The Expanding E3 Ligase-Ligand Landscape for PROTAC Technology
Abstract
1. Introduction
2. RNF Family
2.1. RNF4 E3 Ligase
2.2. RNF114 E3 Ligase
3. DCAF Family
3.1. DCAF16 E3 Ligase
3.2. DCAF15 E3 Ligase
3.3. DCAF11 E3 Ligase
3.4. DCAF1 E3 Ligase
4. AhR E3 Ligase
5. KEAP1 E3 Ligase
6. FEM1B E3 Ligase
7. KLHL20 E3 Ligase
8. KLHDC2 E3 Ligase
9. FBXO22 E3 Ligase
10. GID4 E3 Ligase
11. Key Challenges and Future Perspectives
11.1. The Ligand Discovery Bottleneck: From Binder to Functional Recruiter
11.2. The Craft of Rational E3 Ligase Selection: A Paradigm Shift to Precision
- (1)
- Tissue-Specific Expression: This remains the key goal for enhancing the therapeutic index. Systematically mapping the E3 ligase proteome across healthy and diseased tissues will provide the foundational atlas for designing tissue-restricted degraders.
- (2)
- Subcellular Topography: A target protein’s efficacy is intimately tied to its location. Matching the E3 ligase’s subcellular address—be it nuclear, cytosolic, or membrane-associated—to that of the target is a non-negotiable prerequisite for success.
- (3)
- The Principles of Ternary Complex Cooperativity: The rules governing productive ternary complex formation are exquisitely specific to each E3-target pair. Deciphering these complex principles of protein–protein interactions is essential for predicting which pairings will be synergistic and which will be futile.
- (4)
- Exploiting Inherent Biology: Leveraging an E3’s native function offers a compelling pathway to create multi-functional medicines. The recruitment of cIAP1, for instance, provides a dual-action strategy that couples target degradation with the induction of apoptosis. Similarly, co-opting MDM2 in a p53-wildtype cancer could not only eliminate a primary oncoprotein but also therapeutically stabilize the p53 tumor suppressor by sequestering its key negative regulator. This strategic approach transforms the E3 ligase from a passive scaffold into an active, synergistic contributor to the overall therapeutic effect, adding a powerful dimension to rational degrader design.
11.3. The Computational and Data-Driven Revolution in Degrader Design
11.4. The Next Frontier: Expanding into Untapped E3 Ligase Families
11.5. Conditionally Activated and Inducible Degraders for Spatiotemporal Control
11.6. Scope and Limitations of the Current Landscape
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TPD | Targeted protein degradation |
PROTAC | Proteolysis-targeting chimera |
POI | Protein of interest |
UPS | Ubiquitin-proteasome system |
CRBN | Cereblon |
VHL | von Hippel-Lindau |
MDM2 | Mouse double minute 2 |
IAP | Inhibitor of apoptosis protein |
SNIPERs | Specific and nongenetic IAP-dependent protein erasers |
HIF | Hypoxia-inducible factor |
ABPP | Activity-based protein profiling |
RNF4 | RING finger protein 4 |
BRD4 | Bromodomain-containing protein 4 |
RNF114 | RING finger protein 114 |
CML | Chronic myeloid leukemia |
DCAF16 | DDB1 and CUL4-associated factor 16 |
CRL4 | Cullin–RING ubiquitin ligase 4 |
PARP2 | Poly(ADP-ribose) polymerase 2 |
CDK4/6 | Cyclin-dependent kinase 4/6 |
TNBC | Triple-negative breast cancer |
DCAF15 | DDB1 and CUL4-associated factor 15 |
DCAF11 | DDB1 and CUL4-associated factor 11 |
ATTECs | Autophagosome-tethering compounds |
CRISPRi | CRISPR interference |
HDAC | Histone deacetylase |
DCAF1 | DDB1 and CUL4-associated factor 1 |
β-NF | β-naphthoflavone |
AhR | Aryl hydrocarbon receptor |
CRABPs | Cellular retinoic acid binding proteins |
KEAP1 | Kelch-like ECH-associated protein 1 |
Nrf2 | Nuclear factor erythroid 2-related factor 2 |
FEM1B | Fem-1 homolog B |
