Pesticide Safety in Greek Plant Foods from the Consumer Perspective: The Importance of Reliable Information
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Characteristics of Survey Participants
3.2. Participants’ Perspectives on the Safety of Greek-Produced Plant Foods in Terms of Pesticide Residues in Comparison to those of other EU Member States
3.3. The Variables Predicting the Participants’ Attitudes towards the Safety of Greek-Produced Plant Foods Research Question
3.3.1. Principal Components Underlying the Participants’ Attitudes
3.3.2. Predictive Variables of Participants’ Perceptions–Logistic Regression Model
3.4. Latent Class Analysis of the Respondents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Demographic Variables | Frequency | Percentage | |
---|---|---|---|
Gender | Female | 896 | 48.50% |
Male | 950 | 51.50% | |
Age | 18–24 | 220 | 11.90% |
25–34 | 195 | 10.60% | |
35–44 | 404 | 21.90% | |
45–54 | 669 | 36.20% | |
55–64 | 304 | 16.50% | |
≥65 | 54 | 2.90% | |
Educational background | Less than high school | 31 | 1.70% |
High school–Technical education | 397 | 21.50% | |
Bachelor’s degree | 727 | 39.40% | |
Master’s degree | 565 | 30.60% | |
Doctoral degree | 126 | 6.80% | |
Residential geographical area | Northern Greece | 540 | 29.30% |
Central Greece | 473 | 26.60% | |
Southern Greece | 833 | 45.10% | |
Population of place of residence | Less than 10,000 inhabitants (rural) | 468 | 25.40% |
More than 10,000 inhabitants (urban) | 1378 | 74.60% | |
Underage children in the family | No | 1027 | 55.60% |
Yes | 819 | 44.40% | |
Plenty of spare time | Νο | 735 | 39.80% |
Yes | 1111 | 60.20% | |
Smoking habits | Νο | 1404 | 76.10% |
Yes | 442 | 23.90% | |
Vegetarian by choice | Νο | 1722 | 93.30% |
Yes | 124 | 6.70% | |
Physical activity habits | Never | 243 | 13.20% |
Occasionally | 1207 | 65.40% | |
Systematically | 396 | 21.40% | |
Professional or amateur pesticide users | Νο | 1058 | 57.30% |
Yes | 788 | 42.70% | |
Occupation | Civil servants | 814 | 44.10% |
Private employees | 344 | 18.60% | |
Self-employed | 224 | 12.10% | |
Farmers | 98 | 5.30% | |
Unemployed | 71 | 3.90% | |
University students | 215 | 11.70% | |
Retired | 80 | 4.30% |
Original Variables (5-Point Likert Scale Statements) | Median (1) | IQR (2) | Principal Components | Uniqueness (3) | |||||
---|---|---|---|---|---|---|---|---|---|
Oinf | Benefit | Ginf | Trace | Risk | Safe | ||||
Official Information Sources | Perceived Pesticides’ Benefits | General Information Sources | Confidence in Traceability | Perceived Pesticides’ Risk | Perceived Plant Food Safety | ||||
Official Websites as sources for pesticide information | 3 | 2 | 0.918 | 0.185 | |||||
Newsletters from public institutions | 3 | 2 | 0.866 | 0.259 | |||||
Scientific periodicals | 3 | 2 | 0.853 | 0.270 | |||||
I receive information on pesticides from Agronomists | 4 | 3 | 0.712 | 0.428 | |||||
Pesticides contribute to national income growth | 4 | 1 | 0.836 | 0.383 | |||||
Pesticides help increase food production | 4 | 1 | 0.797 | 0.441 | |||||
The use of agrochemicals is an unavoidable fact | 4 | 2 | 0.719 | 0.470 | |||||
The correct use of pesticides safeguards the user | 4 | 2 | 0.697 | 0.418 | |||||
The proper use of pesticides protects the consumer | 4 | 2 | 0.652 | 0.411 | |||||
My information sources about pesticides are TV/Radio | 2 | 2 | 0.791 | 0.358 | |||||
Electronic Press | 3 | 2 | 0.789 | 0.282 | |||||
Press | 2 | 2 | 0.743 | 0.373 | |||||
Social Media | 2 | 2 | 0.716 | 0.483 | |||||
Labelling (traceability) reassures me | 4 | 1 | 0.865 | 0.273 | |||||
Safety of certified food products | 4 | 1 | 0.843 | 0.303 | |||||
Products from Integrated Crop Management are safe | 4 | 1 | 0.819 | 0.310 | |||||
I feel that my health has been at risk | 3 | 1 | 0.820 | 0.288 | |||||
