Targeting Oxidative Stress Biomarkers in Breast Cancer Development and the Potential Protective Effect of Phytochemicals
Abstract
:1. Introduction
2. Oxidative Stress and Cancer
2.1. Oxidative Stress
2.2. Influence of Oxidative Stress on Breast Cancer
2.3. Effect of ROS on Different Subtypes of Breast Cancer
3. Signaling Pathways in Breast Cancer Induction
3.1. Mitogen Activated Protein Kinase (MAPKs) Pathway
3.2. Estrogen Receptor Pathway
3.3. Beta Catenin Signalling Pathway
3.4. HER2 Receptor Pathway
4. Potential for Therapy
4.1. Redox Homeostasis and Phytochemicals
4.2. Role of Phytochemicals as Anticancer Agents
- (i)
- Resveratrol
- (ii)
- Tocopherols
- (iii)
- Carotenoids
- (iv)
- Eugenol
- (v)
- Rutin
- (vi)
- Curcumin
5. Conflicting Role of Antioxidants in Breast Cancer Treatment
6. Future Perspectives
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mehrotra, R.; Yadav, K. Breast Cancer in India: Present Scenario and the Challenges Ahead. World J. Clin. Oncol. 2022, 13, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Liochev, S.I. Reactive Oxygen Species and the Free Radical Theory of Aging. Free Radic. Biol. Med. 2013, 60, 1–4. [Google Scholar] [CrossRef]
- Jones, D.P. Radical-Free Biology of Oxidative Stress. Am. J. Physiol. Cell Physiol. 2008, 295, C849–C868. [Google Scholar] [CrossRef]
- Gönenç, A.; Tokgöz, D.; Aslan, S.; Torun, M. Oxidative Stress in Relation to Lipid Profiles in Different Stages of Breast Cancer. Indian J. Biochem. Biophys. 2005, 42, 190–194. [Google Scholar]
- Kruk, J.; Duchnik, E. Oxidative Stress and Skin Diseases: Possible Role of Physical Activity. Asian Pac. J. Cancer Prev. 2014, 15, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Loft, S.; Olsen, A.; Møller, P.; Poulsen, H.E.; Tjønneland, A. Association between 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine Excretion and Risk of Postmenopausal Breast Cancer: Nested Case–Control Study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 1289–1296. [Google Scholar] [CrossRef]
- Rossner, P.; Terry, M.B.; Gammon, M.D.; Agrawal, M.; Zhang, F.F.; Ferris, J.S.; Teitelbaum, S.L.; Eng, S.M.; Gaudet, M.M.; Neugut, A.I.; et al. Plasma Protein Carbonyl Levels and Breast Cancer Risk. J. Cell. Mol. Med. 2007, 11, 1138–1148. [Google Scholar] [CrossRef] [PubMed]
- Leufkens, A.M.; Van Duijnhoven, F.J.B.; Woudt, S.H.S.; Siersema, P.D.; Jenab, M.; Jansen, E.H.J.M.; Pischon, T.; Tjonneland, A.; Olsen, A.; Overvad, K.; et al. Biomarkers of Oxidative Stress and Risk of Developing Colorectal Cancer: A Cohort-Nested Case-Control Study in the European Prospective Investigation Into Cancer and Nutrition. Am. J. Epidemiol. 2012, 175, 653–663. [Google Scholar] [CrossRef]
- Vera-Ramirez, L.; Sanchez-Rovira, P.; Ramirez-Tortosa, M.C.; Ramirez-Tortosa, C.L.; Granados-Principal, S.; Lorente, J.A.; Quiles, J.L. Free Radicals in Breast Carcinogenesis, Breast Cancer Progression and Cancer Stem Cells. Biological Bases to Develop Oxidative-Based Therapies. Crit. Rev. Oncol. Hematol. 2011, 80, 347–368. [Google Scholar] [CrossRef]
- Dorjgochoo, T.; Gao, Y.-T.; Chow, W.-H.; Shu, X.; Yang, G.; Cai, Q.; Rothman, N.; Cai, H.; Li, H.; Deng, X.; et al. Obesity, Age, and Oxidative Stress in Middle-Aged and Older Women. Antioxid. Redox Signal. 2011, 14, 2453–2460. [Google Scholar] [CrossRef]
- Maritim, A.C.; Sanders, R.A.; Watkins, J.B. Diabetes, Oxidative Stress, and Antioxidants: A Review. J. Biochem. Mol. Tox. 2003, 17, 24–38. [Google Scholar] [CrossRef]
