Allelopathic Potential of Sweet Sorghum Root Exudates and Identification of the Relevant Allelochemicals
Abstract
:1. Introduction
2. Results
2.1. Growth Parameters of Sweet Sorghum and Weeds
2.2. Inhibitory Activity of Sweet Sorghum Root Exudates
2.3. Total Phenolic and Flavonoid Contents
2.4. Identification and Quantification of Phenolics by HPLC (High Performance Liquid Chromatography)
3. Discussion
4. Materials and Methods
4.1. Experiment Design and Materials
4.2. Sugar Content of Sweet Sorghum
4.3. Reagents and Standards
4.4. Sample Extraction
4.5. Determination of Total Phenolic and Flavonoid Contents
4.6. Inhibitory Activities of Extracts
4.7. Identification and Quantification of Phenolic Compounds
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerbens-Leenes, P.W.; Hoekstra, A.Y.; Van der Meer, T.H. The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol. Econ. 2009, 68, 1052–1060. [Google Scholar] [CrossRef]
- Escobar, J.C.; Lora, E.S.; Venturini, O.J.; Yáñez, E.E.; Castillo, E.F.; Almazan, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- Balat, M.; Balat, H. Recent trends in global production and utilization of bio-ethanol fuel. Appl. Energy 2009, 86, 2273–2282. [Google Scholar] [CrossRef]
- Rutto, L.K.; Xu, Y.; Brandt, M.; Ren, S.; Kering, M.K. Juice, ethanol, and grain yield potential of five sweet sorghum (Sorghum bicolor [L.] Moench) cultivars. J. Sustain. Bioenergy Syst. 2013, 3, 113–118. [Google Scholar] [CrossRef]
- Laopaiboon, L.; Nuanpeng, S.; Srinophakun, P.; Klanrit, P.; Laopaiboon, P. Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresour. Technol. 2009, 100, 4176–4182. [Google Scholar] [CrossRef] [PubMed]
- Galon, L.; Santin, C.O.; Andres, A.; Basso, F.J.M.; Nonemacher, F.; Agazzi, L.R.; Silva, A.F.; Holz, C.M.; Fernandes, F.F. Competitive interaction between sweet sorghum with weeds. Planta Daninha 2018, 36, 1–13. [Google Scholar] [CrossRef]
- Lueschen, W.E.; Putnam, D.H.; Kanne, B.K.; Hoverstad, T.R. Agronomic practices for production of ethanol from sweet sorghum. J. Prod. Agric. 1991, 4, 619–625. [Google Scholar] [CrossRef]
- She, D.; Xu, F.; Geng, Z.; Sun, R.; Jones, G.L.; Baird, M.S. Physicochemical characterization of extracted lignin from sweet sorghum stem. Ind. Crop. Prod. 2010, 32, 21–28. [Google Scholar] [CrossRef]
- Storozhyk, L.; Mykolayko, V.; Mykolayko, I. Allelopathic potential of sugar sorghum (Sorghum bicolor (L.) moench) seeds. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 93–98. [Google Scholar] [CrossRef]
- Bhadoria, P.B.S. Allelopathy: A natural way towards weed management. Am. J. Exp. Agric. 2011, 1, 7–20. [Google Scholar] [CrossRef]
- Jabran, K.; Mahajan, G.; Sardana, V.; Chauhan, B.S. Allelopathy for weed control in agricultural systems. Crop. Prot. 2015, 72, 57–65. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Kaur, S. Crop allelopathy and its role in ecological agriculture. J. Crop. Prod. 2001, 4, 121–161. [Google Scholar] [CrossRef]
