EU Chemical Plant Protection Products in 2023: Current State and Perspectives
Abstract
:1. Introduction: The Chemical Viewpoint
1.1. Definitions
1.2. Data Mining
2. The Regulatory Standpoint
3. Chemicals, All to Be Banned?
4. Current Status
4.1. Functions
4.2. Crop Usages
4.3. Links between Functions and Crop Usages
4.4. Maximum Residue Limits
5. Future Trends for Agrochemicals
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katouzian-Safadi, M.; Merlet, L.; Marchand, P.A. Bioressources: Back to the Ancient world? Int. J. Bio-Resour. Stress Manag. 2021, 12, 5–7. [Google Scholar] [CrossRef]
- Goryainoff, A. Chemistry as a keen weapon in crop protection. In Crop Protection; Geister, A.I., Ed.; Moscow–Leningrad: State Publishing House of Collective and State Farm Literature “Selkhozgiz”: Moscow, Russia, 1934; pp. 5–7. [Google Scholar]
- Chester, K.S. Plant Protection Mutates. Sci. Mon. 1948, 66, 157–159. Available online: http://www.jstor.org/stable/19338 (accessed on 7 January 2023).
- Winston, J.R.; Fulton, H.R. The Field Testing of Copper-Spray Coatings; Bulletin No. 785; United States Department of Agriculture: Washington, DC, USA, 1919; pp. 1–9.
- Marchand, P.A. Evolution of plant protection active substances in Europe: Disappearance of chemicals in favour of biocontrol agents. Environ. Sci. Pollut. Res. 2022, 29, 1–17. [Google Scholar] [CrossRef] [PubMed]
- EC. (2009) Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC. Off. J. Eur. Union 2009, L 309, 1–50. [Google Scholar]
- Lamberth, C.; Jeanmart, S.; Luksch, T.; Plant, A. Current Challenges and Trends in the Discovery of Agrochemicals. Science 2013, 341, 742–746. [Google Scholar]
- Clapp, J.; Ruder, S.-L. Precision Technologies for Agriculture: Digital Farming, Gene-Edited Crops, and the Politics of Sustainability. Glob. Environ. Politics 2020, 20, 49–69. [Google Scholar] [CrossRef]
- Uddin, K. Agrochemicals and Environmental Risks. Environ. Policy Law 2018, 48, 91–96. [Google Scholar] [CrossRef]
- Rothstein, H.; Irwin, A.; Yearley, S.; McCarthy, E. Regulatory science, Europeanisation and the control of agrochemicals. Sci. Technol. Hum. Values 1999, 24, 241–264. Available online: http://eprints.lse.ac.uk/archive/00000351/ (accessed on 7 January 2023). [CrossRef]
- EC. (2009) Directive (EC) No 128/2009 of the European Parliament and of the Council as regards of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides. Off. J. Eur. Union 2009, L 309, 71–86. [Google Scholar]
- Mostert, V. Regulation of Agrochemicals. In Regulatory Toxicology, 2nd ed.; Reichl, F.X., Schwenk, M., Eds.; Springer: Cham, Switzerland, 2021; pp. 1263–1274. [Google Scholar]
- Robin, D.C.; Marchand, P.A. Evolution of Directive (EC) No 128/2009 of the European Parliament and of the Council establishing a framework for Community action to achieve the sustainable use of pesticides. J. Regul. Sci. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Vekemans, M.-C.; Marchand, P.A. The European pesticides Harmonised Risk Indicator 1: A clarification about its displayed rendering. Eur. J. Risk Regul. 2023. submitted. [Google Scholar]
- EU. Commission Implementing Regulation (EU) No 540/2011 of 25 May 2011 implementing Regulation (EC) No 1107/2009 of the European Parliament and of the Council as regards the list of approved active substances. Off. J. Eur. Union 2011, L 153, 1–186. [Google Scholar]
- Sabagh, A.E.; Mbarki, S.; Hossain, A.; Iqbal, M.A.; Islam, M.S.; Raza, A.; Llanes, A.; Reginato, M.; Rahman, M.A.; Mahboob, W.; et al. Potential Role of Plant Growth Regulators in Administering Crucial Processes Against Abiotic Stresses. Front. Agron. 2021, 3, 648694. [Google Scholar] [CrossRef]
- Sobhy, I.S.; Erb, M.; Lou, Y.; Turlings, T.C.J. The prospect of applying chemical elicitors and plant strengtheners to enhance the biological control of crop pests. Phil. Trans. R. Soc. 2014, B369, 20120283. [Google Scholar] [CrossRef]
- Marchand, P.A. Synthetic Agrochemicals: A necessary clarification about their use exposure and impact in Crop Protection. Environ. Sci. Pollut. Res. 2019, 26, 17996–18000. [Google Scholar] [CrossRef]
- EU. (2001) DRAFT Working Document, Data Requirements for Plant Strengtheners with Low Risk Profile, Sanco/1003/2000 rev. 3, 21/06/2001, 1–8. Available online: https://search.fytoweb.be/biopesticidesweb/docs/EC%20draft%20working%20document%20concerning%20the%20plant%20strengtheners.pdf (accessed on 7 January 2023).
