Chem. 2022, 370, 130972. [Google Scholar] [CrossRef] [PubMed]
- Sang, C.; Sørensen, P.B.; An, W.; Andersen, J.H.; Yang, M. Chronic health risk comparison between China and Denmark on dietary exposure to chlorpyrifos. Environ. Pollut. 2019, 257, 113590. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, E.-S.A.; Li, D.; Hamed, I.; Ashour, M.-B.; Hammock, B.D. Residue Analysis and Risk Exposure Assessment of Multiple Pesticides in Tomato and Strawberry and Their Products from Markets. Foods 2023, 12, 1936. [Google Scholar] [CrossRef] [PubMed]
- El-Sheikh, E.-S.A.; Ramadan, M.M.; El-Sobki, A.E.; Shalaby, A.A.; McCoy, M.R.; Hamed, I.A.; Ashour, M.-B.; Hammock, B.D. Pesticide Residues in Vegetables and Fruits from Farmer Markets and Associated Dietary Risks. Molecules 2022, 27, 8072. [Google Scholar] [CrossRef] [PubMed]
- Antal, E.; Pilling, R.; Kőris, T.; Biró, L. Representative nutritional and physical activity study in Hungary among 11–18 years old children (in Hungarian). Magy. Tudomány 2019, 180, 720–738. [Google Scholar]
- Sarkadi Nagy, E.; Bakacs, M.; Illés, É.; Nagy, B.; Varga, A.; Kis, O.; Molnár, S.; Martos, É. Hungarian Diet and Nutritional Status Survey—OTÁP2014. II. Energy and macronutrient intake of the Hungarian population. Orvosi Hetil. 2017, 158, 587–597. [Google Scholar] [CrossRef]
- FAO. Pesticide Residues in Food 2009 Report of the Joint FAO/WHO Meeting on Pesticide Residues, Geneva 2009. FAO Plant Production and Protection Paper 196. Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/JMPRreport09.pdf (accessed on 6 August 2023).
Unit Mass of Medium-Sized Items [g] | |||||||
---|---|---|---|---|---|---|---|
No. | Maximum | P0.975 | Average | Median | P0.025 | Min | |
Apples | 922 | 475 | 345 | 222 | 220 | 105 | 87 |
Grapes | 717 | 1291 | 1106 | 308 | 265 | 50 | 19 |
Nectarines | 313 | 316 | 180 | 139 | 143 | 94 | 11 |
Peaches | 73 | 301 | 284 | 197 | 208 | 102 | 17 |
Peppers, bell | 289 | 298 | 278 | 218 | 218 | 159 | 86 |
Peppers, green | 492 | 199 | 152 | 76 | 64 | 34 | 5 |
Commodity 1 | Number of | Proportion of Occurrence | |||
---|---|---|---|---|---|
Samples 2 | Analytes 3 | R > MRL 4 | MRL ≥ R ≥ LOQ 5 | R < LOQ 6 | |
All commodities | 9924 | 622 | 1.0% | 53.0% | 45.9% |
Apples | 833 | 617 | 0.1% | 74.1% | 25.8% |
Cherries | 122 | 583 | 0.8% | 78.7% | 21.3% |
Grapes | 411 | 618 | 0.2% | 80.5% | 19.2% |