- Hussain, M.I.; Danish, S.; Sanchez-Moreiras, A.M.; Vicente, O.; Jabran, K.; Chaudhry, U.K.; Branca, F.; Reigosa, M.J. Unraveling sorghum allelopathy in agriculture: Concepts and implications. Plants 2021, 10, 1795. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.Q.; Kong, C.H.; Wang, P.; Meiners, S.J. Root exudate signals in plant–plant interactions. Plant Cell Environ. 2021, 44, 1044–1058. [Google Scholar] [CrossRef]
- Nihorimbere, V.; Ongena, M.; Smargiassi, M.; Thonart, P. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol. Agron. Soc. Environ. 2011, 15, 327–337. [Google Scholar]
- Walker, T.S.; Bais, H.P.; Grotewold, E.; Vivanco, J.M. Root exudation and rhizosphere biology. Plant Physiol. 2003, 132, 44–51. [Google Scholar] [CrossRef]
- Xuan, T.D.; Yulianto, R.; Andriana, Y.; Khanh, T.D.; Truong, T.T.A.; Kakar, K.; Haqani, M.I. Chemical profile, antioxidant activities and allelopathic potential of liquid waste from germinated brown rice. Allelopathy J. 2018, 45, 89–100. [Google Scholar] [CrossRef]
- Scavo, A.; Abbate, C.; Mauromicale, G. Plant allelochemicals: Agronomic, nutritional and ecological relevance in the soil system. Plant Soil 2019, 442, 23–48. [Google Scholar] [CrossRef]
- John, J.; Sarada, S. Role of phenolics in allelopathic interactions. Allelopathy J. 2012, 29, 215–229. [Google Scholar]
- Kakar, K.; Xuan, T.D.; Quan, N.V.; Wafa, I.K.; Tran, H.D.; Khanh, T.D.; Dat, T.D. Efficacy of N-methyl-N-nitrosourea mutation on physicochemical properties, phytochemicals, and momilactones A and B in rice. Sustainability 2019, 11, 6862. [Google Scholar] [CrossRef]
- Lim, F.L.; Yam, M.F.; Asmawi, M.Z.; Chan, L.K. Elicitation of Orthosiphon stamineus cell suspension culture for enhancement of phenolic compounds biosynthesis and antioxidant activity. Ind. Crop. Prod. 2013, 50, 436–442. [Google Scholar] [CrossRef]
- Tak, Y.; Kumar, M. Phenolics: A key defence secondary metabolite to counter biotic stress. In Plant Phenolics in Sustainable Agriculture; Lone, R., Shuab, R., Kamili, A., Eds.; Springer: Singapore, 2020; pp. 309–329. [Google Scholar]
- Alsaadawi, I.S.; Dayan, F.E. Potentials and prospects of sorghum allelopathy in agroecosystems. Allelopathy J. 2009, 24, 255–270. [Google Scholar]
- Bagle, A.V.; Jadhav, R.S.; Gite, V.V.; Hundiwale, D.G.; Mahulikar, P.P. Controlled release study of phenol formaldehyde microcapsules containing neem oil as an insecticide. Int. J. Polym. Mater. Polym. Biomater. 2013, 62, 421–425. [Google Scholar] [CrossRef]
- Peerzada, A.M.; Ali, H.H.; Chauhan, B.S. Weed management in sorghum [Sorghum bicolor (L.) Moench] using crop competition: A review. Crop. Prot. 2017, 95, 74–80. [Google Scholar] [CrossRef]