I feel uncertain about the health of my own people | 4 | 2 | 0.793 | 0.424 | |||||
Pesticide residues in food make me concerned about my safety | 5 | 1 | 0.787 | 0.347 | |||||
Food of plant origin is generally safe to consume | 4 | 2 | 0.893 | 0.295 | |||||
The consumption of fruit and vegetables does not generally pose a risk to the consumer | 3 | 2 | 0.733 | 0.345 | |||||
Plant-based foods are tested for pesticide residues | 3 | 2 | 0.636 | 0.450 | |||||
The sum of the squared loadings | 2.970 | 2.795 | 2.390 | 2.245 | 1.982 | 1.823 | |||
Scale reliability (McDonald’s ω) | 0.865 | 0.796 | 0.774 | 0.795 | 0.720 | 0.698 | |||
Explained variance % | 13.502 | 12.706 | 10.863 | 10.205 | 9.008 | 8.288 | |||
Cumulative variance % | 13.502 | 26.208 | 37.071 | 47.275 | 56.283 | 64.571 | |||
Bartlett’s Test of Sphericity | X2 = 14,294.113; df = 231; p < 0.001 | ||||||||
KMO Measure of Sampling Adequacy test | 0.829 |
Model Coefficients–Dependent Variable: Plant Food Produced in Greece is as Safe as in other EU Member States in Terms of Pesticide Residues | |||||||||
---|---|---|---|---|---|---|---|---|---|
Wald Test | 95% Confidence Interval | ||||||||
Predictor | Estimate, b | Standard Error | z | Statistic | df | p | Odds Ratio | Lower | Upper |
Intercept | −0.637 | 0.145 | −4.399 | 19.353 | 1 | <0.001 | 0.529 | 0.398 | 0.702 |
SAFE (Perceived plant food safety) | 0.863 | 0.066 | 12.991 | 168.755 | 1 | <0.001 | 2.369 | 2.080 | 2.698 |
Higher education | 0.553 | 0.134 | 4.129 | 17.045 | 1 | <0.001 | 1.738 | 1.337 | 2.260 |
Age group ≥ 45 years old | 0.423 | 0.112 | 3.773 | 14.233 | 1 | <0.001 | 1.527 | 1.226 | 1.903 |
OINF (Official information sources) | 0.408 | 0.063 | 6.468 | 41.836 | 1 | <0.001 | 1.504 | 1.329 | 1.701 |
Male gender | 0.308 | 0.116 | 2.657 | 7.058 | 1 | 0.010 | 1.361 | 1.084 | 1.708 |
TRACE (Confidence in traceability) | 0.231 | 0.062 | 3.702 | 13.707 | 1 | <0.001 | 1.259 | 1.115 | 1.423 |
BENEFIT (Perceived pesticide benefits) | 0.228 | 0.065 | 3.524 | 12.420 | 1 | <0.001 | 1.256 | 1.106 | 1.426 |
RISK (Perceived pesticide risk) | −0.123 | 0.061 | −2.006 | 4.024 | 1 | 0.045 | 0.884 | 0.784 | 0.997 |
Pesticides user status | −0.327 | 0.137 | −2.395 | 5.736 | 1 | 0.020 | 0.721 | 0.551 | 0.942 |
Predictive measures: AUC = 0.790; Sensitivity = 0.709; Specificity = 0.736 |
References
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- FAO. Strategic Priorities for Food Safety FAO within the FAO Strategic Framework 2022–2031; FAO: Rome, Italy, 2023. [Google Scholar]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. IJERPH 2011, 8, 1402–1419. [Google Scholar] [CrossRef]
- Carvalho, F.P. Agriculture, Pesticides, Food Security and Food Safety. Environ. Sci. Policy 2006, 9, 685–692. [Google Scholar] [CrossRef]
- Cooper, J.; Dobson, H. The Benefits of Pesticides to Mankind and the Environment. Crop Prot. 2007, 26, 1337–1348. [Google Scholar] [CrossRef]
- Zhang, M.; Zeiss, M.R.; Geng, S. Agricultural Pesticide Use and Food Safety: California’s Model. J. Integr. Agric. 2015, 14, 2340–2357. [Google Scholar] [CrossRef]
- Gustavsson, J.; Cederberg, J.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste: Extent, Causes and Prevention; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011. [Google Scholar]
- De Bon, H.; Huat, J.; Parrot, L.; Sinzogan, A.; Martin, T.; Malézieux, E.; Vayssières, J.-F. Pesticide Risks from Fruit and Vegetable Pest Management by Small Farmers in Sub-Saharan Africa. A Review. Agron. Sustain. Dev. 2014, 34, 723–736. [Google Scholar] [CrossRef]
- Savary, S.; Ficke, A.; Aubertot, J.-N.; Hollier, C. Crop Losses Due to Diseases and Their Implications for Global Food Production Losses and Food Security. Food Sec. 2012, 4, 519–537. [Google Scholar] [CrossRef]
- Savary, S.; Willocquet, L.; Pethybridge, S.J.; Esker, P.; McRoberts, N.; Nelson, A. The Global Burden of Pathogens and Pests on Major Food Crops. Nat. Ecol. Evol. 2019, 3, 430–439. [Google Scholar] [CrossRef]