Peaches | 349 | 593 | 0.3% | 66.2% | 33.5% |
Peppers | 616 | 621 | 0.6% | 48.4% | 51.0% |
Strawberries | 225 | 601 | 1.3% | 74.2% | 24.4% |
Year | Total No. of Samples Analyzed | Samples with Multiple Residues | Max. No. of Residues |
---|---|---|---|
2017 | 1902 | 761 (40%) | 23 |
2018 | 1995 | 820 (41%) | 13 |
2019 | 1842 | 916 (50%) | 15 |
2020 | 1750 | 625 (36%) | 16 |
2021 | 1666 | 719 (43%) | 11 |
Commodity | Maximum Number of Multiple Residues Found in Samples Per Years | ||||
---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2021 | |
Apples | 10 | 13 | 8 | 9 | 11 |
Cherries | 10 | 10 | 6 | 6 | 6 |
Grapes | 12 | 11 | 11 | 11 | 7 |
Peaches | 6 | 6 | 7 | 9 | 5 |
Peppers | 7 | 11 | 7 | 8 | 8 |
Strawberries | 7 | 9 | 11 | 7 | 9 |
2017 | 2018 | 2019 | 2020 | 2021 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of | ||||||||||
Samples | RES | Samples | RES | Samples | RES | Samples | RES | Samples | RES | |
Apples | 73 | 42 | 101 | 38 | 107 | 39 | 89 | 38 | 103 | 40 |
Cherries | 16 | 18 | 16 | 21 | 10 | 12 | 8 | 10 | 9 | 13 |
Grapes | 20 | 42 | 17 | 31 | 17 | 35 | 13 | 42 | 6 | 27 |
Peaches | 3 | 12 | 10 | 26 | 9 | 19 | 12 | 25 | 4 | 10 |
Peppers | 5 | 15 | 6 | 27 | 3 | 13 | 6 | 32 | 5 | 21 |
Strawberries | 33 | 27 | 35 | 37 | 36 | 34 | 3 | 11 | 20 | 26 |
Age | 1–2 | 2–3 | 3–9 | 9–18 | 18–64 | 64–74 | 1–2 | ||
BW [kg] | 11.1 | 13.6 | 17.6 | 50.5 | 79.6 | 81.5 | |||
LP [kg] | 0.32 | 0.32 | 0.47 | 0.73 | 0.48 | 0.52 | |||
Residues | P0.975 (mg/kg) | ARfD (mg/kgbw/day) | ESTI | HQ | |||||
Acetamiprid | 0.12 | 0.025 | 0.0082 | 0.0067 | 0.0062 | 0.0028 | 0.0014 | 0.0014 | 0.33 |
Captan sum | 1.02 | 1.3 | 0.070 | 0.057 | 0.053 | 0.024 | 0.012 | 0.012 | 0.05 |
Carbendazim | 0.094 | 0.02 | 0.006 | 0.005 | 0.005 | 0.002 | 0.001 | 0.001 | 0.32 |
Chlorpyrifos-Methyl | 0.055 | 0.1 | 0.004 | 0.003 | 0.003 | 0.001 | 0.001 | 0.001 | 0.04 |
Difenoconazole | 0.112 | 0.16 | 0.008 | 0.006 | 0.006 | 0.003 | 0.001 | 0.001 | 0.05 |
Dithianon | 0.163 | 0.12 | 0.011 | 0.009 | 0.008 | 0.004 | 0.002 | 0.002 | 0.09 |
Etofenprox | 0.175 | 1 | 0.012 | 0.010 | 0.009 | 0.004 | 0.002 | 0.002 | 0.01 |
Fluopyram | 0.182 | 0.5 | 0.012 | 0.010 | 0.009 | 0.004 | 0.002 | 0.002 | 0.02 |
Fluxapyroxad | 0.07 | 0.25 | 0.005 | 0.004 | 0.004 | 0.002 | 0.001 | 0.001 | 0.02 |
Indoxacarb | 0.08 | 0.125 | 0.005 | 0.004 | 0.004 | 0.002 | 0.001 | 0.001 | 0.04 |