- Aqila, S.; Shamsher, A.; Bob, A.S.; Muhammad, A.N.; Ghulam, J. Mulching and synergistic use of organic and chemical fertilizers enhances the yield, nutrient uptake and water use efficiency of sorghum. Afr. J. Agric. Res. 2010, 5, 2178–2183. [Google Scholar]
- Reddy, B.V.; Ramesh, S.; Reddy, P.S.; Ramaiah, B.; Salimath, M.; Kachapur, R. Sweet sorghum-a potential alternate raw material for bio-ethanol and bio-energy. ISMN 2005, 46, 79–86. [Google Scholar]
- Gląb, L.; Sowiński, J.; Bough, R.; Dayan, F.E. Allelopathic potential of sorghum (Sorghum bicolor (L.) Moench) in weed control: A comprehensive review. Adv. Agron. 2017, 145, 43–95. [Google Scholar]
- Dahiya, S.; Kumar, S.; Khedwal, R.S.; Jakhar, S.R. Allelopathy for sustainable weed management. J. Pharm. Phytochem. 2017, 6, 832–837. [Google Scholar]
- Pagnussatt, F.A.; Del Ponte, E.M.; Garda-Buffon, J.; Badiale-Furlong, E. Inhibition of Fusarium graminearum growth and mycotoxin production by phenolic extract from Spirulina sp. Pestic. Biochem. Phys. 2014, 108, 21–26. [Google Scholar] [CrossRef]
- Xuan, T.D.; Khang, D.T. Effects of exogenous application of protocatechuic acid and vanillic acid to chlorophylls, phenolics and antioxidant enzymes of rice (Oryza sativa L.) in submergence. Molecules 2018, 23, 620. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Khaliq, A.; Saeed, S. Weed control in maize (Zea mays L.) through sorghum allelopathy. J. Sustain. Agric. 2004, 23, 73–86. [Google Scholar] [CrossRef]
- Ayeni, M.J.; Kayode, J. Allelopathic effects of aqueous extracts from residues of Sorghum bicolor stem and maize inflorescence on the germination and growth of Euphorbia heterophylla L. J. Plant Stud. 2013, 2, 1–7. [Google Scholar] [CrossRef]
- Alsaadawi, I.S.; Khaliq, A.; Lahmod, N.R.; Matloob, A. Weed management in broad bean (Vicia faba L.) through allelopathic Sorghum bicolor (L.) Moench residues and reduced rate of a pre-plant herbicide. Allelopathy J. 2013, 32, 203–212. [Google Scholar]
- Murimwa, J.C.; Rugare, J.T.; Mabasa, S.; Mandumbu, R. Effect of sorghum mulches on emergence and seedling growth of beggarticks, goose grass, and sesame. Int. J. Agron. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Guimarães, P.M.; Silva, J.P.A.; Carneiro, L.M.; Roberto, I.C.; Vicente, A.; Domingues, L.; Teixeira, J.A. Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 2010, 28, 817–830. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Phuong, N.T.; Khang, D.T.; Khanh, T.D. Influence of sowing times, densities, and soils to biomass and ethanol yield of sweet sorghum. Sustainability 2015, 7, 11657–11678. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Sokolski, M.M.; Dubis, B.; Zaluski, D.; Szemplinski, W. Sweet sorghum—Biomass production and energy balance at different levels of agricultural inputs. A six-year field experiment in north-eastern Poland. Eur. J. Agron. 2020, 119, 126119. [Google Scholar] [CrossRef]