- Sharma, S.; Kooner, R.; Arora, R. Insect Pests and Crop Losses. In Breeding Insect Resistant Crops for Sustainable Agriculture; Arora, R., Sandhu, S., Eds.; Springer: Singapore, 2017; pp. 45–66. ISBN 978-981-10-6055-7. [Google Scholar]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Exposure to Pesticides and the Associated Human Health Effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Magkos, F.; Arvaniti, F.; Zampelas, A. Organic Food: Buying More Safety or Just Peace of Mind? A Critical Review of the Literature. Crit. Rev. Food Sci. Nutr. 2006, 46, 23–56. [Google Scholar] [CrossRef]
- Curl, C.L.; Beresford, S.A.A.; Fenske, R.A.; Fitzpatrick, A.L.; Lu, C.; Nettleton, J.A.; Kaufman, J.D. Estimating Pesticide Exposure from Dietary Intake and Organic Food Choices: The Multi-Ethnic Study of Atherosclerosis (MESA). Environ. Health Perspect. 2015, 123, 475–483. [Google Scholar] [CrossRef]
- Tago, D.; Andersson, H.; Treich, N. Pesticides and Health: A Review of Evidence on Health Effects, Valuation of Risks, and Benefit-Cost Analysis. In Advances in Health Economics and Health Services Research; Blomquist, G.C., Bolin, K., Eds.; Emerald Group Publishing Limited: Bingley, UK, 2014; Volume 24, pp. 203–295. ISBN 978-1-78441-029-2. [Google Scholar]
- Bolognesi, C.; Morasso, G. Genotoxicity of Pesticides. Trends Food Sci. Technol. 2000, 11, 182–187. [Google Scholar] [CrossRef]
- Nicolopoulou-Stamati, P.; Maipas, S.; Kotampasi, C.; Stamatis, P.; Hens, L. Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef]
- Costa, L.G. The Neurotoxicity of Organochlorine and Pyrethroid Pesticides. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2015; Volume 131, pp. 135–148. [Google Scholar] [CrossRef]
- Lee, I.; Eriksson, P.; Fredriksson, A.; Buratovic, S.; Viberg, H. Developmental Neurotoxic Effects of Two Pesticides: Behavior and Neuroprotein Studies on Endosulfan and Cypermethrin. Toxicology 2015, 335, 1–10. [Google Scholar] [CrossRef]
- Ma, M.; Chen, C.; Yang, G.; Li, Y.; Chen, Z.; Qian, Y. Combined Cytotoxic Effects of Pesticide Mixtures Present in the Chinese Diet on Human Hepatocarcinoma Cell Line. Chemosphere 2016, 159, 256–266. [Google Scholar] [CrossRef]
- Wang, T.; Ma, M.; Chen, C.; Yang, X.; Qian, Y. Three Widely Used Pesticides and Their Mixtures Induced Cytotoxicity and Apoptosis through the ROS-Related Caspase Pathway in HepG2 Cells. Food Chem. Toxicol. 2021, 152, 112162. [Google Scholar] [CrossRef]
- Graillot, V.; Takakura, N.; Hegarat, L.L.; Fessard, V.; Audebert, M.; Cravedi, J.-P. Genotoxicity of Pesticide Mixtures Present in the Diet of the French Population. Environ. Mol. Mutagen. 2012, 53, 173–184. [Google Scholar] [CrossRef]
- Matich, E.K.; Laryea, J.A.; Seely, K.A.; Stahr, S.; Su, L.J.; Hsu, P.-C. Association between Pesticide Exposure and Colorectal Cancer Risk and Incidence: A Systematic Review. Ecotoxicol. Environ. Saf. 2021, 219, 112327. [Google Scholar] [CrossRef]
- Wirdefeldt, K.; Adami, H.-O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and Etiology of Parkinson’s Disease: A Review of the Evidence. Eur. J. Epidemiol. 2011, 26, 1–58. [Google Scholar] [CrossRef]
- Curl, C.L.; Fenske, R.A.; Elgethun, K. Organophosphorus Pesticide Exposure of Urban and Suburban Preschool Children with Organic and Conventional Diets. Environ. Health Perspect. 2003, 111, 377–382. [Google Scholar] [CrossRef]
- Lu, C.; Barr, D.B.; Pearson, M.A.; Waller, L.A. Dietary Intake and Its Contribution to Longitudinal Organophosphorus Pesticide Exposure in Urban/Suburban Children. Environ. Health Perspect. 2008, 116, 537–542. [Google Scholar] [CrossRef]
- Ding, G.; Bao, Y. Revisiting Pesticide Exposure and Children’s Health: Focus on China. Sci. Total Environ. 2014, 472, 289–295. [Google Scholar] [CrossRef]