Lambda-Cyhalothrin | 0.045 | 0.005 | 0.003 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | 0.62 |
Methoxyfenozide | 0.139 | 0.1 | 0.010 | 0.008 | 0.007 | 0.003 | 0.002 | 0.002 | 0.10 |
Pirimicarb | 0.09 | 0.1 | 0.006 | 0.005 | 0.005 | 0.002 | 0.001 | 0.001 | 0.06 |
Pyraclostrobin | 0.074 | 0.03 | 0.005 | 0.004 | 0.004 | 0.002 | 0.001 | 0.001 | 0.17 |
Tebuconazole | 0.148 | 0.03 | 0.010 | 0.008 | 0.008 | 0.003 | 0.002 | 0.002 | 0.34 |
Thiacloprid | 0.118 | 0.02 | 0.008 | 0.007 | 0.006 | 0.003 | 0.001 | 0.001 | 0.40 |
Thiamethoxam | 0.045 | 0.5 | 0.003 | 0.003 | 0.002 | 0.001 | 0.001 | 0.001 | 0.01 |
Compound | ARFD (mg/kgbw/Day) | Survey Year | BW (kg) | LP (kg) | HQ (ν = 3) | HQ (ν = 3.6) | HQ ν = 7 |
---|---|---|---|---|---|---|---|
Lambda-Cyhalothrin | 0.005 | 2009 | 12.11 | 0.322 | 0.85 | 0.99 | 1.82 |
2018–2020 | 11.1 | 0.323 | 0.62 | 0.72 | 0.99 | ||
Thiacloprid | 0.02 | 2009 | 12.11 | 0.322 | 0.56 | 0.65 | 1.19 |
2018–2020 | 11.1 | 0.323 | 0.4 | 0.47 | 0.87 |
HQ for Age Groups | ||||||
---|---|---|---|---|---|---|
1–2 | 2–3 | 3–9 | 9–18 | 18–64 | 64–74 | |
Cherries | ||||||
Acetamiprid | 0.078 | 0.030 | 0.072 | 0.017 | 0.027 | 0.014 |
Fluopyram | 0.006 | 0.002 | 0.005 | 0.001 | 0.002 | 0.001 |
Grapes | ||||||
Acetamiprid | 1.50 a | 1.81 a | 0.66 | 0.50 | 0.23 | 0.38 |
Difenoconazole | 0.798 | 0.963 | 0.351 | 0.265 | 0.125 | 0.200 |
Fluopyram | 0.083 | 0.101 | 0.037 | 0.028 | 0.013 | 0.021 |
Peaches | ||||||
Acetamiprid | 0.456 | 0.659 | 0.436 | 0.204 | 0.066 | 0.131 |
Fluopyram | 0.034 | 0.049 | 0.033 | 0.015 | 0.005 | 0.010 |
Peppers | ||||||
Acetamiprid | 0.072 | 0.087 | 0.203 | 0.094 | 0.060 | 0.087 |
Difenoconazole | 0.012 | 0.014 | 0.033 | 0.015 | 0.010 | 0.014 |
Fluopyram | 0.004 | 0.005 | 0.011 | 0.005 | 0.003 | 0.005 |
Indoxacarb | 0.152 | 0.186 | 0.432 | 0.200 | 0.127 | 0.186 |
Strawberries | ||||||
Pyraclostrobin | 0.085 | 0.360 | 0.105 | 0.030 | 0.031 | 0.018 |
Trifloxystrobin | 0.011 | 0.045 | 0.013 | 0.004 | 0.004 | 0.002 |
Crop | Origin | Analyte | MRL | Highest Residue | No. of Residues Detected |
---|---|---|---|---|---|
Cherries | Hungary | Dimethoate/ omethoate | 0.02 | 0.052 | 2 |
Peppers | Turkey | Chlorpyrifos | 0.01 | 0.058 | 8 |
Turkey | Chlorpyrifos | 0.01 | 0.036 | 4 | |
Strawberries | Hungary | Tebuconazole | 0.02 | 0.17 | 9 |
Hungary | Flonicamid | 0.03 | 0.32 | 3 | |
Hungary | Propamocarb | 0.01 | 0.064 | 4 |
Active Substances | ARfD | Peppers | Strawberries |