GID4 | Glucose-induced degradation deficient complex 4 |
References
- Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov. 2019, 18, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov. 2017, 16, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Nalawansha, D.A.; Crews, C.M. PROTACs: An Emerging Therapeutic Modality in Precision Medicine. Cell Chem. Biol. 2020, 27, 998–1014. [Google Scholar] [CrossRef]
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022, 21, 181–200. [Google Scholar] [CrossRef]
- Dale, B.; Cheng, M.; Park, K.S.; Kaniskan, H.; Xiong, Y.; Jin, J. Advancing targeted protein degradation for cancer therapy. Nat. Rev. Cancer 2021, 21, 638–654. [Google Scholar] [CrossRef]
- Bondeson, D.P.; Mares, A.; Smith, I.E.D.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 2015, 11, 611–617. [Google Scholar] [CrossRef]
- Burslem, G.M.; Smith, B.E.; Lai, A.C.; Jaime-Figueroa, S.; McQuaid, D.C.; Bondeson, D.P.; Toure, M.; Dong, H.Q.; Qian, Y.M.; Wang, J.; et al. The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study. Cell Chem. Biol. 2018, 25, 67–77. [Google Scholar] [CrossRef]
- Bai, L.C.; Zhou, H.B.; Xu, R.Q.; Zhao, Y.J.; Chinnaswamy, K.; McEachern, D.; Chen, J.Y.; Yang, C.Y.; Liu, Z.M.; Wang, M.; et al. A Potent and Selective Small-Molecule Degrader of STAT3 Achieves Complete Tumor Regression In Vivo. Cancer Cell 2019, 36, 498–511. [Google Scholar] [CrossRef]
- Henley, M.J.; Koehler, A.N. Advances in targeting ‘undruggable’ transcription factors with small molecules. Nat. Rev. Drug Discov. 2021, 20, 669–688. [Google Scholar] [CrossRef]
- Kannt, A.; Dikic, I. Expanding the arsenal of E3 ubiquitin ligases for proximity-induced protein degradation. Cell Chem. Biol. 2021, 28, 1014–1031. [Google Scholar] [CrossRef] [PubMed]
- Belcher, B.P.; Ward, C.C.; Nomura, D.K. Ligandability of E3 Ligases for Targeted Protein Degradation Applications. Biochemistry 2023, 62, 588–600. [Google Scholar] [CrossRef]
- Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 2015, 348, 1376–1381. [Google Scholar] [CrossRef]
- Lu, J.; Qian, Y.M.; Altieri, M.; Dong, H.Q.; Wang, J.; Raina, K.; Hines, J.; Winkler, J.D.; Crew, A.P.; Coleman, K.; et al. Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. Chem. Biol. 2015, 22, 755–763. [Google Scholar] [CrossRef]
- Min, J.; Mayasundari, A.; Keramatnia, F.; Jonchere, B.; Yang, S.W.; Jarusiewicz, J.; Actis, M.; Das, S.; Young, B.; Slavish, J.; et al. Phenyl-Glutarimides: Alternative Cereblon Binders for the Design of PROTACs. Angew. Chem.-Int. Ed. 2021, 60, 26663–26670. [Google Scholar] [CrossRef] [PubMed]
- Zengerle, M.; Chan, K.H.; Ciulli, A. Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. ACS Chem. Biol. 2015, 10, 1770–1777. [Google Scholar] [CrossRef]
- Raina, K.; Lu, J.; Qian, Y.M.; Altieri, M.; Gordon, D.; Rossi, A.M.K.; Wang, J.; Chen, X.; Dong, H.Q.; Siu, K.; et al. PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 7124–7129. [Google Scholar] [CrossRef]
- Han, X.; Wang, C.; Qin, C.; Xiang, W.G.; Fernandez-Salas, E.; Yang, C.Y.; Wang, M.; Zhao, L.J.; Xu, T.F.; Chinnaswamy, K.; et al. Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer. J. Med. Chem. 2019, 62, 941–964. [Google Scholar] [CrossRef] [PubMed]
- Smalley, J.P.; Baker, I.M.; Pytel, W.A.; Lin, L.Y.; Bowman, K.J.; Schwabe, J.W.R.; Cowley, S.M.; Hodgkinson, J.T. Optimization of Class I Histone Deacetylase PROTACs Reveals thatHDAC1/2 Degradation is Critical to Induce Apoptosis and Cell Arrest in Cancer Cells. J. Med. Chem. 2022, 65, 5642–5659. [Google Scholar] [CrossRef]
- Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 2008, 18, 5904–5908. [Google Scholar] [CrossRef] [PubMed]
