Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review
Abstract
1. Introduction
2. Metabolic Disorders
3. Overview of Kallikrein–Kinin System (KKS)
4. Kinin B2 Receptor (B2R)
4.1. Kinin B2 Receptor Knockout Mice
4.2. Contribution of Kinin B2 Receptor to Insulin Sensitivity and Glucose Homeostasis
4.3. Participation of B2 Receptor in Thermogenic Activation and Energy Expenditure
5. Kinin B1 Receptor (B1R)
5.1. Kinin B1 Receptor Knockout Mice
5.2. Role of Kinin B1 Receptor in Insulin Resistance and Metabolic Dysfunction
5.3. Influence of B1 Receptor on Thermogenic Response
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Calvani, R.; Leeuwenburgh, C.; Marzetti, E. Brown adipose tissue and the cold war against obesity. Diabetes 2014, 63, 3998–4000. [Google Scholar] [CrossRef]
- Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat. Med. 2013, 19, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Colquitt, J.L.; Pickett, K.; Loveman, E.; Frampton, G.K. Surgery for weight loss in adults. Cochrane Database Syst. Rev. 2014, 2014, 1. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef] [PubMed]
- Bornfeldt, K.E.; Tabas, I. Insulin resistance, hyperglycemia, and atherosclerosis. Cell Metab. 2011, 14, 575–585. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q. Brown and beige adipose tissue: A novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte 2021, 10, 48–65. [Google Scholar] [CrossRef]
- Wang, P.; Mariman, E.; Renes, J.; Keijer, J. The secretory function of adipocytes in the physiology of white adipose tissue. J. Cell Physiol. 2008, 216, 3–13. [Google Scholar] [CrossRef]
- Hilton, C.; Karpe, F.; Pinnick, K.E. Role of developmental transcription factors in white, brown and beige adipose tissues. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2015, 1851, 686–696. [Google Scholar] [CrossRef]
- Mori, M.A.; Araújo, R.C.; Reis, F.C.G.; Sgai, D.G.; Fonseca, R.G.; Barros, C.C.; Merino, V.F.; Passadore, M.; Barbosa, A.M.; Ferrari, B. Kinin B1 receptor deficiency leads to leptin hypersensitivity and resistance to obesity. Diabetes 2008, 57, 1491–1500. [Google Scholar] [CrossRef]
- Mori, M.A.; Sales, V.M.; Motta, F.L.; Fonseca, R.G.; Alenina, N.; Guadagnini, D.; Schadock, I.; Silva, E.D.; Torres, H.A.M.; Santos, E.L. dos. Kinin B1 receptor in adipocytes regulates glucose tolerance and predisposition to obesity. PLoS ONE 2012, 7, e44782. [Google Scholar] [CrossRef]
- Sales, V.M.; Gonçalves-Zillo, T.; Castoldi, A.; Burgos, M.; Branquinho, J.; Batista, C.; Oliveira, V.; Silva, E.; Castro, C.H.M.; Câmara, N. Kinin B1 receptor acts in adipose tissue to control fat distribution in a cell-nonautonomous manner. Diabetes 2019, 68, 1614–1623. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sheng, T.; Gu, Z.; Zhang, Y. Strategies for browning agent delivery. Pharm. Res. 2021, 38, 1327–1334. [Google Scholar] [CrossRef]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. Energy balance and obesity. Circulation 2012, 126, 126–132. [Google Scholar] [CrossRef]
- Cypess, A.M.; Kahn, C.R. Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 143–149. [Google Scholar] [CrossRef]
- Reddy, N.L.; Tan, B.K.; Barber, T.M.; Randeva, H.S. Brown adipose tissue: Endocrine determinants of function and therapeutic manipulation as a novel treatment strategy for obesity. BMC Obes. 2014, 1, 13. [Google Scholar] [CrossRef]