- Lozowicka, B. Health Risk for Children and Adults Consuming Apples with Pesticide Residue. Sci. Total Environ. 2015, 502, 184–198. [Google Scholar] [CrossRef]
- Yue, M.; Liu, Q.; Wang, F.; Zhou, W.; Liu, L.; Wang, L.; Zou, Y.; Zhang, L.; Zheng, M.; Zeng, S.; et al. Urinary Neonicotinoid Concentrations and Pubertal Development in Chinese Adolescents: A Cross-Sectional Study. Environ. Int. 2022, 163, 107186. [Google Scholar] [CrossRef]
- Kortenkamp, A. Ten Years of Mixing Cocktails: A Review of Combination Effects of Endocrine-Disrupting Chemicals. Environ. Health Perspect. 2007, 115 (Suppl. S1), 98–105. [Google Scholar] [CrossRef]
- Laetz, C.A.; Baldwin, D.H.; Collier, T.K.; Hebert, V.; Stark, J.D.; Scholz, N.L. The Synergistic Toxicity of Pesticide Mixtures: Implications for Risk Assessment and the Conservation of Endangered Pacific Salmon. Environ. Health Perspect. 2009, 117, 348–353. [Google Scholar] [CrossRef]
- Laetz, C.A.; Baldwin, D.H.; Hebert, V.; Stark, J.D.; Scholz, N.L. Interactive Neurobehavioral Toxicity of Diazinon, Malathion, and Ethoprop to Juvenile Coho Salmon. Environ. Sci. Technol. 2013, 47, 2925–2931. [Google Scholar] [CrossRef]
- Laetz, C.A.; Baldwin, D.H.; Hebert, V.R.; Stark, J.D.; Scholz, N.L. Elevated Temperatures Increase the Toxicity of Pesticide Mixtures to Juvenile Coho Salmon. Aquat. Toxicol. 2014, 146, 38–44. [Google Scholar] [CrossRef]
- Rizzati, V.; Briand, O.; Guillou, H.; Gamet-Payrastre, L. Effects of Pesticide Mixtures in Human and Animal Models: An Update of the Recent Literature. Chem. Biol. Interact. 2016, 254, 231–246. [Google Scholar] [CrossRef]
- Boobis, A.R.; Ossendorp, B.C.; Banasiak, U.; Hamey, P.Y.; Sebestyen, I.; Moretto, A. Cumulative Risk Assessment of Pesticide Residues in Food. Toxicol. Lett. 2008, 180, 137–150. [Google Scholar] [CrossRef]
- Boobis, A.; Budinsky, R.; Collie, S.; Crofton, K.; Embry, M.; Felter, S.; Hertzberg, R.; Kopp, D.; Mihlan, G.; Mumtaz, M.; et al. Critical Analysis of Literature on Low-Dose Synergy for Use in Screening Chemical Mixtures for Risk Assessment. Crit. Rev. Toxicol. 2011, 41, 369–383. [Google Scholar] [CrossRef]
- Hernández, A.F.; Gil, F.; Tsatsakis, A.M. Biomarkers of Chemical Mixture Toxicity. In Biomarkers in Toxicology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 569–585. [Google Scholar] [CrossRef]
- Hernández, A.F.; Gil, F.; Lacasaña, M. Toxicological Interactions of Pesticide Mixtures: An Update. Arch. Toxicol. 2017, 91, 3211–3223. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Carrasco Cabrera, L.; Di Piazza, G.; Dujardin, B.; Medina Pastor, P. The 2021 European Union Report on Pesticide Residues in Food. EFS2 2023, 21, 7939. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Craig, P.S.; Dujardin, B.; Hart, A.; Hernández-Jerez, A.F.; Hougaard Bennekou, S.; Kneuer, C.; Ossendorp, B.; Pedersen, R.; Wolterink, G.; et al. Cumulative Dietary Risk Characterisation of Pesticides That Have Acute Effects on the Nervous System. EFS2 2020, 18, e06087. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Craig, P.S.; Dujardin, B.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Kneuer, C.; Ossendorp, B.; Pedersen, R.; Wolterink, G.; et al. Cumulative Dietary Risk Characterisation of Pesticides That Have Chronic Effects on the Thyroid. EFS2 2020, 18, e06088. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Dujardin, B. Comparison of Cumulative Dietary Exposure to Pesticide Residues for the Reference Periods 2014–2016 and 2016–2018. EFS2 2021, 19, e06394. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Food Safety in the EU: Report; Special Eurobarometer—March 2022; Publications Office: Luxembourg, 2022; Available online: https://www.efsa.europa.eu/sites/default/files/2022-09/EB97.2-food-safety-in-the-EU_report.pdf (accessed on 10 August 2023).