- He, S.P.; Ma, J.H.; Fang, Y.X.; Liu, Y.; Wu, S.C.; Dong, G.Q.; Wang, W.; Sheng, C.Q. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm. Sin. B 2021, 11, 1617–1628. [Google Scholar] [CrossRef] [PubMed]
- Hines, J.; Lartigue, S.; Dong, H.Q.; Qian, Y.M.; Crews, C.M. MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Res. 2019, 79, 251–262. [Google Scholar] [CrossRef]
- De Dominici, M.; Porazzi, P.; Xiao, Y.C.; Chao, A.; Tang, H.Y.; Kumar, G.; Fortina, P.; Spinelli, O.; Rambaldi, A.; Peterson, L.F.; et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 2020, 135, 1560–1573. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Protein Knockdown Using Methyl Bestatin−Ligand Hybrid Molecules: Design and Synthesis of Inducers of Ubiquitination-Mediated Degradation of Cellular Retinoic Acid-Binding Proteins. J. Am. Chem. Soc. 2010, 132, 5820–5826. [Google Scholar] [CrossRef]
- Ohoka, N.; Okuhira, K.; Ito, M.; Nagai, K.; Shibata, N.; Hattori, T.; Ujikawa, O.; Shimokawa, K.; Sano, O.; Koyama, R.; et al. In Vivo Knockdown of Pathogenic Proteins via Specific and Nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs). J. Biol. Chem. 2017, 292, 4556–4570. [Google Scholar] [CrossRef] [PubMed]
- Ohoka, N.; Morita, Y.; Nagai, K.; Shimokawa, K.; Ujikawa, O.; Fujimori, I.; Ito, M.; Hayase, Y.; Okuhira, K.; Shibata, N.; et al. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor degradation. J. Biol. Chem. 2018, 293, 6776–6790. [Google Scholar] [CrossRef] [PubMed]
- Miah, A.H.; Smith, I.E.D.; Rackham, M.; Mares, A.; Thawani, A.R.; Nagilla, R.; Haile, P.A.; Votta, B.J.; Gordon, L.J.; Watt, G.; et al. Optimization of a Series of RIPK2 PROTACs. J. Med. Chem. 2021, 64, 12978–13003. [Google Scholar] [CrossRef]
- Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a Primary Target of Thalidomide Teratogenicity. Science 2010, 327, 1345–1350. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Braggio, E.; Shi, C.-X.; Bruins, L.A.; Schmidt, J.E.; Van Wier, S.; Chang, X.-B.; Bjorklund, C.C.; Fonseca, R.; Bergsagel, P.L.; et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 2011, 118, 4771–4779. [Google Scholar] [CrossRef]
- Buckley, D.L.; Van Molle, I.; Gareiss, P.C.; Tae, H.S.; Michel, J.; Noblin, D.J.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Targeting the von Hippel-Lindau E3 Ubiquitin Ligase Using Small Molecules To Disrupt the VHL/HIF-1α Interaction. J. Am. Chem. Soc. 2012, 134, 4465–4468. [Google Scholar] [CrossRef]
- He, M.; Cao, C.G.; Ni, Z.H.; Liu, Y.B.; Song, P.L.; Hao, S.; He, Y.N.; Sun, X.Y.; Rao, Y. PROTACs: Great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct. Target. Ther. 2022, 7, 181. [Google Scholar] [CrossRef]
- Chirnomas, D.; Hornberger, K.R.; Crews, C.M. Protein degraders enter the clinic—A new approach to cancer therapy. Nat. Rev. Clin. Oncol. 2023, 20, 265–278. [Google Scholar] [CrossRef]
- Ma, Z.H.; Zhou, J. NDA Submission of Vepdegestrant (ARV-471) to US FDA: The Beginning of a New Era of PROTAC Degraders. J. Med. Chem. 2025, 68, 14129–14136. [Google Scholar] [CrossRef]
- Zhang, L.; Riley-Gillis, B.; Vijay, P.; Shen, Y. Acquired Resistance to BET-PROTACs (Proteolysis-Targeting Chimeras) Caused by Genomic Alterations in Core Components of E3 Ligase Complexes. Mol. Cancer Ther. 2019, 18, 1302–1311. [Google Scholar] [CrossRef]
- Shirasaki, R.; Matthews, G.M.; Gandolfi, S.; Simoes, R.d.M.; Buckley, D.L.; Vora, J.R.; Sievers, Q.L.; Bruggenthies, J.B.; Dashevsky, O.; Poarch, H.; et al. Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins. Cell Rep. 2021, 34, 108532. [Google Scholar] [CrossRef] [PubMed]