- Batch, B.C.; Shah, S.H.; Newgard, C.B.; Turer, C.B.; Haynes, C.; Bain, J.R.; Muehlbauer, M.; Patel, M.J.; Stevens, R.D.; Appel, L.J. Branched chain amino acids are novel biomarkers for discrimination of metabolic wellness. Metabolism 2013, 62, 961–969. [Google Scholar] [CrossRef]
- Kopelman, P.G. Obesity as a medical problem. Nature 2000, 404, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Afshin. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Kahn, S.E.; Hull, R.L.; Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006, 444, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.B.; Newgard, C.B. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef]
- Jeremic, N.; Chaturvedi, P.; Tyagi, S.C. Browning of white fat: Novel insight into factors, mechanisms, and therapeutics. J. Cell Physiol. 2016, 232, 61–68. [Google Scholar] [CrossRef]
- Kuryłowicz, A.; Puzianowska-Kuźnicka, M. Induction of adipose tissue browning as a strategy to combat obesity. Int. J. Mol. Sci. 2020, 21, 6241. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, pathophysiology, and management of obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Kushner, R.F. New Frontiers in Obesity Treatment: GLP-1 and Nascent Nutrient-Stimulated Hormone-Based Therapeutics. Annu. Rev. Med. 2023, 74, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Kashuba, E.; Bailey, J.; Allsup, D.; Cawkwell, L. The kinin–kallikrein system: Physiological roles, pathophysiology and its relationship to cancer biomarkers. Biomarkers 2013, 18, 279–296. [Google Scholar] [CrossRef]
- Shesely, E.G.; Hu, C.B.; Alhenc-Gelas, F.; Meneton, P.; Carretero, O.A. A second expressed kininogen gene in mice. Physiol. Genom. 2006, 26, 152–157. [Google Scholar] [CrossRef]
- Pesquero, J.B.; Bader, M. Genetically altered animal models in the kallikrein-kinin system. Biol. Chem. 2006, 387, 119–126. [Google Scholar] [CrossRef]
- Pathak, M.; Wong, S.S.; Dreveny, I.; Emsley, J. Structure of plasma and tissue kallikreins. Thromb. Haemost. 2013, 110, 423–433. [Google Scholar] [CrossRef]
- Schmaier, A.H. The contact activation and kallikrein/kinin systems: Pathophysiologic and physiologic activities. J. Thromb. Haemost. 2016, 14, 28–39. [Google Scholar] [CrossRef]
- Qadri, F.; Bader, M. Kinin B1 receptors as a therapeutic target for inflammation. Expert. Opin. Ther. Targets 2017, 22, 31–44. [Google Scholar] [CrossRef]
- Leeb-Lundberg, L.M.F.; Marceau, F.; Müller-Esterl, W.; Pettibone, D.J.; Zuraw, B.L. International Union of Pharmacology. XLV. Classification of the kinin receptor family: From molecular mechanisms to pathophysiological consequences. Pharmacol. Rev. 2005, 57, 27–77. [Google Scholar] [CrossRef] [PubMed]
- Christopher, J.; Velarde, V.; Jaffa, A.A. Induction of B1-kinin receptors in vascular smooth muscle cells: Cellular mechanisms of MAP kinase activation. Hypertension 2001, 38, 602–605. [Google Scholar] [CrossRef] [PubMed]
- Marceau, F.; Sabourin, T.; Houle, S.; Fortin, J.P.; Petitclerc, E.; Molinaro, G.; Adam, A. Kinin receptors: Functional aspects. Int. Immunopharmacol. 2002, 2, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, H. Function and structure of bradykinin receptor 2 for drug discovery. Acta Pharmacol. Sin. 2022, 44, 489–498. [Google Scholar] [CrossRef]