---|---|---|---|
Residues [mg/kg] | |||
Acetamiprid | 0.025 | 0.17 | |
Boscalid | NA | 0.12 | 0.13 |
Chlorpyrifos-methyl | 0.1 NAP | 0.058 | |
Cyprodinil | NA | 0.29 | |
Etoxazole | NA | 0.038 | |
Flonicamid (sum) | 0.025 | 0.32 | |
Hexythiazox | NA | 0.017 | |
Indoxacarb | 0.005 | 0.11 | |
Methoxyfenozide | 0.1 | 0.082 | |
Penconazole | 0.5 | 0.014 | |
Picoxystrobin | NAP | 0.209 | |
Pyraclostrobin | 0.03 | 0.026 | 0.029 |
Pyridaben | 0.05 | 0.064 | |
Spirotetramat (sum) | 1.0 | 0.033 | |
Tebuconazole | 0.03 | 0.17 | |
Trifloxystrobin | 0.5 | 0.057 |
Age Groups | 1–2 | 2–3 | 3–9 | 9–18 | 18–64 | 64–74 |
---|---|---|---|---|---|---|
Peppers | 0.19 | 0.25 | 0.16 | 0.08 | 0.05 | 0.07 |
Strawberries | 0.37 | 0.37 | 0.46 | 0.13 | 0.13 | 0.08 |
Case | Daily Consumption g/kgbw/Day | ||||||||
---|---|---|---|---|---|---|---|---|---|
Age | Bw [kg] | Apple | Cherries | Grapes | Peaches | Peppers | Strawberries | Sum | |
1 | 3.9 | 14 | 32.1 | 7.71 | 39.9 | ||||
2 | 3.77 | 15.5 | 25.8 | 12.90 | 38.7 | ||||
3 | 5.75 | 18 | 25.0 | 6.67 | 31.7 | ||||
4 | 5.05 | 18.8 | 18.6 | 8.51 | 27.1 | ||||
5 | 3.43 | 17 | 11.8 | 14.71 | 26.5 | ||||
6 | 1.63 | 10 | 22.5 | 2 | 24.5 | ||||
7 | 5.05 | 18.8 | 16.0 | 8.51 | 24.5 | ||||
8 | 1.6 | 12 | 3.3 | 20.83 | 24.2 | ||||
9 | 2.54 | 12.5 | 0.0 | 12 | 12.00 | 24.0 | |||
10 | 2.19 | 15 | 20.0 | 2 | 22.0 | ||||
11 | 3.91 | 14 | 1.8 | 19.00 | 20.8 | ||||
12 | 9.34 | 27 | 5.6 | 3.70 | 9.3 |
Food 1 g/kgbw | Frequency | |
---|---|---|
Day | Proportion | |
20 | 5164 | 98.8% |
30 | 45 | 0.9% |
40 | 16 | 0.3% |
90 | 3 | 0.1% |
95 | 1 | 0.0% |
More | 0 | |
Sum | 5629 |
Number of Samples with Reported Residue Levels 1 | |||||
---|---|---|---|---|---|
Apples | Grapes | Peaches | Strawberries | Peppers | |
Acetamiprid | 162 (0.037) | 36 (0.073) | 40 (0.033) | 3 0.030 | 39 (0.079) |
Captan | 118 | 12 | 7 | ||
Carbendazim | 27 | 12 | 10 | 6 | |
Chlorpyrifos | 8 | 2 | 3 | ||
Chlorpyrifos-methyl | 13 | 5 | 2 | 1 | |
Cypermethrin | 6 | 5 | 1 | 0 | |
Deltamethrin | 1 | 1 | 4 | 2 | |
Difenoconazole | 42 (0.041) | 19 (0.108) | 1 (0.017) | 49 (0.064) | 62 (0.070) |
Fenoxycarb | 5 | 2 | |||
Fenpyroximate | 12 | 0 | 0 | 0 | |
Flonicamid | 29 | 1 | |||
Fluopyram | 88 (0.039) | 44 0.085) | 54 (0.048) | 34 (0.086) | 39 (0.049) |
Fluxapyroxad | 26 | 22 | |||
Imidacloprid | 1 | 16 | 9 | 2 | |
Indoxaxcarb | 61 (0.021) | 6 0.049) | 16 (0.023) | 13 0.048) | |