- WHO. (2022) #309 GAP Table. Good Agricultural Practices (GAP) Table. Available online: https://www.fao.org/pesticide-registration-toolkit/registration-tools/data-requirements-and-testing-guidelines/study-detail/en/c/1186124/ (accessed on 17 November 2022).
- EU. (2022) EU Pesticides Database v3. Available online: https://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/start/screen/active-substances (accessed on 17 November 2022).
- Robin, D.C.; Marchand, P.A. Evolution of Regulation (EU) No 540/2011 Since Its Entry into Force. J. Regul. Sci. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Robin, D.C.; Marchand, P.A. The slow decrease of the active substances candidates for substitution in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Eur. J. Risk Regul. 2022, 13, 1–22. [Google Scholar] [CrossRef]
- Charpentier, G.; Louat, F.; Bonmatin, J.-M.; Marchand, P.A.; Locker, D.; Decoville, M. Lethal and sublethal effects of Imidacloprid, after chronic exposure, on insect model Drosophila melanogaster. Environ. Sci. Technol. 2014, 48, 4096–4102. [Google Scholar] [CrossRef]
- Marchand, P.A.; Dimier-Valet, C.; Vidal, R. Biorational substitution of piperonyl butoxide in Organic Production: Effectiveness of vegetable oils as synergists for pyrethrums. Environ. Sci. Pollut. Res. 2018, 25, 29936–29942. [Google Scholar] [CrossRef]
- Taylor, A.; Marchand, P.A. Evolution of succinate dehydrogenase inhibitor (SDHI) fungicides as plant protection active substances in Europe. Arch. Crop Sci. 2022, 5, 193–198. [Google Scholar] [CrossRef]
- Milford, A.B.; Hatteland, B.A.; Ursin, L.Ø. The Responsibility of Farmers, Public Authorities and Consumers for Safeguarding Bees Against Harmful Pesticides. J. Agric. Environ. Ethics 2022, 35, 31. [Google Scholar] [CrossRef]
- Stevens, P.N. Origin of Petroleum—A Review. AAPG Bull. 1956, 40, 51–61. [Google Scholar] [CrossRef]
- Charon, M.; Robin, D.C.; Marchand, P.A. The major interest for crop protection of agrochemical substances without maximum residue limit (MRL). Biotechnol. Agron. Société Et Environ. 2019, 23, 22–29. [Google Scholar] [CrossRef]
- EU. (2018) Commission Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on organic production and labelling of organic products and repealing Council Regulation (EC) No 834/2007. Off. J. Eur. Union 2018, L 150, 1–92. [Google Scholar]
- Ewence, A.; Brescia, S.; Johnson, I.; Rumsby, P.C. An approach to the identification and regulation of endocrine disrupting pesticides. Food Chem. Toxicol. 2015, 78, 214–220. [Google Scholar] [CrossRef]
- Bernhardt, E.S.; Rosi, E.J.; Gessner, M.O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 2017, 15, 84–90. [Google Scholar] [CrossRef]