- Campbell, D.J. Towards understanding the kallikrein-kinin system: Insights from measurement of kinin peptides. Braz. J. Med. Biol. Res. 2000, 33, 665–677. [Google Scholar] [CrossRef]
- Marceau, F.; Regoli, D. Bradykinin receptor ligands: Therapeutic perspectives. Nat. Rev. Drug Discov. 2004, 3, 845–852. [Google Scholar] [CrossRef]
- Duka, A.; Duka, I.; Gao, G.; Shenouda, S.; Gavras, I.; Gavras, H. Role of bradykinin B1 and B2 receptors in normal blood pressure regulation. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E268–E274. [Google Scholar] [CrossRef]
- Figueroa, C.D.; Gonzalez, C.B.; Grigoriev, S.; Abd Alla, S.A.; Haasemann, M.; Jarnagin, K.; Müller-Esterl, W. Probing for the bradykinin B2 receptor in rat kidney by anti-peptide and anti-ligand antibodies. J. Histochem. Cytochem. 1995, 43, 137–148. [Google Scholar] [CrossRef]
- Song, Q.; Wang, D.Z.; Harley, R.A.; Chao, L.; Chao, J.; Castrop, H.; Höcherl, K.; Kurtz, A.; Schweda, F.; Todorov, V.; et al. Cellular localization of low-molecular-weight kininogen and bradykinin B2 receptor mRNAs in human kidney. Am. J. Physiol. 1996, 270, F919–F926. [Google Scholar] [CrossRef]
- Böckmann, S.; Paegelow, I. Kinins and kinin receptors: Importance for the activation of leukocytes. J. Leukoc. Biol. 2000, 68, 587–592. [Google Scholar] [CrossRef]
- Terzuoli, E.; Corti, F.; Nannelli, G.; Giachetti, A.; Donnini, S.; Ziche, M. Bradykinin B2 receptor contributes to inflammatory responses in human endothelial cells by the transactivation of the fibroblast growth factor receptor FGFR-1. Int. J. Mol. Sci. 2018, 19, 2638. [Google Scholar] [CrossRef]
- Blaukat, A. Structure and signalling pathways of kinin receptors. Andrologia 2003, 35, 17–23. [Google Scholar] [CrossRef]
- AbdAlla, S.; Lother, H.; Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 2000, 407, 94–98. [Google Scholar] [CrossRef]
- Borkowski, J.A.; Ransom, W.R.; Seabrook, G.R.; Trumbauer, M.; Chen, H.; Hill, R.G.; Strader, C.D.; Hess, J.F. Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J. Biol. Chem. 1995, 270, 13706–13710. [Google Scholar] [CrossRef]
- Cervenka, L.; Maly, J.; Karasová, L.; Simová, M.; Vítko, S.; Hellerová, S.; Heller, J.; El-Dahr, S.S. Angiotensin II-induced hypertension in bradykinin B2 receptor knockout mice. Hypertension 2001, 37, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Alfie, M.E.; Yang, X.P.; Hess, F.; Carretero, O.A. Salt-sensitive hypertension in bradykinin B2 receptor knockout mice. Biochem. Biophys. Res. Commun. 1996, 224, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Madeddu, P.; Varoni, P.M.V.; Palomba, D.; Emanueli, C.; Demontis, M.P.; Glorioso, N.; Dessì-Fulgheri, P.; Sarzani, R.; Anania, V. Cardiovascular phenotype of a mouse strain with disruption of bradykinin B2-receptor gene. Circulation 1997, 96, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Emanueli, C.; Fink, E.; Milia, A.F.; Salis, M.B.; Conti, M.; Demontis, M.P.; Madeddu, P. Enhanced blood pressure sensitivity to deoxycorticosterone in mice with disruption of bradykinin B2 receptor gene. Hypertension 1998, 31, 1278–1283. [Google Scholar] [CrossRef]