- Hanzl, A.; Casement, R.; Imrichova, H.; Hughes, S.J.; Barone, E.; Testa, A.; Bauer, S.; Wright, J.; Brand, M.; Ciulli, A.; et al. Functional E3 ligase hotspots and resistance mechanisms to small-molecule degraders. Nat. Chem. Biol. 2023, 19, 323–333. [Google Scholar] [CrossRef]
- Bondeson, D.P.; Smith, B.E.; Burslem, G.M.; Buhimschi, A.D.; Hines, J.; Jaime-Figueroa, S.; Wang, J.; Hamman, B.D.; Ishchenko, A.; Crews, C.M. Lessons in PROTAC Design from Selective Degradation with a Promiscuous Warhead. Cell Chem. Biol. 2018, 25, 78–87. [Google Scholar] [CrossRef]
- Donovan, K.A.; Ferguson, F.M.; Bushman, J.W.; Eleuteri, N.A.; Bhunia, D.; Ryu, S.; Tan, L.; Shi, K.; Yue, H.; Liu, X.; et al. Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development. Cell 2020, 183, 1714–1731. [Google Scholar] [CrossRef]
- Luo, X.; Archibeque, I.; Dellamaggiore, K.; Smither, K.; Homann, O.; Lipford, J.R.; Mohl, D. Profiling of diverse tumor types establishes the broad utility of VHL-based ProTaCs and triages candidate ubiquitin ligases. iScience 2022, 25, 103985. [Google Scholar] [CrossRef]
- Lai, A.C.; Toure, M.; Hellerschmied, D.; Salami, J.; Jaime-Figueroa, S.; Ko, E.; Hines, J.; Crews, C.M. Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL. Angew. Chem.-Int. Ed. 2016, 55, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Girardini, M.; Maniaci, C.; Hughes, S.J.; Testa, A.; Ciulli, A. Cereblon versus VHL: Hijacking E3 ligases against each other using PROTACs. Bioorg. Med. Chem. 2019, 27, 2466–2479. [Google Scholar] [CrossRef] [PubMed]
- Steinebach, C.; Kehm, H.; Lindner, S.; Lan Phuong, V.; Koepff, S.; Marmol, A.L.; Weiler, C.; Wagner, K.G.; Reichenzeller, M.; Kroenke, J.; et al. PROTAC-mediated crosstalk between E3 ligases. Chem. Commun. 2019, 55, 1821–1824. [Google Scholar] [CrossRef] [PubMed]
- Ishida, T.; Ciulli, A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. Slas Discov. 2021, 26, 484–502. [Google Scholar] [CrossRef]
- Lee, J.; Lee, Y.; Jung, Y.M.; Park, J.H.; Yoo, H.S.; Park, J. Discovery of E3 Ligase Ligands for Target Protein Degradation. Molecules 2022, 27, 6515. [Google Scholar] [CrossRef]
- Wang, C.; Weerapana, E.; Blewett, M.M.; Cravatt, B.F. A chemoproteomic platform to quantitatively map targets of lipid-derived electrophiles. Nat. Methods 2014, 11, 79–85. [Google Scholar] [CrossRef]
- Backus, K.M.; Correia, B.E.; Lum, K.M.; Forli, S.; Horning, B.D.; González-Páez, G.E.; Chatterjee, S.; Lanning, B.R.; Teijaro, J.R.; Olson, A.J.; et al. Proteome-wide covalent ligand discovery in native biological systems. Nature 2016, 534, 570–574. [Google Scholar] [CrossRef]
- Hacker, S.M.; Backus, K.M.; Lazear, M.R.; Forli, S.; Correia, B.E.; Cravatt, B.F. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 2017, 9, 1181–1190. [Google Scholar] [CrossRef]
- Grossman, E.A.; Ward, C.C.; Spradlin, J.N.; Bateman, L.A.; Huffman, T.R.; Miyamoto, D.K.; Kleinman, J.I.; Nomura, D.K. Covalent Ligand Discovery against Druggable Hotspots Targeted by Anti-cancer Natural Products. Cell Chem. Biol. 2017, 24, 1368–1376. [Google Scholar] [CrossRef]
- Ward, C.C.; Kleinman, J.I.; Brittain, S.M.; Lee, P.S.; Chung, C.Y.S.; Kim, K.; Petri, Y.; Thomas, J.R.; Tallarico, J.A.; McKenna, J.M.; et al. Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications. ACS Chem. Biol. 2019, 14, 2430–2440. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ping, X.Y.; Zhou, J.Y.; Ailifeire, H.; Wu, J.; Nadal-Nicolás, F.M.; Miyagishima, K.J.; Bao, J.; Huang, Y.X.; Cui, Y.L.; et al. Reversible cold-induced lens opacity in a hibernator reveals a molecular target for treating cataracts. J. Clin. Investig. 2024, 134, e169666. [Google Scholar] [CrossRef]