- Robin, D.C.; Marchand, P.A. Biocontrol active substances: Evolution since the entry in vigour of Reg. 1107/2009. Pest Manag. Sci. 2019, 75, 950–959. [Google Scholar] [CrossRef]
- Furlan, L.; Pozzebon, A.; Duso, C.; Simon-Delso, N.; Sánchez-Bayo, F.; Marchand, P.A.; Bijleveld van Lexmond, M.; Bonmatin, J.-M. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 3: Alternatives to systemic insecticides. Environ. Sci. Pollut. Res. 2021, 28, 11798–11820. [Google Scholar] [CrossRef]
- Burtscher-Schaden, H.; Durstberger, T.; Zaller, J.G. Toxicological Comparison of Pesticide Active Substances Approved for Conventional vs. Organic Agriculture in Europe. Toxics 2022, 10, 753. [Google Scholar] [CrossRef]
- Robin, D.C.; Marchand, P.A. Expansion of the low-risk substances in the framework of the European Pesticide Regulation (EC) No. 1107/2009. Eur. J. Risk Regul. 2022, 13, 514–531. [Google Scholar] [CrossRef]
Usages | Chemical | Rank |
---|---|---|
Fungicides | 79 | 2 |
Insecticides | 37 | 3 |
Elicitors | 1 | 9 |
Herbicides | 90 | 1 |
Plant growth regulators | 21 | 4 |
Molluscicides | 1 | 9 |
Nematicides | 4 | 6 |
Plant activators | 1 | 9 |
Repellents | 2 | 8 |
Acaricides | 14 | 5 |
Attractants | 0 | 14 |
Rodenticides | 3 | 7 |
Soil treatments | 1 | 9 |
Desiccants | 0 | 14 |
Bactericides | 1 | 9 |
Total | 255 | - |
Crop Usages | Chemical | Rank |
---|---|---|
Viticulture | 70 | 5 |
Arboriculture | 69 | 6 |
Market gardening | 120 | 1 |
Horticulture | 73 | 4 |
Cereals | 82 | 3 |
Arable crops | 115 | 2 |
Total | 529 | - |
Crop/Function * | Viticulture | Arboriculture | Market Gardening | Horticulture | Cereals | Arable Crops |
---|---|---|---|---|---|---|
FU | 42 (2, 1) | 23 (5, 1) | 48 (1, 1) | 22 (6, 1) | 28 (3, 2) | 27 (4, 2) |
HB | 14 (6, 2) | 16 (5, 3) | 33 (3, 2) | 22 (4, 1) | 38 (2, 1) | 63 (1, 1) |
IN | 10 (6, 3) | 18 (2, 2) | 24 (1, 3) | 18 (2, 3) | 10 (6, 3) | 12 (4, 3) |
PG | 5 (6, 4) | 5 (6, 4) | 7 (2, 4) | 6 (3, 4) | 6 (3, 4) | 11 (1, 4) |
Year | Number of Chemical AS Concerned |
---|---|
2023 | 128 |
2024 | 46 |
2025 | 23 |
2026 | 4 |
2027 | 1 |
2028 | 2 |
2029 | 4 |
2030 | 5 |
2031 | 6 |
2032 | 9 |
2033 | 7 |
2034 | 5 |
Total | 240 |
AS | ||
---|---|---|
1-Naphthylacetamide (1-NAD) | Fenoxaprop-P | Paclobutrazol |
1-Naphthylacetic acid (1-NAA) | Fenpropidin | Penconazole |
2,5-Dichlorobenzoic acid methylester | Fenpyrazamine | Pendimethalin |
2-Phenylphenol | Fenpyroximate | Penoxsulam |
6-Benzyladenine | Flonicamid | Phenmedipham |
8-Hydroxyquinoline $ | Fluazifop-P | Phosphane |
Acequinocyl | Fluazinam | Picloram |
Aclonifen $ | Flubendiamide | Pirimicarb $ |
Aluminium phosphide | Fludioxonil | Pirimiphos-methyl |
Ametoctradin | Flufenacet $ | Prohexadione |
Amidosulfuron | Flumetralin $ | Propamocarb |
Aminopyralid | Fluometuron $ | Propaquizafop |
Amisulbrom | Fluopicolide $ | Proquinazid |