- El-Dahr, S.; Figueroa, C.D.; Gonzalez, C.B.; Müller-Esterl, W. Ontogeny of bradykinin B2 receptors in the rat kidney: Implications for segmental nephron maturation. Kidney Int. 1997, 51, 739–749. [Google Scholar] [CrossRef]
- Schanstra, J.P.; Neau, E.; Drogoz, P.; Gomez, M.A.A.; Novoa, J.M.L.; Calise, D.; Pecher, C.; Bader, M.; Girolami, J.; Bascands, J. In vivo bradykinin B2 receptor activation reduces renal fibrosis. J. Clin. Investig. 2002, 110, 371–379. [Google Scholar] [CrossRef]
- Duka, I.; Shenouda, S.; Johns, C.; Kintsurashvili, E.; Gavras, I.; Gavras, H. Role of the B2 receptor of bradykinin in insulin sensitivity. Hypertension 2001, 38, 1355–1360. [Google Scholar] [CrossRef]
- Kakoki, M.; Takahashi, N.; Jennette, J.C.; Smithies, O. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc. Natl. Acad. Sci. USA 2004, 101, 13302–13305. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.C.; Roffê, E.; Arantes, R.M.E.; Juliano, L.; Pesquero, J.L.; Pesquero, J.B.; Bader, M.; Teixeira, M.M.; Carvalho-Tavares, J. Kinin B2 receptor regulates chemokines CCL2 and CCL5 expression and modulates leukocyte recruitment and pathology in experimental autoimmune encephalomyelitis (EAE) in mice. J. Neuroinflamm. 2008, 5, 49. [Google Scholar]
- Soley, B.S.; Morais, R.L.T.; Pesquero, J.B.; Bader, M.; Otuki, M.F.; Cabrini, D.A. Kinin receptors in skin wound healing. J. Dermatol. Sci. 2016, 82, 95–105. [Google Scholar] [CrossRef]
- Liu, H.; Wang, S.; Wang, J.; Guo, X.; Song, Y.; Fu, K.; Gao, Z.; Liu, D.; He, W.; Yang, L. Energy metabolism in health and diseases. Signal Transduct. Target. Ther. 2025, 10, 69. [Google Scholar] [CrossRef]
- Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef]
- Yaribeygi, H.; Farrokhi, F.R.; Butler, A.E.; Sahebkar, A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019, 234, 8152–8161. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.; Choi, C.S. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab. J. 2022, 46, 15–37. [Google Scholar] [CrossRef]
- Damas, J.; Garbacki, N.; Lefèbvre, P.J. The kallikrein-kinin system, angiotensin converting enzyme inhibitors and insulin sensitivity. Diabetes Metab. Res. Rev. 2004, 20, 288–297. [Google Scholar] [CrossRef]
- Tan, Y.; Keum, J.; Wang, B.; McHenry, M.B.; Lipsitz, S.R.; Jaffa, A.A. Targeted deletion of B2-kinin receptors protects against the development of diabetic nephropathy. Am. J. Physiol. Renal Physiol. 2007, 293, F1026–F1035. [Google Scholar] [CrossRef] [PubMed]
- Zuccollo, A.; Navarro, M.; Catanzaro, O. Effects of B1 and B2 kinin receptor antagonists in diabetic mice. Can. J. Physiol. Pharmacol. 1996, 74, 586–589. [Google Scholar] [CrossRef] [PubMed]
- Barros, C.C.; Haro, A.; Russo, F.J.; Schadock, I.; Almeida, S.S.; Reis, F.C.; Moraes, M.R.; Haidar, A.; Hirata, A.E.; Mori, M.; et al. Bradykinin inhibits hepatic gluconeogenesis in obese mice. Lab. Investig. 2012, 92, 1419–1427. [Google Scholar] [CrossRef]
- Jaffa, M.A.; Kobeissy, F.; Al Hariri, M.; Chalhoub, H.; Eid, A.; Ziyadeh, F.N.; Jaffa, A.A.; Madeddu, P. Global renal gene expression profiling analysis in B2-kinin receptor null mice: Impact of diabetes. PLoS ONE 2012, 7, e44714. [Google Scholar] [CrossRef] [PubMed]