- Murphy, M.P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative Stress and Cancer: An Overview. Ageing Res. Rev. 2013, 12, 376–390. [Google Scholar] [CrossRef]
- Gorrini, C.; Harris, I.S.; Mak, T.W. Modulation of Oxidative Stress as an Anticancer Strategy. Nat. Rev. Drug Discov. 2013, 12, 931–947. [Google Scholar] [CrossRef]
- Federico, A.; Morgillo, F.; Tuccillo, C.; Ciardiello, F.; Loguercio, C. Chronic Inflammation and Oxidative Stress in Human Carcinogenesis. Int. J. Cancer 2007, 121, 2381–2386. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free Radicals, Metals and Antioxidants in Oxidative Stress-Induced Cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef]
- Meng, T.C.; Lou, Y.W.; Chen, Y.; Hsu, S.; Huang, Y.F. Cys-oxidation of protein tyrosine phosphatases: Its role in regulation of signal transduction and its involvement in human cancers. J. Cancer Mol. 2006, 2, 9–16. [Google Scholar] [CrossRef]
- Wood, Z.A.; Schröder, E.; Robin Harris, J.; Poole, L.B. Structure, Mechanism and Regulation of Peroxiredoxins. Trends Biochem. Sci. 2003, 28, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Lambeth, J.D.; Neish, A.S. Nox Enzymes and New Thinking on Reactive Oxygen: A Double-Edged Sword Revisited. Annu. Rev. Pathol. Mech. Dis. 2014, 9, 119–145. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Shin, B.; Feser, R.; Nault, B.; Hunter, S.; Maiti, S.; Ugwuagbo, K.C.; Majumder, M. miR526b and miR655 Induce Oxidative Stress in Breast Cancer. Int. J. Mol. Sci. 2019, 20, 4039. [Google Scholar] [CrossRef]
- Lee, J.D.; Cai, Q.; Shu, X.O.; Nechuta, S.J. The Role of Biomarkers of Oxidative Stress in Breast Cancer Risk and Prognosis: A Systematic Review of the Epidemiologic Literature. J. Women’s Health 2017, 26, 467–482. [Google Scholar] [CrossRef]
- Pilco-Ferreto, N.; Calaf, G.M. Influence of Doxorubicin on Apoptosis and Oxidative Stress in Breast Cancer Cell Lines. Int. J. Oncol. 2016, 49, 753–762. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Wu, J.; Ning, P.; Gao, R.; Feng, Q.; Shen, Y.; Zhang, Y.; Li, Y.; Xu, C.; Qin, Y.; Plaza, G.R.; et al. Programmable ROS-Mediated Cancer Therapy via Magneto-Inductions. Adv. Sci. 2020, 7, 1902933. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Luo, W.; Chen, S.; Lin, F.; Zhang, X.; Fan, S.; Shen, X.; Wang, Y.; Liang, G. Celastrol Induces ROS-Mediated Apoptosis via Directly Targeting Peroxiredoxin-2 in Gastric Cancer Cells. Theranostics 2020, 10, 10290–10308. [Google Scholar] [CrossRef]
- Ghanbari Movahed, Z.; Rastegari-Pouyani, M.; Mohammadi, M.H.; Mansouri, K. Cancer Cells Change Their Glucose Metabolism to Overcome Increased ROS: One Step from Cancer Cell to Cancer Stem Cell? Biomed. Pharmacother. 2019, 112, 108690. [Google Scholar] [CrossRef]
- Hamurcu, Z.; Ashour, A.; Kahraman, N.; Ozpolat, B. FOXM1 Regulates Expression of Eukaryotic Elongation Factor 2 Kinase and Promotes Proliferation, Invasion and Tumorgenesis of Human Triple Negative Breast Cancer Cells. Oncotarget 2016, 7, 16619–16635. [Google Scholar] [CrossRef] [PubMed]
- Ortmann, O.; Brockhoff, G.; Treeck, O.; Buchholz, S. Novel aspects in endocrine treatment of breast cancer. Geburtsh Frauenheilk 2008, 68, A11. [Google Scholar] [CrossRef]
- Reczek, C.R.; Chandel, N.S. The Two Faces of Reactive Oxygen Species in Cancer. Annu. Rev. Cancer Biol. 2017, 1, 79–98. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M.; et al. RAS/MAPK Signaling Functions in Oxidative Stress, DNA Damage Response and Cancer Progression. J. Cell. Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef]