Azoxystrobin | Fluopyram | Prosulfocarb £ |
Beflubutamid | Fluoxastrobin | Prosulfuron £,$ |
Benfluralin # | Flurochloridone £,$ | Prothioconazole |
Bensulfuron | Fluroxypyr | Pyraclostrobin |
Benthiavalicarb | Flutolanil | Pyridaben |
Benzovindiflupyr $ | Folpet | Pyrimethanil |
Bifenox | Formetanate | Quinmerac |
Boscalid | Fosetyl € | Quizalofop-P |
Bromuconazole | Fosthiazate | Quizalofop-P-ethyl |
Bupirimate | Glyphosate | Quizalofop-P-tefuryl |
Buprofezin | Halosulfuron-methyl $ | Rimsulfuron € |
Calcium carbide | Hexythiazox | S-Metolachlor |
Captan * | Hymexazol | Sintofen |
Chlorantraniliprole | Imazalil | Sodium 5-nitroguaiacolate |
Chlormequat | Ipconazole #,$ | Sodium o-nitrophenolate |
Chlorotoluron $ | Isoxaben | Sodium p-nitrophenolate |
Clethodim | Kresoxim-methyl | Sodium silver thiosulphate |
Clodinafop € | Lenacil $ | Spiromesifen |
Clofentezine | MCPA | Spirotetramat |
Clomazone | MCPB | Spiroxamine |
Cycloxydim | Magnesium phosphide | Sulcotrione $ |
Cyflufenamid | Malathion € | Sulfuryl fluoride |
Cyflumetofen | Mandipropamid | Tebuconazole $ |
Cymoxanil | Mecoprop-P | Tebufenozide |
Cyprodinil $,€ | Mepanipyrim € | Tebufenpyrad $ |
Daminozide | Mepiquat | Tefluthrin |
Dazomet | Metaflumizone | Tembotrione $ |
Deltamethrin | Metalaxyl $ | Terbuthylazine |
Dicamba | Metaldehyde | Tetraconazole |
Dichlorprop-P € | Metam £,$ | Thiencarbazone-methyl |
Diclofop $ | Metamitron | Tri-allate $ |
Difenoconazole $ | Metazachlor | Triclopyr € |
Diflufenican | Metconazole $,€ | Triflusulfuron |
Dimethachlor | Metiram | Trinexapac € |
Dimethomorph | Metobromuron | Triticonazole € |
Dimoxystrobin $,# | Metrafenone € | Tritosulfuron |
Dithianon | Metribuzin $ | Valifenalate |
Dodemorph | Metsulfuron-methyl $ | Zinc phosphide |
Dodine | Milbemectin | Ziram £,$,€ |
Esfenvalerate $ | Napropamide | lambda-Cyhalothrin $ |
Ethephon | Nicosulfuron $ | tau-Fluvalinate |
Etofenprox $ | Oxamyl $,# | |
Fenazaquin | Oxyfluorfen $ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchand, P.A. EU Chemical Plant Protection Products in 2023: Current State and Perspectives. Agrochemicals 2023, 2, 106-117. https://doi.org/10.3390/agrochemicals2010008
Marchand PA. EU Chemical Plant Protection Products in 2023: Current State and Perspectives. Agrochemicals. 2023; 2(1):106-117. https://doi.org/10.3390/agrochemicals2010008
Chicago/Turabian StyleMarchand, Patrice A. 2023. "EU Chemical Plant Protection Products in 2023: Current State and Perspectives" Agrochemicals 2, no. 1: 106-117. https://doi.org/10.3390/agrochemicals2010008
APA StyleMarchand, P. A. (2023). EU Chemical Plant Protection Products in 2023: Current State and Perspectives. Agrochemicals, 2(1), 106-117. https://doi.org/10.3390/agrochemicals2010008