- Wu, P.; Fu, X.; Wang, H.; Hou, M.; Shang, Z. Effect of silage diet (sweet sorghum vs. whole-crop corn) and breed on growth performance, carcass traits, and meat quality of lambs. Animals 2021, 11, 3120. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tawata, S.; Khanh, T.D.; Chung, I.M. Biological control of weeds and plant pathogens in paddy rice by exploiting plant allelopathy: An overview. Crop. Prot. 2005, 24, 197–206. [Google Scholar] [CrossRef]
- Khanh, T.D.; Xuan, T.D.; Hahn, S.J.; Chung, I.M. Methods to screen allelopathic accessions of wheat, oat, sorghum, and cucumber for weed control. Allelopathy J. 2004, 14, 197–206. [Google Scholar]
- Xuan, T.D.; Tsuzuki, E. Allelopathic plants: Buckwheat (Fagopyrum spp.). Allelopathy J. 2004, 13, 137–148. [Google Scholar]
- Xuan, T.D.; Tsuzuki, E. Varietal differences in allelopathic potential of alfalfa. J. Agron. Crop. Sci. 2002, 188, 2–7. [Google Scholar] [CrossRef]
- Singh, S.; Swain, S.; Singh, D.R.; Salim, K.M.; Nayak, D.; Roy, S.D. Changes in phytochemicals, anti-nutrients and antioxidant activity in leafy vegetables by microwave boiling with normal and 5% NaCl solution. Food Chem. 2015, 176, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Quan, N.V.; Xuan, T.D.; Tran, H.D.; Thuy, N.T.D. Inhibitory activities of momilactones A, B, E, and 7-ketostigmasterol isolated from rice husk on paddy and invasive weeds. Plants 2019, 8, 159. [Google Scholar] [CrossRef]
- Anh, L.H.; Quan, N.V.; Lam, V.Q.; Iuchi, Y.; Takami, A.; Teschke, R.; Xuan, T.D. Antioxidant, anti-tyrosinase, anti-α-amylase, and cytotoxic potentials of the invasive weed Andropogon virginicus. Plants 2021, 10, 69. [Google Scholar] [CrossRef]
Cultivar | Treatment | Growth Parameters | |||
---|---|---|---|---|---|
Plant Height (cm) | Stem Weight (kg) | Biomass (kg) | Brix (%) | ||
A | M-CMC | 205.33 ± 8.01 bcd | 0.26 ± 0.02 c | 0.36 ± 0.04 c | 8.24 ± 0.14 e |
CMC | 183.70 ± 4.93 de | 0.21 ± 0.02 cd | 0.30 ± 0.03 cd | 6.57 ± 0.10 g | |
M-CF | 257.30 ± 4.42 a | 0.46 ± 0.03 a | 0.60 ± 0.04 a | 12.26 ± 0.21 a | |
CF | 211.56 ± 8.08 bc | 0.35 ± 0.03 b | 0.48 ± 0.04 b | 11.00 ± 0.23 bc | |
M-C | 150.91 ± 6.92 fg | 0.17 ± 0.02 cde | 0.25 ± 0.04 cde | 7.68 ± 0.08 ef | |
C | 124.15 ± 3.72 h | 0.06 ± 0.01 f | 0.11 ± 0.01 f | 4.51 ± 0.07 h | |
B | M-CMC | 180.93 ± 6.46 de | 0.10 ± 0.01 ef | 0.15 ± 0.02 ef | 9.98 ± 0.10 d |
CMC | 143.74 ± 3.79 gh | 0.05 ± 0.01 f | 0.08 ± 0.01 f | 7.39 ± 0.20 f | |
M-CF | 230.41 ± 4.09 b | 0.16 ± 0.01 de | 0.23 ± 0.01 de | 11.67 ± 0.16 ab | |
CF | 189.41 ± 5.84 cde | 0.09 ± 0.01 ef | 0.14 ± 0.01 ef | 10.95 ± 0.18 c | |
M-C | 172.81 ± 3.90 ef | 0.06 ± 0.01 f | 0.10 ± 0.01 f | 9.61 ± 0.07 d | |
C | 139.48 ± 3.11 gh | 0.04 ± 0.01 f | 0.07 ± 0.01 f | 6.26 ± 0.05 g |
Cultivar | Treatment | Weed Growth | |
---|---|---|---|