- Yi, J.; Zhu, J.; Wu, J.; Thompson, C.B.; Jiang, X. Oncogenic Activation of PI3K-AKT-mTOR Signaling Suppresses Ferroptosis via SREBP-Mediated Lipogenesis. Proc. Natl. Acad. Sci. USA 2020, 117, 31189–31197. [Google Scholar] [CrossRef]
- Talebi, M.; Talebi, M.; Farkhondeh, T.; Samarghandian, S. Molecular Mechanism-Based Therapeutic Properties of Honey. Biomed. Pharmacother. 2020, 130, 110590. [Google Scholar] [CrossRef]
- Matsui, A.; Ikeda, T.; Enomoto, K.; Hosoda, K.; Nakashima, H.; Omae, K.; Watanabe, M.; Hibi, T.; Kitajima, M. Increased Formation of Oxidative DNA Damage, 8-Hydroxy-2′-Deoxyguanosine, in Human Breast Cancer Tissue and Its Relationship to GSTP1 and COMT Genotypes. Cancer Lett. 2000, 151, 87–95. [Google Scholar] [CrossRef]
- Acharya, A.; Das, I.; Chandhok, D.; Saha, T. Redox Regulation in Cancer: A Double-edged Sword with Therapeutic Potential. Oxidative Med. Cell. Longev. 2010, 3, 23–34. [Google Scholar] [CrossRef]
- Ríos-Arrabal, S.; Artacho-Cordón, F.; León, J.; Román-Marinetto, E.; Del Mar Salinas-Asensio, M.; Calvente, I.; Núñez, M.I. Involvement of Free Radicals in Breast Cancer. SpringerPlus 2013, 2, 404. [Google Scholar] [CrossRef]
- Murakami, S.; Motohashi, H. Roles of Nrf2 in Cell Proliferation and Differentiation. Free Radic. Biol. Med. 2015, 88, 168–178. [Google Scholar] [CrossRef]
- Li, C.-Q.; Kim, M.Y.; Godoy, L.C.; Thiantanawat, A.; Trudel, L.J.; Wogan, G.N. Nitric Oxide Activation of Keap1/Nrf2 Signaling in Human Colon Carcinoma Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 14547–14551. [Google Scholar] [CrossRef] [PubMed]
- Al-Sawaf, O.; Clarner, T.; Fragoulis, A.; Kan, Y.W.; Pufe, T.; Streetz, K.; Wruck, C.J. Nrf2 in Health and Disease: Current and Future Clinical Implications. Clin. Sci. 2015, 129, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial Activity of Eugenol and Essential Oils Containing Eugenol: A Mechanistic Viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef]
- Pugh, C.W.; Gleadle, J.; Maxwell, P.H. Hypoxia and Oxidative Stress in Breast Cancer Hypoxia Signalling Pathways. Breast Cancer Res. 2001, 3, 313. [Google Scholar] [CrossRef]
- Brown, N.S.; Bicknell, R. Hypoxia and Oxidative Stress in Breast Cancer Oxidative Stress—Its Effects on the Growth, Metastatic Potential and Response to Therapy of Breast Cancer. Breast Cancer Res. 2001, 3, 323. [Google Scholar] [CrossRef]
- Zhang, S.; Shang, P.; Gao, K.; Zhao, G.; Zhou, J.; Chen, R.; Ning, X.; Guo, C. Dynamics of Estrogen-Induced ROS and DNA Strand Break Generation in Estrogen Receptor α-Positive Breast Cancer. Biochem. Biophys. Res. Commun. 2022, 602, 170–178. [Google Scholar] [CrossRef]
- Li, M.; Chen, Q.; Yu, X. Chemopreventive Effects of ROS Targeting in a Murine Model of BRCA1-Deficient Breast Cancer. Cancer Res. 2017, 77, 448–458. [Google Scholar] [CrossRef]
- Leehy, K.A.; Truong, T.H.; Mauro, L.J.; Lange, C.A. Progesterone Receptors (PR) Mediate STAT Actions: PR and Prolactin Receptor Signaling Crosstalk in Breast Cancer Models. J. Steroid Biochem. Mol. Biol. 2018, 176, 88–93. [Google Scholar] [CrossRef]
- Dwyer, A.R.; Perez Kerkvliet, C.; Truong, T.H.; Hagen, K.M.; Krutilina, R.I.; Parke, D.N.; Oakley, R.H.; Liddle, C.; Cidlowski, J.A.; Seagroves, T.N.; et al. Glucocorticoid Receptors Drive Breast Cancer Cell Migration and Metabolic Reprogramming via PDK4. Endocrinology 2023, 164, bqad083. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, H.; Guo, X.; Li, N.; Qin, L.; Li, X.; Lou, G. Integrative Analyses of Genes Associated with Oxidative Stress and Cellular Senescence in Triple-Negative Breast Cancer. Heliyon 2024, 10, e34524. [Google Scholar] [CrossRef]