- Spradlin, J.N.; Hu, X.R.; Ward, C.C.; Brittain, S.M.; Jones, M.D.; Ou, L.S.; To, M.; Proudfoot, A.; Ornelas, E.; Woldegiorgis, M.; et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 2019, 15, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.Q.; Spradlin, J.N.; Novaes, L.F.T.; Zhang, E.; Hu, X.R.; Moeller, M.; Brittain, S.M.; McGregor, L.M.; McKenna, J.M.; Tallarico, J.A.; et al. A Nimbolide-Based Kinase Degrader Preferentially Degrades Oncogenic BCR-ABL. ACS Chem. Biol. 2020, 15, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Spradlin, J.N.; Boike, L.; Tong, B.Q.; Brittain, S.M.; McKenna, J.M.; Tallarico, J.A.; Schirle, M.; Maimone, T.J.; Nomura, D.K. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chem. Biol. 2021, 28, 559–566. [Google Scholar] [CrossRef]
- Lee, J.; Zhou, P. DCAFs, the Missing Link of the CUL4-DDB1 Ubiquitin Ligase. Mol. Cell 2007, 26, 775–780. [Google Scholar] [CrossRef]
- Sutani, A.; Shima, H.; Hijikata, A.; Hosokawa, S.; Katoh-Fukui, Y.; Takasawa, K.; Suzuki, E.; Doi, S.; Shirai, T.; Morio, T.; et al. WDR11 is another causative gene for coloboma, cardiac anomaly and growth retardation in 10q26 deletion syndrome. Eur. J. Med. Genet. 2020, 63, 103626. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.R.; Bereman, M.S.; Nepomuceno, A.I.; Thompson, E.A.; Muddiman, D.C.; Smart, R.C. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint. Cell Cycle 2014, 13, 3602–3610. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Crowley, V.M.; Wucherpfennig, T.G.; Dix, M.M.; Cravatt, B.F. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 2019, 15, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Pu, C.L.; Tong, Y.; Liu, Y.Y.; Lan, S.K.; Wang, S.R.; Yan, G.Y.; Zhang, H.J.; Luo, D.; Ma, X.Y.; Yu, S.; et al. Selective degradation of PARP2 by PROTACs via recruiting DCAF16 for triple-negative breast cancer. Eur. J. Med. Chem. 2022, 236, 114321. [Google Scholar] [CrossRef]
- Pu, C.L.; Liu, Y.Y.; Deng, R.; Xu, Q.J.; Wang, S.R.; Zhang, H.J.; Luo, D.; Ma, X.Y.; Tong, Y.; Li, R. Development of PROTAC degrader probe of CDK4/6 based on DCAF16. Bioorg. Chem. 2023, 138, 106637. [Google Scholar] [CrossRef]
- Li, L.; Mi, D.Z.; Pei, H.X.; Duan, Q.H.; Wang, X.Y.; Zhou, W.B.; Jin, J.P.; Li, D.L.; Liu, M.Y.; Chen, Y.H. In vivo target protein degradation induced by PROTACs based on E3 ligase DCAF15. Signal Transduct. Target. Ther. 2020, 5, 129. [Google Scholar] [CrossRef]
- Lucas, S.C.C.; Ahmed, A.; Ashraf, S.N.; Argyrou, A.; Bauer, M.R.; De Donatis, G.M.; Demanze, S.; Eisele, F.; Fusani, L.; Hock, A.; et al. Optimization of Potent Ligands for the E3 Ligase DCAF15 and Evaluation of Their Use in Heterobifunctional Degraders. J. Med. Chem. 2024, 67, 5538–5566. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Luukkonen, L.M.; Eissler, C.L.; Crowley, V.M.; Yamashita, Y.; Schafroth, M.A.; Kikuchi, S.; Weinstein, D.S.; Symons, K.T.; Nordin, B.E.; et al. DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras. J. Am. Chem. Soc. 2021, 143, 5141–5149. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, T.Z.; Zhao, M.; Huang, A.M.; Sun, F.; Chen, L.; Lin, R.S.; Xie, Y.B.; Zhang, M.; Xu, S.Y.; et al. Alkenyl oxindole is a novel PROTAC moiety that recruits the CRL4DCAF11 E3 ubiquitin ligase complex for targeted protein degradation. PLoS Biol. 2024, 22, e3002550. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Wang, C.; Wang, Z.Y.; Zhu, C.G.; Li, J.; Sha, T.; Ma, L.X.; Gao, C.; Yang, Y.; Sun, Y.M.; et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 2019, 575, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Ma, W.J.; Liang, J.Y.; Xie, Y.B.; Wei, T.Z.; Zhang, M.; Qin, J.J.; Lao, L.Y.; Tian, R.L.; Wu, H.Q.; et al. Design, Synthesis, and Activity Evaluation of BRD4 PROTAC Based on Alkenyl Oxindole-DCAF11 Pair. J. Med. Chem. 2024, 67, 19428–19447. [Google Scholar] [CrossRef]