- Reiss, R.; Johnston, J.; Tucker, K.; DeSesso, J.M.; Keen, C.L. Estimation of Cancer Risks and Benefits Associated with a Potential Increased Consumption of Fruits and Vegetables. Food Chem. Toxicol. 2012, 50, 4421–4427. [Google Scholar] [CrossRef]
- Valcke, M.; Bourgault, M.-H.; Rochette, L.; Normandin, L.; Samuel, O.; Belleville, D.; Blanchet, C.; Phaneuf, D. Human Health Risk Assessment on the Consumption of Fruits and Vegetables Containing Residual Pesticides: A Cancer and Non-Cancer Risk/Benefit Perspective. Environ. Int. 2017, 108, 63–74. [Google Scholar] [CrossRef]
- Sandoval-Insausti, H.; Chiu, Y.-H.; Lee, D.H.; Wang, S.; Hart, J.E.; Mínguez-Alarcón, L.; Laden, F.; Ardisson Korat, A.V.; Birmann, B.; Heather Eliassen, A.; et al. Intake of Fruits and Vegetables by Pesticide Residue Status in Relation to Cancer Risk. Environ. Int. 2021, 156, 106744. [Google Scholar] [CrossRef]
- Slovic, P.; Malmfors, T.; Krewski, D.; Mertz, C.K.; Neil, N.; Bartlett, S. Intuitive Toxicology. II. Expert and Lay Judgments of Chemical Risks in Canada. Risk Anal. 1995, 15, 661–675. [Google Scholar] [CrossRef]
- Abe, A.; Koyama, K.; Uehara, C.; Hirakawa, A.; Horiguchi, I. Changes in the Risk Perception of Food Safety between 2004 and 2018. Food Saf. 2020, 8, 90–96. [Google Scholar] [CrossRef]
- Atreya, N. Pesticides in Perspective Does the Mere Precence of a Pesticide Residue in Food Indicate a Risk? J. Environ. Monitor. 2000, 2, 53N–56N. [Google Scholar] [CrossRef]
- Yeung, R.M.W.; Morris, J. Food Safety Risk: Consumer Perception and Purchase Behaviour. Br. Food J. 2001, 103, 170–187. [Google Scholar] [CrossRef]
- Krystallis, A.; Frewer, L.; Rowe, G.; Houghton, J.; Kehagia, O.; Perrea, T. A Perceptual Divide? Consumer and Expert Attitudes to Food Risk Management in Europe. Health Risk Soc. 2007, 9, 407–424. [Google Scholar] [CrossRef]
- Van Der Vossen-Wijmenga, W.P.; Zwietering, M.H.; Boer, E.P.J.; Velema, E.; Den Besten, H.M.W. Perception of Food-Related Risks: Difference between Consumers and Experts and Changes over Time. Food Control 2022, 141, 109142. [Google Scholar] [CrossRef]
- FAO. Guide to Ranking Food Safety Risks at the National Level; FAO: Rome, Italy, 2020; ISBN 978-92-5-133282-5. [Google Scholar]
- Whaley, S.R.; Tucker, M. The Influence of Perceived Food Risk and Source Trust on Media System Dependency. J. Appl. Commun. 2004, 88, 9–19. [Google Scholar] [CrossRef]
- Hohl, K.; Gaskell, G. European Public Perceptions of Food Risk: Cross-National and Methodological Comparisons: European Public Perceptions of Food Risk. Risk Anal. 2008, 28, 311–324. [Google Scholar] [CrossRef]
- Simoglou, K.B.; Roditakis, E. Consumers’ Benefit—Risk Perception on Pesticides and Food Safety—A Survey in Greece. Agriculture 2022, 12, 192. [Google Scholar] [CrossRef]
- Han, G.; Yan, S.; Fan, B. Regional Regulations and Public Safety Perceptions of Quality-of-Life Issues: Empirical Study on Food Safety in China. Healthcare 2020, 8, 275. [Google Scholar] [CrossRef]
- Williams, P.R.D.; Hammitt, J.K. Perceived Risks of Conventional and Organic Produce: Pesticides, Pathogens, and Natural Toxins. Risk Anal. 2001, 21, 319–330. [Google Scholar] [CrossRef]
- Siegrist, M. Trust and Risk Perception: A Critical Review of the Literature. Risk Anal. 2021, 41, 480–490. [Google Scholar] [CrossRef]
- Schmitt, J.B.; Debbelt, C.A.; Schneider, F.M. Too Much Information? Predictors of Information Overload in the Context of Online News Exposure. Inf. Commun. Soc. 2018, 21, 1151–1167. [Google Scholar] [CrossRef]
- Kotelenets, E.; Barabash, V. Propaganda and Information Warfare in Contemporary World: Definition Problems, Instruments and Historical Context. In Proceedings of the International Conference on Man-Power-Law-Governance: Interdisciplinary Approaches (MPLG-IA 2019), Moscow, Russia, 24–25 September 2019; Atlantis Press: Moscow, Russia, 2019. [Google Scholar] [CrossRef]
- Harris, C.A.; Renfrew, M.J.; Woolridge, M.W. Assessing the Risks of Pesticide Residues to Consumers: Recent and Future Developments. Food Addit. Contam. 2001, 18, 1124–1129. [Google Scholar] [CrossRef]