Lambda cyhalothrin | 21 | 16 | 39 | 4 | |
Methoxyfenozid | 83 | 30 | |||
Penconazol | 3 | 37 | 6 | 23 | |
Thiacloprid | 54 | 6 | 19 |
Cases | HI 1 | ||||
---|---|---|---|---|---|
Apples | Grapes | Peaches | Strawberries | ∑HI | |
1 | 0.70 | 0.167 | 0.87 | ||
2 | 0.56 | 0.279 | 0.84 | ||
3 | 0.54 | 0.144 | 0.69 | ||
4 | 0.40 | 0.184 | 0.59 | ||
5 | 0.25 | 0.318 | 0.57 | ||
6 | 0.49 | 0.49 | |||
7 | 0.35 | 0.184 | 0.53 | ||
8 | 0.07 | 0.125 | 0.20 | ||
9 | 0.00 | 0.072 | 0.07 | ||
10 | 0.43 | 0.43 | |||
11 | 0.04 | 0.411 | 0.45 | ||
12 | 0.12 | 0.022 | 0.14 |
ΣRr | 0.31 | HI | |||
---|---|---|---|---|---|
NRr | 6 | 5.33625 | |||
S(R/ARfD) | NRal | 11 | |||
Active Substances | ARfD | Σ(R/ARfD) | 8.45 | ESTI | HQ |
**** | |||||
**** | |||||
**** | |||||
Difenoconazole | 0.16 | ||||
Dimethomorph (sum of isomers) | 0.6 | ||||
Famoxadone | 0.1 | ||||
Fenpyrazamine | 0.3 | ||||
**** | |||||
Indoxacarb | 0.005 | 4.4 | 0.022 | 0.002849 | 0.035617 |
Lambda-cyhalothrin | 0.005 | 1.8 | 0.009 | 0.001166 | 0.233128 |
Methoxyfenozide | 0.1 | 1.9 | 0.19 | 0.024608 | 4.921586 |
Penconazole | 0.5 | 0.053 | 0.006864 | 0.068643 | |
**** | |||||
Spirotetramat (sum) | 1.0 | 0.011 | 0.011 | 0.001425 | 0.047489 |
Spiroxamine (sum of isomers) | 0.1 | 0.23 | 0.023 | 0.002979 | 0.029789 |
Apples, 1–2 Years | |||||
Sample Code | 713531 | 764209 | 871718 | 100208 | 701284 |
NRall | 8 | 5 | 8 | 8 | 3 |
NRr | 8 | 5 | 8 | 8 | 3 |
Rmax | 0.9 | 0.81 | 0.61 | 0.15 | 0.35 |
∑(R/ARfD) | 6.28 | 8.3 | 11.28 | 12.5 | 14.1 |
HI | 0.51 | 0.67 | 0.74 | 1.1 | 1.14 |
CritAS1 | Captan | Indoxa | Indoxa | Cyper | Thiab |
CritAS2 | Captan | Aceta | |||
Grapes, 2–3 Years | |||||
Sample Code | 709244 | 706623 | 734019 | 747619 | 870823 |
NRall | 3 | 12 | 7 | 8 | 8 |
NRr | 8 | 9 | 2 | 2 | 3 |
Rmax | 0.21 | 2.03 | 0.61 | 0.51 | 0.25 |
∑(R/ARfD) | 15.44 | 50.75 | 22.26 | 15.6 | 6.94 |
HI | 2 | 6.57 | 1.65 | 2.05 | 0.93 |
CritAS1 | Aceta | Cyper | Actea | Aceta | Aceta |
CritAS2 | Indoxa | Delta | Pyrac | Pyrac | |
Peaches, 2–3 Years | |||||
Sample Code | 772309 | 880314 | 913511 | 914291 | 952444 |
NRall | 7 | 9 | 5 | 6 | 8 |
NRr | 5 | 6 | 6 | 4 | 7 |
Rmax | 0.236 | 0.23 | 0.11 | 0.245 | 0.43 |
∑(R/ARfD) | 5.49 | 4.22 | 7.86 | 20.74 | 19.64 |
HI | 0.72 | 0.55 | 1.03 | 2.7 | 2.57 |
CritAS1 | Lanbd | Lambda | Lambda | Lamda | Deltam |
CritAS2 | Captan | Tebuco | Indoxa | Tebuco | Piridab |