- Reis, F.C.G.; Haro, A.S.; Bacurau, A.V.N.; Hirabara, S.M.; Wasinski, F.; Ormanji, M.S.; Moreira, J.B.N.; Kiyomoto, B.H.; Bertoncini, C.R.A.; Brum, P.C.; et al. Deletion of kinin B2 receptor alters muscle metabolism and exercise performance. PLoS ONE 2015, 10, e0134844. [Google Scholar] [CrossRef] [PubMed]
- Gregnani, M.F.; Hungaro, T.G.; Martins-Silva, L.; Bader, M.; Araujo, R.C. Bradykinin B2 receptor signaling increases glucose uptake and oxidation: Evidence and open questions. Front. Pharmacol. 2020, 11, 1162. [Google Scholar] [CrossRef]
- Schweitzer, G.G.; Castorena, C.M.; Hamada, T.; Funai, K.; Arias, E.B.; Cartee, G.D. The B2 receptor of bradykinin is not essential for the post-exercise increase in glucose uptake by insulin-stimulated mouse skeletal muscle. Physiol. Res. 2011, 60, 511–519. [Google Scholar] [CrossRef]
- Nedergaard, J.; Bengtsson, T.; Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E444–E452. [Google Scholar] [CrossRef]
- Imai, J.; Katagiri, H.; Yamada, T.; Ishigaki, Y.; Ogihara, T.; Uno, K.; Hasegawa, Y.; Gao, J.; Ishihara, H.; Sasano, H.; et al. Cold exposure suppresses serum adiponectin levels through sympathetic nerve activation in mice. Obesity 2006, 14, 1132–1141. [Google Scholar] [CrossRef]
- Xiao, F.; Jiang, H.; Li, Z.; Jiang, X.; Chen, S.; Niu, Y.; Yin, H.; Shu, Y.; Peng, B.; Lu, W.; et al. Reduced hepatic bradykinin degradation accounts for cold-induced BAT thermogenesis and WAT browning in male mice. Nat. Commun. 2023, 14, 2523. [Google Scholar] [CrossRef]
- Othman, R.; Cagnone, G.; Joyal, J.S.; Vaucher, E.; Couture, R. Kinins and their receptors as potential therapeutic targets in retinal pathologies. Cells 2021, 10, 1913. [Google Scholar] [CrossRef]
- Girolami, J.P.; Bouby, N.; Richer-Giudicelli, C.; Alhenc-Gelas, F. Kinins and kinin receptors in cardiovascular and renal diseases. Pharmaceuticals 2021, 14, 240. [Google Scholar] [CrossRef]
- McLean, P.G.; Perretti, M.; Ahluwalia, A. Kinin B1 receptors and the cardiovascular system: Regulation of expression and function. Cardiovasc. Res. 2000, 48, 194–210. [Google Scholar] [CrossRef] [PubMed]
- Rampa, D.R.; Feng, H.; Allur-Subramaniyan, S.; Shim, K.; Pekcec, A.; Lee, D.; Doods, H.; Wu, D. Kinin B1 receptor blockade attenuates hepatic fibrosis and portal hypertension in chronic liver diseases in mice. J. Transl. Med. 2022, 20, 590. [Google Scholar] [CrossRef]
- White, A.; Parekh, R.U.; Theobald, D.; Pakala, P.; Myers, A.L.; Van Dross, R.; Sriramula, S. Kinin B1R activation induces endoplasmic reticulum stress in primary hypothalamic neurons. Front. Pharmacol. 2022, 13, 841068. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.; Beirith, A.; Mori, M.A.S.; Araújo, R.C.; Bader, M.; Pesquero, J.B.; Calixto, J.B. Reduced nerve injury-induced neuropathic pain in kinin B1 receptor knock-out mice. J. Neurosci. 2005, 25, 2405–2412. [Google Scholar] [CrossRef]
- Gonçalves-Zillo, T.O.; Pugliese, L.S.; Sales, V.M.T.; da Silva Mori, M.A.; Squaiella-Baptistão, C.C.; Longo-Maugeri, I.M.; Lopes, J.D.; de Oliveira, S.M.; Monteiro, A.C.; Pesquero, J.B. Increased bone loss and amount of osteoclasts in kinin B1 receptor knockout mice. J. Clin. Periodontol. 2013, 40, 653–660. [Google Scholar] [CrossRef] [PubMed]