Height (cm) | Weight (g) | ||
A | CMC | 56.40 ± 1.52 ab | 9.33 ± 1.61 b |
CF | 64.68 ± 2.05 a | 2.85 ± 0.94 c | |
C | 38.30 ± 3.46 d | 7.90 ± 1.61 bc | |
B | CMC | 47.53 ± 1.15 c | 15.83 ± 2.32 a |
CF | 54.81 ± 1.58 bc | 6.76 ± 1.38 bc | |
C | 36.63 ± 1.84 d | 10.45 ± 0.95 ab |
Group | Emergence | Reduction over Control (%) | ||
---|---|---|---|---|
Germination (%) | Shoot Height (cm) | Germination | Height | |
A | 46.67 ± 3.33 c | 1.43 ± 0.09 c | 43.00 | 55.00 |
B | 63.33 ± 3.33 b | 2.07 ± 0.09 b | 24.00 | 35.00 |
Control | 83.33 ± 3.33 a | 3.17 ± 0.09 a | - | - |
Cultivar | Plant Parts | TPC (mg GAE/g DW) | TFC (mg RE/g DW) |
---|---|---|---|
A | Root exudates | 22.93 ± 0.91 f | 14.77 ± 0.25 f |
Root | 52.55 ± 2.11 e | 17.61 ± 0.8 e | |
Stem | 76.33 ± 3.18 d | 61.91 ± 3.72 d | |
Leaf | 220.89 ± 8.43 b | 192.45 ± 3.25 b | |
B | Root exudates | 15.66 ± 0.63 f | 12.44 ± 0.16 f |
Root | 98.53 ± 5.71 c | 71.38 ± 1.34 c | |
Stem | 83.91 ± 5.89 cd | 75.36 ± 3.99 cd | |
Leaf | 337.05 ± 6.22 a | 273.02 ± 3.55 a |
Cultivar | Plant Parts | Phenolic Acids (mg/g DW) | |||||
---|---|---|---|---|---|---|---|
Pt Acid | p-Hy Acid | Sy Acid | Si Acid | p-Co Acid | Be Acid | ||
A | Root exudates | 2.16 ± 0.01 L | nd | nd | nd | 3.34 ± 0.03 f | nd |
Root | 0.81 ± 0.01 u | 0.40 ± 0.02 v | nd | 0.78 ± 0.03 u | 1.57 ± 0.01 pq | 0.75 ± 0.01 u | |
Stem | 2.17 ± 0.01 L | 1.33 ± 0.01 s | nd | 2.90 ± 0.01 h | 4.43 ± 0.01 d | 2.41 ± 0.01 j | |
Leaf | nd | nd | 1.40 ± 0.01 r | nd | 9.44 ± 0.01 a | 3.34 ± 0.01 f | |
B | Root exudates | 2.01 ± 0.01 m | 1.71 ± 0.01 n | nd | nd | 2.52 ± 0.01 i | nd |
Root | nd | 1.12 ± 0.01 t | nd | 2.22 ± 0.01 kL | 4.23 ± 0.01 e | 1.63 ± 0.01 op | |
Stem | nd | 1.70 ± 0.01 no | 1.52 ± 0.01 q | 3.07 ± 0.01 g | 5.34 ± 0.01 c | 2.52 ± 0.01 i | |
Leaf | nd | 1.18 ± 0.01 t | 1.12 ± 0.01 t | nd | 7.22 ± 0.01 b | 2.24 ± 0.03 k |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakar, K.; Xuan, T.D.; Khanh, T.D. Allelopathic Potential of Sweet Sorghum Root Exudates and Identification of the Relevant Allelochemicals. Agrochemicals 2023, 2, 96-105. https://doi.org/10.3390/agrochemicals2010007
Kakar K, Xuan TD, Khanh TD. Allelopathic Potential of Sweet Sorghum Root Exudates and Identification of the Relevant Allelochemicals. Agrochemicals. 2023; 2(1):96-105. https://doi.org/10.3390/agrochemicals2010007
Chicago/Turabian StyleKakar, Kifayatullah, Tran Dang Xuan, and Tran Dang Khanh. 2023. "Allelopathic Potential of Sweet Sorghum Root Exudates and Identification of the Relevant Allelochemicals" Agrochemicals 2, no. 1: 96-105. https://doi.org/10.3390/agrochemicals2010007
APA StyleKakar, K., Xuan, T. D., & Khanh, T. D. (2023). Allelopathic Potential of Sweet Sorghum Root Exudates and Identification of the Relevant Allelochemicals. Agrochemicals, 2(1), 96-105. https://doi.org/10.3390/agrochemicals2010007