Strawberries, 2–3 Years | |||||
Sample Code | 747732 | 743721 | 858610 | 814218 | 975290 |
NRall | 6 | 4 | 9 | 11 | 7 |
NRr | 5 | 9 | 5 | 6 | 5 |
Rmax | 1.42 | 0.67 | 0.59 | 0.326 | 0.29 |
∑(R/ARfD) | 34.3 | 23.12 | 19.6 | 4.31 | 9.72 |
HI | 2.74 | 1.85 | 1.64 | 0.35 | 0.77 |
CritAS1 | Thebu | Thebu | Flonic | Pyraclo | Thiab |
Crt AS2 | Iprod | Thebu | Pyraclo | ||
Peppers, 2–3 Years | |||||
Sample Code | 653512 | 733476 | 803030 | 961507 | 961620 |
NRall | 5 | 9 | 11 | 7 | 8 |
NRr | 4 | 5 | 9 | 4 | 7 |
Rmax | 0.62 | 0.43 | 0.46 | 0.65 | 0.54 |
∑(R/ARfD) | 24.8 | 13.3 | 21.7 | 13.8 | 31.8 |
HI | 8.13 | 4.06 | 7.1 | 4.5 | 10.44 |
CritAS1 | Lambda | Flonic | Indoxac | Aceta | Indoxa |
CritAS2 | Imidac | Flonicam | Aceta | ||
Cherries, 1–2 Years | |||||
Sample Code | 682237 | 679422 | 750295 | 973694 | 679512 |
NRall | 3 | 8 | 3 | 6 | 4.00 |
NRr | 3 | 6 | 3 | 6 | 4.00 |
Rmax | 0.06 | 0.505 | 0.14 | 0.35 | 0.25 |
∑(R/ARfD) | 8.96 | 4.5 | 9.40 | 10.30 | 5.20 |
HI | 0.14 | 0.14 | 0.14 | 0.16 | 0.08 |
CritAS1 | Carbend | Pirimicarb | Carbe | Lambda | Tebuco |
CritAS2 | Thioph | Tebucon | Aceta |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambrus, Á.; Szenczi-Cseh, J.; Bíró, L.; Vásárhelyi, A.; Dobrik, H.S. Assessment of Hungarian Consumers’ Exposure to Pesticide Residues Based on the Results of Pesticide Residue Monitoring between 2017 and 2021. Agrochemicals 2023, 2, 458-483. https://doi.org/10.3390/agrochemicals2030026
Ambrus Á, Szenczi-Cseh J, Bíró L, Vásárhelyi A, Dobrik HS. Assessment of Hungarian Consumers’ Exposure to Pesticide Residues Based on the Results of Pesticide Residue Monitoring between 2017 and 2021. Agrochemicals. 2023; 2(3):458-483. https://doi.org/10.3390/agrochemicals2030026
Chicago/Turabian StyleAmbrus, Árpád, Júlia Szenczi-Cseh, Lajos Bíró, Adrienn Vásárhelyi, and Henriett Szemánné Dobrik. 2023. "Assessment of Hungarian Consumers’ Exposure to Pesticide Residues Based on the Results of Pesticide Residue Monitoring between 2017 and 2021" Agrochemicals 2, no. 3: 458-483. https://doi.org/10.3390/agrochemicals2030026
APA StyleAmbrus, Á., Szenczi-Cseh, J., Bíró, L., Vásárhelyi, A., & Dobrik, H. S. (2023). Assessment of Hungarian Consumers’ Exposure to Pesticide Residues Based on the Results of Pesticide Residue Monitoring between 2017 and 2021. Agrochemicals, 2(3), 458-483. https://doi.org/10.3390/agrochemicals2030026