- Feller, F.; Weber, H.; Miranda, M.; Honin, I.; Hanl, M.; Hansen, F.K. Replacing a Cereblon Ligand by a DDB1 and CUL4 Associated Factor 11 (DCAF11) Recruiter Converts a Selective Histone Deacetylase 6 PROTAC into a Pan-Degrader. ChemMedChem 2025, 20, e202500035. [Google Scholar] [CrossRef]
- Sinatra, L.; Yang, J.; Schliehe-Diecks, J.; Dienstbier, N.; Vogt, M.; Gebing, P.; Bachmann, L.M.; Sönnichsen, M.; Lenz, T.; Stühler, K.; et al. Solid-Phase Synthesis of Cereblon-Recruiting Selective Histone Deacetylase 6 Degraders (HDAC6 PROTACs) with Antileukemic Activity. J. Med. Chem. 2022, 65, 16860–16878. [Google Scholar] [CrossRef]
- Schröder, M.; Renatus, M.; Liang, X.Y.; Meili, F.; Zoller, T.; Ferrand, S.; Gauter, F.; Li, X.Y.; Sigoillot, F.; Gleim, S.; et al. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. Nat. Commun. 2024, 15, 275. [Google Scholar] [CrossRef] [PubMed]
- Guarnaccia, A.D.; Tansey, W.P. Moonlighting with WDR5: A Cellular Multitasker. J. Clin. Med. 2018, 7, 21. [Google Scholar] [CrossRef]
- Mabanglo, M.F.; Wilson, B.; Noureldin, M.; Kimani, S.W.; Mamai, A.; Krausser, C.; González-Alvarez, H.; Srivastava, S.; Mohammed, M.; Hoffer, L.; et al. Crystal structures of DCAF1-PROTAC-WDR5 ternary complexes provide insight into DCAF1 substrate specificity. Nat. Commun. 2024, 15, 10165. [Google Scholar] [CrossRef]
- Ohoka, N.; Tsuji, G.; Shoda, T.; Fujisato, T.; Kurihara, M.; Demizu, Y.; Naito, M. Development of Small Molecule Chimeras That Recruit AhR E3 Ligase to Target Proteins. ACS Chem. Biol. 2019, 14, 2822–2832. [Google Scholar] [CrossRef]
- Suzuki, T.; Yamamoto, M. Stress-sensing mechanisms and the physiological roles of the Keap1-Nrf2 system during cellular stress. J. Biol. Chem. 2017, 292, 16817–16824. [Google Scholar] [CrossRef]
- Oskomic, M.; Tomic, A.; Barbaric, L.; Matic, A.; Kindl, D.C.; Matovina, M. KEAP1-NRF2 Interaction in Cancer: Competitive Interactors and Their Role in Carcinogenesis. Cancers 2025, 17, 447. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Hu, L.Q. Nrf2 activation through the inhibition of Keap1-Nrf2 protein-protein interaction. Med. Chem. Res. 2020, 29, 846–867. [Google Scholar] [CrossRef]
- Saha, S.; Sachivkina, N.; Karamyan, A.; Novikova, E.; Chubenko, T. Advances in Nrf2 Signaling Pathway by Targeted Nanostructured-Based Drug Delivery Systems. Biomedicines 2024, 12, 403. [Google Scholar] [CrossRef]
- Tong, B.Q.; Luo, M.; Xie, Y.; Spradlin, J.N.; Tallarico, J.A.; McKenna, J.M.; Schirle, M.; Maimone, T.J.; Nomura, D.K. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci. Rep. 2020, 10, 15543. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.L.; Meng, F.Y.; Park, K.S.; Yim, H.; Velez, J.; Kumar, P.; Wang, L.; Xie, L.; Chen, H.; Shen, Y.D.; et al. Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation. J. Am. Chem. Soc. 2021, 143, 15073–15083. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Xiao, Y.F.; Liu, X.G.; Hu, W.Y.; Sobh, A.; Yuan, Y.X.; Zhou, S.; Hua, N.; Mackintosh, S.G.; Zhang, X.; et al. Piperlongumine conjugates induce targeted protein degradation. Cell Chem. Biol. 2023, 30, 203–213. [Google Scholar] [CrossRef]
- Akhtar, M.N.; Singh, A.; Manjunath, L.E.; Dey, D.; Kumar, S.D.; Vasu, K.; Das, A.; Eswarappa, S.M. Hominini-specific regulation of the cell cycle by stop codon readthrough of FEM1B. J. Cell Sci. 2024, 137, jcs261921. [Google Scholar] [CrossRef]