- Tiozzo, B.; Pinto, A.; Neresini, F.; Sbalchiero, S.; Parise, N.; Ruzza, M.; Ravarotto, L. Food Risk Communication: Analysis of the Media Coverage of Food Risk on Italian Online Daily Newspapers. Qual Quant 2019, 53, 2843–2866. [Google Scholar] [CrossRef]
- Laybats, C.; Tredinnick, L. Post Truth, Information, and Emotion. Bus. Inf. Rev. 2016, 33, 204–206. [Google Scholar] [CrossRef]
- Rochlin, N. Fake News: Belief in Post-Truth. LHT 2017, 35, 386–392. [Google Scholar] [CrossRef]
- Ueland, Ø.; Gunnlaugsdottir, H.; Holm, F.; Kalogeras, N.; Leino, O.; Luteijn, J.M.; Magnússon, S.H.; Odekerken, G.; Pohjola, M.V.; Tijhuis, M.J.; et al. State of the Art in Benefit–Risk Analysis: Consumer Perception. Food Chem. Toxicol. 2012, 50, 67–76. [Google Scholar] [CrossRef]
- Lobb, A.E.; Mazzocchi, M.; Traill, W.B. Modelling Risk Perception and Trust in Food Safety Information within the Theory of Planned Behaviour. Food Qual. Prefer. 2007, 18, 384–395. [Google Scholar] [CrossRef]
- Kumar, S.; West, R.; Leskovec, J. Disinformation on the Web: Impact, Characteristics, and Detection of Wikipedia Hoaxes. In Proceedings of the 25th International Conference on World Wide Web, Montréal, QC, Canada, 11–15 April 2016; International World Wide Web Conferences Steering Committee: Montréal, QC, Canada, 2016; pp. 591–602. [Google Scholar] [CrossRef]
- Metaxa-Kakavouli, D.; Torres-Echeverry, N. Google’s Role in Spreading Fake News and Misinformation. SSRN J. 2017. [Google Scholar] [CrossRef]
- Papadopoulos, A.; Sargeant, J.M.; Majowicz, S.E.; Sheldrick, B.; McKeen, C.; Wilson, J.; Dewey, C.E. Enhancing Public Trust in the Food Safety Regulatory System. Health Policy 2012, 107, 98–103. [Google Scholar] [CrossRef]
- Lofstedt, R.E. How Can We Make Food Risk Communication Better: Where Are We and Where Are We Going? J. Risk Res. 2006, 9, 869–890. [Google Scholar] [CrossRef]
- FAO. The Application of Risk Communication to Food Standards and Safety Matters: Report of a Joint FAO/WHO Expert Consultation, Rome, 2–6 February 1998; World Health Organization, Food and Agriculture Organization of the United Nations, Eds.; FAO food and nutrition paper; World Health Organization: Geneva, Switzerland; Food and Agriculture Organization of the United Nations: Rome, Italy, 1999. [Google Scholar]
- Swinnen, J.F.M.; McCluskey, J.; Francken, N. Food Safety, the Media, and the Information Market. Agric. Econ. 2005, 32, 175–188. [Google Scholar] [CrossRef]
- Meagher, K.D. Public Perceptions of Food-Related Risks: A Cross-National Investigation of Individual and Contextual Influences. J. Risk Res. 2019, 22, 919–935. [Google Scholar] [CrossRef]
- Carslaw, N. Communicating Risks Linked to Food—The Media’s Role. Trends Food Sci. Technol. 2008, 19, S14–S17. [Google Scholar] [CrossRef]
- McCarthy, M.; Brennan, M.; De Boer, M.; Ritson, C. Media Risk Communication—What Was Said by Whom and How Was It Interpreted. J. Risk Res. 2008, 11, 375–394. [Google Scholar] [CrossRef]
- Peters, H.P.; Dunwoody, S. Scientific Uncertainty in Media Content: Introduction to This Special Issue. Public Underst. Sci. 2016, 25, 893–908. [Google Scholar] [CrossRef]
- Kehagia, O.; Chrysochou, P. The Reporting of Food Hazards by the Media: The Case of Greece. Soc. Sci. J. 2007, 44, 721–733. [Google Scholar] [CrossRef]
- Koch, S.; Epp, A.; Lohmann, M.; Böl, G.-F. Pesticide Residues in Food: Attitudes, Beliefs, and Misconceptions among Conventional and Organic Consumers. J. Food Prot. 2017, 80, 2083–2089. [Google Scholar] [CrossRef]
- Skarpa, P.E.; Garoufallou, E. Information Seeking Behavior and COVID-19 Pandemic: A Snapshot of Young, Middle Aged and Senior Individuals in Greece. Int. J. Med. Inform. 2021, 150, 104465. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Food-Related Risks. Report; Special Eurobarometer—June 2010. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/reporten.pdf (accessed on 10 August 2023).
- European Food Safety Authority (EFSA). Food-Related Risks. Report; Special Eurobarometer—April 2019. Available online: https://www.efsa.europa.eu/sites/default/files/corporate_publications/files/Eurobarometer2019_Food-safety-in-the-EU_Full-report.pdf (accessed on 10 August 2023).