- Estrela, G.R.; Wasinski, F.; Almeida, D.C.; Amano, M.T.; Castoldi, A.; Dias, C.C.; Malheiros, D.M.; Almeida, S.S.; Paredes-Gamero, E.J.; Pesquero, J.B.; et al. Kinin B1 receptor deficiency attenuates cisplatin-induced acute kidney injury by modulating immune cell migration. J. Mol. Med. 2014, 92, 399–409. [Google Scholar] [CrossRef]
- Yin, H.; Chao, J.; Bader, M.; Chao, L. Differential role of kinin B1 and B2 receptors in ischemia-induced apoptosis and ventricular remodeling. Peptides 2007, 28, 1383–1389. [Google Scholar] [CrossRef]
- Ferreira, J.; Campos, M.M.; Araújo, R.; Bader, M.; Pesquero, J.B.; Calixto, J.B. The use of kinin B1 and B2 receptor knockout mice and selective antagonists to characterize the nociceptive responses caused by kinins at the spinal level. Neuropharmacology 2002, 43, 1188–1197. [Google Scholar] [CrossRef]
- Fonseca, R.G.; Sales, V.M.; Ropelle, E.; Barros, C.C.; Oyama, L.; Ihara, S.S.I.; Saad, M.J.A.; Araújo, R.C.; Pesquero, J.B. Lack of kinin B1 receptor potentiates leptin action in the liver. J. Mol. Med. 2013, 91, 851–860. [Google Scholar] [CrossRef]
- Morais, R.L.; Silva, E.D.; Sales, V.M.; Filippelli-Silva, R.; Mori, M.A.; Bader, M.; Pesquero, J.B. Kinin B1 and B2 receptor deficiency protects against obesity induced by a high-fat diet and improves glucose tolerance in mice. Diabetes Metab. Syndr. Obes. 2015, 8, 357–369. [Google Scholar]
- Correia, P.E.; Gomes, C.B.; Bandeira, V.A.; Marten, T.; Natividade, G.R.; Merello, P.; Tozawa, E.; Cerski, C.T.S.; Budu, A.; Araújo, R. Kinin B1 receptor deficiency protects mice fed by cafeteria diet from abnormal glucose homeostasis. PLoS ONE 2022, 17, e0267845. [Google Scholar] [CrossRef] [PubMed]
- Wasinski, F.; Batista, R.O.; Bader, M.; Araújo, R.C.; Klempin, F. Bradykinin B2 receptor is essential to running-induced cell proliferation in the adult mouse hippocampus. Brain Struct. Funct. 2018, 223, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Peyrou, M.; Cereijo, R.; Quesada-López, T.; Campderrós, L.; Gavaldà-Navarro, A.; Liñares-Pose, L.; Kaschina, E.; Unger, T.; López, M.; Giralt, M. The kallikrein–kinin pathway as a mechanism for auto-control of brown adipose tissue activity. Nat. Commun. 2020, 11, 2132. [Google Scholar] [CrossRef]
- Branquinho, J.; Neves, R.L.; Martin, R.P.; Arata, J.G.; Bittencourt, C.A.; Araújo, R.C.; Icimoto, M.Y.; Pesquero, J.B. Kinin B1 receptor deficiency promotes enhanced adipose tissue thermogenic response to β3-adrenergic stimulation. Inflamm. Res. 2024, 73, 1565–1579. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branquinho, J.; Neves, R.L.; Bader, M.; Pesquero, J.B. Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review. Drugs Drug Candidates 2025, 4, 37. https://doi.org/10.3390/ddc4030037
Branquinho J, Neves RL, Bader M, Pesquero JB. Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review. Drugs and Drug Candidates. 2025; 4(3):37. https://doi.org/10.3390/ddc4030037
Chicago/Turabian StyleBranquinho, Jéssica, Raquel Leão Neves, Michael Bader, and João Bosco Pesquero. 2025. "Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review" Drugs and Drug Candidates 4, no. 3: 37. https://doi.org/10.3390/ddc4030037
APA StyleBranquinho, J., Neves, R. L., Bader, M., & Pesquero, J. B. (2025). Bradykinin Receptors in Metabolic Disorders: A Comprehensive Review. Drugs and Drug Candidates, 4(3), 37. https://doi.org/10.3390/ddc4030037