- Lecoquierre, F.; Punt, A.M.; Ebstein, F.; Wallaard, I.; Verhagen, R.; Studencka-Turski, M.; Duffourd, Y.; Moutton, S.B.; Mau-Them, F.T.; Philippe, C.; et al. A recurrent missense variant in the E3 ubiquitin ligase substrate recognition subunit FEM1B causes a rare disorder. Genet. Med. 2024, 26, 101119. [Google Scholar] [CrossRef]
- Manford, A.G.; Rodríguez-Pérez, F.; Shih, K.Y.; Shi, Z.; Berdan, C.A.; Choe, M.Y.; Titov, D.V.; Nomura, D.K.; Rape, M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020, 183, 46–61. [Google Scholar] [CrossRef]
- Henning, N.J.; Manford, A.G.; Spradlin, J.N.; Brittain, S.M.; Zhang, E.; McKenna, J.M.; Tallarico, J.A.; Schirle, M.; Rape, M.; Nomura, D.K. Discovery of a Covalent FEM1B Recruiter for Targeted Protein Degradation Applications. J. Am. Chem. Soc. 2022, 144, 701–708. [Google Scholar] [CrossRef]
- Farrell, B.M.; Gerth, F.; Yang, C.H.R.; Yeh, J.T.H. A synthetic KLHL20 ligand to validate CUL3KLHL20 as a potent E3 ligase for targeted protein degradation. Genes Dev. 2022, 36, 1031–1042. [Google Scholar] [CrossRef]
- Hickey, C.M.; Digianantonio, K.M.; Zimmermann, K.; Harbin, A.; Quinn, C.; Patel, A.; Gareiss, P.; Chapman, A.; Tiberi, B.; Dobrodziej, J.; et al. Co-opting the E3 ligase KLHDC2 for targeted protein degradation by small molecules. Nat. Struct. Mol. Biol. 2024, 31, 311–322. [Google Scholar] [CrossRef]
- Scott, D.C.; Dharuman, S.; Griffith, E.; Chai, S.C.; Ronnebaum, J.; King, M.T.; Tangallapally, R.; Lee, C.; Gee, C.T.; Yang, L.; et al. Principles of paralog-specific targeted protein degradation engaging the C-degron E3 KLHDC2. Nat. Commun. 2024, 15, 8829. [Google Scholar] [CrossRef]
- Basu, A.A.; Zhang, C.L.; Riha, I.A.; Magassa, A.; Campos, M.A.; Caldwell, A.G.; Ko, F.; Zhang, X.Y. A CRISPR activation screen identifies FBXO22 supporting targeted protein degradation. Nat. Chem. Biol. 2024, 20, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Dong, C.; Zhang, H.; Li, L.; Tempel, W.; Loppnau, P.; Min, J.R. Molecular basis of GID4-mediated recognition of degrons for the Pro/N-end rule pathway. Nat. Chem. Biol. 2018, 14, 466–473. [Google Scholar] [CrossRef]
- Li, Y.R.; Bao, K.W.; Sun, J.Y.; Ge, R.X.; Zhang, Q.Q.; Zhang, B.; Yan, X.J.; Li, J.L.; Shi, F.Y.; Zhang, M.L.; et al. Design of PROTACs utilizing the E3 ligase GID4 for targeted protein degradation. Nat. Struct. Mol. Biol. 2025, 32, 1825–1837. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, A.K.; Perveen, S.; Dong, C.; Song, X.; Dong, A.P.; Szewczyk, M.M.; Calabrese, M.F.; Casimiro-Garcia, A.; Chakrapani, S.; Dowling, M.S.; et al. Chemical tools for the Gid4 subunit of the human E3 ligase C-terminal to LisH (CTLH) degradation complex. RSC Med. Chem. 2024, 15, 1066–1071. [Google Scholar] [CrossRef]
- Owens, D.D.G.; Maitland, M.E.R.; Yazdi, A.K.; Song, X.S.; Reber, V.; Schwalm, M.P.; Machado, R.A.C.; Bauer, N.; Wang, X.; Szewczyk, M.M.; et al. A chemical probe to modulate human GID4 Pro/N-degron interactions. Nat. Chem. Biol. 2024, 20, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
- Spitz, M.L.; Kashkush, A.; Benhamou, R.I. Advancing target validation with PROTAC technology. Expert Opin. Drug Discov. 2025, 20, 551–563. [Google Scholar] [CrossRef]
- Xue, F.L.; Zhang, M.H.; Li, S.Q.; Gao, X.Y.; Wohlschlegel, J.A.; Huang, W.B.; Yang, Y.; Deng, W.X. SE(3)-equivariant ternary complex prediction towards target protein degradation. Nat. Commun. 2025, 16, 5514. [Google Scholar] [CrossRef] [PubMed]
Emerging E3 Ligase | Ligand | Ligand Type | PROTAC | Target | Degradation Efficiency (DC50/Dmax) | Cell Lines | Ternary Complex (PDB ID) | Refs. |
---|---|---|---|---|---|---|---|---|