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Cengage: Andover, Hampshire, 2019. [Google Scholar]
- Weller, B.E.; Bowen, N.K.; Faubert, S.J. Latent Class Analysis: A Guide to Best Practice. J. Black Psychol. 2020, 46, 287–311. [Google Scholar] [CrossRef]
- The Jamovi Project. Jamovi (Version 2.3)—Computer Software. Available online: https://www.jamovi.org (accessed on 30 July 2023).
- JASP Team. JASP (Version 0.17.3)—Computer software. Available online: https://jasp-stats.org (accessed on 30 July 2023).
- Verbeke, W.; Frewer, L.J.; Scholderer, J.; De Brabander, H.F. Why Consumers Behave as They Do with Respect to Food Safety and Risk Information. Anal. Chim. Acta 2007, 586, 2–7. [Google Scholar] [CrossRef]
- Karagianni, P.; Tsakiridou, E.; Tsakiridou, H.; Mattas, K. Consumer Perceptions about Fruit and Vegetable Quality Attributes: Evidence from a Greek Survey. Acta Hortic. 2003, 604, 345–352. [Google Scholar] [CrossRef]
- Wilcock, A.; Pun, M.; Khanona, J.; Aung, M. Consumer Attitudes, Knowledge and Behaviour: A Review of Food Safety Issues. Trends Food Sci. Technol. 2004, 15, 56–66. [Google Scholar] [CrossRef]
- Dickson-Spillmann, M.; Siegrist, M.; Keller, C. Attitudes toward Chemicals Are Associated with Preference for Natural Food. Food Qual. Prefer. 2011, 22, 149–156. [Google Scholar] [CrossRef]
- Li, Z.; Sha, Y.; Song, X.; Yang, K.; ZHao, K.; Jiang, Z.; Zhang, Q. Impact of Risk Perception on Customer Purchase Behavior: A Meta-Analysis. JBIM 2020, 35, 76–96. [Google Scholar] [CrossRef]
- Dimara, E.; Skuras, D. Consumer Demand for Informative Labeling of Quality Food and Drink Products: A European Union Case Study. J. Consum. Mark. 2005, 22, 90–100. [Google Scholar] [CrossRef]
- Krystallis, A.; Chryssohoidis, G. Consumers’ Willingness to Pay for Organic Food: Factors that Affect It and Variation per Organic Product Type. Br. Food J. 2005, 107, 320–343. [Google Scholar] [CrossRef]
- Krystallis, A.; Fotopoulos, C.; Zotos, Y. Organic Consumers’ Profile and Their Willingness to Pay (WTP) for Selected Organic Food Products in Greece. J. Int. Consum. Mark. 2006, 19, 81–106. [Google Scholar] [CrossRef]
- Tsakiridou, E.; Zotos, Y.; Mattas, K. Employing a Dichotomous Choice Model to Assess Willingness to Pay (WTP) for Organically Produced Products. J. Food Prod. Mark. 2006, 12, 59–69. [Google Scholar] [CrossRef]
- Tsakiridou, E.; Boutsouki, C.; Zotos, Y.; Mattas, K. Attitudes and Behaviour towards Organic Products: An Exploratory Study. Int. J. Retail Distrib. Manag. 2008, 36, 158–175. [Google Scholar] [CrossRef]
- Tsakiridou, E.; Mattas, K.; Mpletsa, Z. Consumers’ Food Choices for Specific Quality Food Products. J. Food Prod. Mark. 2009, 15, 200–212. [Google Scholar] [CrossRef]
- Tsakiridou, E.; Mattas, K.; Tsakiridou, H.; Tsiamparli, E. Purchasing Fresh Produce on the Basis of Food Safety, Origin, and Traceability Labels. J. Food Prod. Mark. 2011, 17, 211–226. [Google Scholar] [CrossRef]
- Dunlap, R.E.; Beus, C.E. Understanding Public Concerns About Pesticides: An Empirical Examination. J. Consum. Aff. 1992, 26, 418–438. [Google Scholar] [CrossRef]
- Slovic, P.; Fischhoff, B.; Lichtenstein, S. Facts and Fears: Understanding Perceived Risk. In Societal Risk Assessment: How Safe Is Safe Enough? Schwing, R.C., Albers, W.A., Eds.; Springer: Boston, MA, USA, 1980; pp. 181–216. [Google Scholar]
- Huang, C.L. Simultaneous-Equation Model for Estimating Consumer Risk Perceptions, Attitudes, and Willingness-to-Pay for Residue-Free Produce. J. Consum. Aff. 1993, 27, 377–396. [Google Scholar] [CrossRef]
- Leikas, S.; Lindeman, M.; Roininen, K.; Lähteenmäki, L. Who Is Responsible for Food Risks? The Influence of Risk Type and Risk Characteristics. Appetite 2009, 53, 123–126. [Google Scholar] [CrossRef]
- Mazzocchi, M.; Lobb, A.; Bruce Traill, W.; Cavicchi, A. Food Scares and Trust: A European Study: Food Scares and Trust: A European Study. J. Agric. Econ. 2008, 59, 2–24. [Google Scholar] [CrossRef]