RNF4 | CCW 16 | Covalent | CCW 28-3 | BRD4 | 231MFP, HeLa | [48] | ||
RNF114 | Nimbolide | Covalent | XH2 | BRD4 | 231MFP | [50] | ||
BT1 | BCR-ABL | K562 | [51] | |||||
EN219 | Covalent | ML 2-14 | BRD4 | Long isoform: DC50 = 36 nM Short isoform: DC50 = 14 nM | 231MFP | [52] | ||
ML 2-23 | BCR-ABL | K562 | [52] | |||||
DCAF16 | KB02 | Covalent | KB02-SLF | FKBP12 | HEK293T, MDA-MB-231 | [56] | ||
KB02-JQ1 | BRD4 | HEK293T | [56] | |||||
C8 | PARP2 | DC50 = 2 μM, Dmax > 92% | MDA-MB-231 | [57] | ||||
A4 | CDK4/6 | CDK4: DC50 = 6.5 μM, Dmax > 89% CDK6: DC50 = 8 μM, Dmax > 83% | MDA-MB-231 | [58] | ||||
DCAF15 | E7820 | Noncovalent | DP1 | BRD4 | DC50 = 10.84 ± 0.92 μM, Dmax = 98% | SU-DHL-4 | [59] | |
DCAF11 | DCAF11 ligand 1 | Covalent | 21-SLF | FKBP12 | 22Rv1 | [61] | ||
21-ARL | AR | 22Rv1 | [61] | |||||
DCAF11 ligand 2 | Covalent | HL435 | BRD4 | DC50 = 11.9 nM (MDA-MB-231), DC50 = 21.9 nM (MCF-7), Dmax > 99% | MDA-MB-231, MCF-7 | [62] | ||
DCAF11 ligand 3 | Covalent | L134 | BRD4 | DC50 = 7.36 nM, Dmax > 98% | MDA-MB-231 | [64] | ||
DCAF11 ligand 4 | Covalent | FF2039 | HDAC1, HDAC2, HDAC4, HDAC6 | HDAC1: Dmax = 90%, HDAC2, 4, and 6: Dmax = 71–76% | MM.1S | [65] | ||
DCAF1 | DCAF1 ligand 1 | Noncovalent | DBr-1 | BRD9 | HEK293 | [67] | ||
DBt-10 | BTK | TMD8 | [67] | |||||
OICR-8268 | Noncovalent | OICR-41114 | WDR5 | DC50 = 40 ± 24 nM, Dmax = 49 ± 1.9% | MV4-11 | 9DLW | [69] | |
AhR | β-NF | Noncovalent | β-NF-ATRA | CRABP-1, CRABP-2 | MCF-7, IMR-32 | [70] | ||
β-NF-JQ1 | BRD2, BRD3, BRD4 | MCF-7 | [70] | |||||
ITE | Noncovalent | ITE-ATRA | CRABP-1, CRABP-2 | MCF-7, IMR-32 | [70] | |||
KEAP1 | CDDO | Covalent | CDDO-JQ1 | BRD4 | 231MFP | [75] | ||
KEAP1-L-OEt | Noncovalent | MS83 | BRD4, BRD3 | MDA-MB-468, MDA-MB-231 | [76] | |||
PL | Covalent | 995 | CDK9 | DC50 = 9 nM | MOLT4 | [77] | ||
819 | EML4-ALK | NCI-H2228 | [77] | |||||
FEM1B | EN106 | Covalent | NJH-1-106 | BRD4 | DC50 = 250 nM, Dmax = 94% | HEK293T | [81] | |
NJH-2-142 | BCR-ABL | K562 | [81] | |||||
KLHL20 | BTR2000 | Noncovalent | BTR2003 | BRD2, BRD3, BRD4 | BRD2: DC50 = 46 nM, BRD3: DC50 = 87 nM, BRD4: DC50 = 777 nM | PC3 | [82] | |
KLHDC2 | KDRLKZ-1 | Noncovalent | K2-B4-3e | BRD4 | DC50 = 66 nM, Dmax = 62% | PC3 | [83] | |
KDRLKZ-2 | Noncovalent | K2-B4-5e | BRD4 | DC50 = 6.2 nM, Dmax = 93% | PC3 | [83] | ||
K2-AR-1 | AR | VCaP | [83] | |||||
SJ46418 | Noncovalent | SJ46421 | BRD3 | U2OS | [84] | |||
SJ46420 | BRD3 | U2OS | [84] | |||||
FBXO22 | FBXO22 ligand | Covalent | 22-SLF | FKBP12 | DC50 = 0.5 μM, Dmax = 89% | HEK293T | [85] | |
22-JQ1 | BRD4 | A549 | [85] | |||||
22-TAE | EML4-ALK | H2228 | [85] | |||||
GID4 | PFI-7 | Noncovalent | NEP108 | BRD4 | DC50 = 3.8 μM | U2OS | 8X7G | [87] |
NEP162 | BRD4 | DC50 = 1.2 μM (SW480), DC50 = 1.6 μM (U2OS) | SW480, U2OS | 8X7H | [87] | |||
NEP168 | ERα | MCF-7 | [87] | |||||
NEP202 | SMARCA2 | U2OS | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Huang, X.; Zhao, X.; Zhang, Y.; Li, P. The Expanding E3 Ligase-Ligand Landscape for PROTAC Technology. Targets 2025, 3, 30. https://doi.org/10.3390/targets3040030
Li Z, Huang X, Zhao X, Zhang Y, Li P. The Expanding E3 Ligase-Ligand Landscape for PROTAC Technology. Targets. 2025; 3(4):30. https://doi.org/10.3390/targets3040030
Chicago/Turabian StyleLi, Zhenzhen, Xiaoli Huang, Xuchi Zhao, Yunxiu Zhang, and Ping Li. 2025. "The Expanding E3 Ligase-Ligand Landscape for PROTAC Technology" Targets 3, no. 4: 30. https://doi.org/10.3390/targets3040030
APA StyleLi, Z., Huang, X., Zhao, X., Zhang, Y., & Li, P. (2025). The Expanding E3 Ligase-Ligand Landscape for PROTAC Technology. Targets, 3(4), 30. https://doi.org/10.3390/targets3040030