- Rembischevski, P.; Caldas, E.D. Risk Perception Related to Food. Food Sci. Technol. 2020, 40, 779–785. [Google Scholar] [CrossRef]
- Miller, H. The Multiple Dimensions of Information Quality. Inf. Syst. Manag. 1996, 13, 79–82. [Google Scholar] [CrossRef]
- McGonagle, T. “Fake News”: False Fears or Real Concerns? Neth. Q. Hum. Rights 2017, 35, 203–209. [Google Scholar] [CrossRef]
Variables of Focus | Mann–Whitney U Test | Rank-Biserial Correlation (*) |
---|---|---|
OINF—official information sources | W = 8249.0; p < 0.001 | −0.981 |
BENEFIT—perceived benefits | W = 283,684.0; p < 0.001 | −0.332 |
GINF—general information sources | W = 344,139.0; p < 0.001 | −0.190 |
TRACE—confidence in traceability | W = 340,339.0; p < 0.001 | −0.198 |
RISK—perceived pesticide risk | W = 378,416.0; p < 0.001 | 0.109 |
SAFE—perceived plant food safety | W = 387,926.0; p = 0.001 | −0.086 |
Pesticide residues in food make me concerned about my safety | W = 428,532.0; p = 0.588 | 0.009 |
In Greece, plant food is not tested for pesticide residues as often as in other EU Member States | W = 428,008.0; p = 0.760 | 0.008 |
Background Variables | Class 1 (N = 871) | Class 2 (N = 975) | Chi-Squared Test | |
---|---|---|---|---|
“Non-Supporters” | “Supporters” | |||
Gender | Female | 54.6 % | 45.4 % | Χ2 = 38.183; df = 1; |
Μale | 40.2 % | 59.8 % | p < 0.001 | |
Age | 18–44 | 47.6 % | 52.4 % | Χ2 = 0.112; df = 2; |
≥45 | 46.8 % | 53.2 % | p = 0.738 | |
Place of residence | Rural | 40.6 % | 59.4 % | Χ2 = 10.908; df = 1; |
Urban | 49.4 % | 50.6 % | p < 0.001 | |
Region | Northern Greece | 52.8 % | 47.2 % | Χ2 = 14.271; df = 2; |
Central Greece | 48.8 % | 51.2 % | p < 0.001 | |
Southern Greece | 42.6 % | 57.4 % | ||
I use pesticides | No | 61.6 % | 38.4 % | Χ2 = 207.455; df = 1; |
Yes | 27.8 % | 72.2 % | p < 0.001 | |
Profession | Civil servants | 53.1 % | 46.9 % | X2 = 36.611; df = 6; |
Farmers | 30.6 % | 69.4 % | p < 0.001 | |
Private employees | 42.2 % | 57.8 % | ||
Retired | 42.5 % | 57.5 % | ||
Self-employed | 37.9 % | 62.1 % | ||
Unemployed | 45.1 % | 54.9 % | ||
University students | 52.6 % | 47.4 % | ||
Education | Secondary education | 52.6 % | 47.4 % | Χ2 = 6.488; df = 1; |
Higher education | 45.6 % | 54.4 % | p = 0.011 |
Research Question | Principal Conclusions |
---|---|
RQ1: How do Greek consumers perceive the safety of Greek plant foods regarding pesticide residues compared to other EU Member States? |
|
| |
RQ2: Which sociodemographic and attitudinal variables predict Greek consumers’ personal perspectives on Greek plant food safety? |
|
| |
| |
| |
| |
| |
| |
| |
| |
RQ3: What is the role of information sources in forming consumer perceptions of the safety of Greek plant foods? |
|
| |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simoglou, K.B.; Skarpa, P.E.; Roditakis, E. Pesticide Safety in Greek Plant Foods from the Consumer Perspective: The Importance of Reliable Information. Agrochemicals 2023, 2, 484-502. https://doi.org/10.3390/agrochemicals2040027
Simoglou KB, Skarpa PE, Roditakis E. Pesticide Safety in Greek Plant Foods from the Consumer Perspective: The Importance of Reliable Information. Agrochemicals. 2023; 2(4):484-502. https://doi.org/10.3390/agrochemicals2040027
Chicago/Turabian StyleSimoglou, Konstantinos B., Paraskevi El. Skarpa, and Emmanouil Roditakis. 2023. "Pesticide Safety in Greek Plant Foods from the Consumer Perspective: The Importance of Reliable Information" Agrochemicals 2, no. 4: 484-502. https://doi.org/10.3390/agrochemicals2040027
APA StyleSimoglou, K. B., Skarpa, P. E., & Roditakis, E. (2023). Pesticide Safety in Greek Plant Foods from the Consumer Perspective: The Importance of Reliable Information. Agrochemicals, 2(4), 484-502. https://doi.org/10.3390/agrochemicals2040027