- Malik, A.; Hafeez, K.; Nazar, W.; Naeem, M.; Ali, I.; Ali, Q.; Ahmed; Mujtaba, Z.; Rana, M.; Hafeez, M. Assessment of controversial risk factors in development of breast cancer: A study from local population. Biol. Clin. Sci. Res. J. 2021, 1, e003. [Google Scholar]
- Liu, S.; Xu, H.; Feng, Y.; Kahlert, U.D.; Du, R.; Torres-de La Roche, L.A.; Xu, K.; Shi, W.; Meng, F. Oxidative Stress Genes Define Two Subtypes of Triple-Negative Breast Cancer with Prognostic and Therapeutic Implications. Front. Genet. 2023, 14, 1230911. [Google Scholar] [CrossRef]
- Li, M.; Yan, T.; Wang, M.; Cai, Y.; Wei, Y. Advances in Single-Cell Sequencing Technology and Its Applications in Triple-Negative Breast Cancer. Breast Cancer Targets Ther. 2022, 14, 465–474. [Google Scholar] [CrossRef]
- Tierno, D.; Grassi, G.; Scomersi, S.; Bortul, M.; Generali, D.; Zanconati, F.; Scaggiante, B. Next-Generation Sequencing and Triple-Negative Breast Cancer: Insights and Applications. Int. J. Mol. Sci. 2023, 24, 9688. [Google Scholar] [CrossRef]
- Wishart, A.L.; Conner, S.J.; Guarin, J.R.; Fatherree, J.P.; Peng, Y.; McGinn, R.A.; Crews, R.; Naber, S.P.; Hunter, M.; Greenberg, A.S.; et al. Decellularized Extracellular Matrix Scaffolds Identify Full-Length Collagen VI as a Driver of Breast Cancer Cell Invasion in Obesity and Metastasis. Sci. Adv. 2020, 6, eabc3175. [Google Scholar] [CrossRef]
- Chakrabarty, A.; Chakraborty, S.; Bhattacharya, R.; Chowdhury, G. Senescence-Induced Chemoresistance in Triple Negative Breast Cancer and Evolution-Based Treatment Strategies. Front. Oncol. 2021, 11, 674354. [Google Scholar] [CrossRef]
- Martindale, J.L.; Holbrook, N.J. Cellular Response to Oxidative Stress: Signaling for Suicide and Survival*. J. Cell. Physiol. 2002, 192, 1–15. [Google Scholar] [CrossRef]
- Taherkhani, M.; Mahjoub, S.; Moslemi, D.; Karkhah, A. Three Cycles of AC Chemotherapy Regimen Increased Oxidative Stress in Breast Cancer Patients: A Clinical Hint. Casp. J. Intern. Med. 2017, 8, 264–268. [Google Scholar] [CrossRef]
- Behrend, L.; Henderson, G.; Zwacka, R.M. Reactive Oxygen Species in Oncogenic Transformation. Biochem. Soc. Trans. 2003, 31, 1441–1444. [Google Scholar] [CrossRef]
- Yue, W.; Santen, R.J.; Wang, J.-P.; Li, Y.; Verderame, M.F.; Bocchinfuso, W.P.; Korach, K.S.; Devanesan, P.; Todorovic, R.; Rogan, E.G.; et al. Genotoxic Metabolites of Estradiol in Breast: Potential Mechanism of Estradiol Induced Carcinogenesis. J. Steroid Biochem. Mol. Biol. 2003, 86, 477–486. [Google Scholar] [CrossRef]
- Cavalieri, E.L.; Rogan, E.G. The Etiology and Prevention of Breast Cancer. Drug Discov. Today Dis. Mech. 2012, 9, e55–e69. [Google Scholar] [CrossRef] [PubMed]
- Okoh, V.; Deoraj, A.; Roy, D. Estrogen-Induced Reactive Oxygen Species-Mediated Signalings Contribute to Breast Cancer. Biochim. Biophys. Acta (BBA) Rev. Cancer 2011, 1815, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Raftogianis, R.; Creveling, C.; Weinshilboum, R.; Weisz, J. Chapter 6: Estrogen Metabolism by Conjugation. JNCI Monogr. 2000, 2000, 113–124. [Google Scholar] [CrossRef]
- Bocchinfuso, W.P.; Hively, W.P.; Couse, J.F.; Varmus, H.E.; Korach, K.S. A Mouse Mammary Tumor Virus-Wnt-1 Transgene Induces Mammary Gland Hyperplasia and Tumorigenesis in Mice Lacking Estrogen Receptor-Alpha. Cancer Res. 1999, 59, 1869–1876. [Google Scholar]
- Rogan, E.G. Relative Imbalances in Estrogen Metabolism and Conjugation in Breast Tissue of Women with Carcinoma: Potential Biomarkers of Susceptibility to Cancer. Carcinogenesis 2003, 24, 697–702. [Google Scholar] [CrossRef]
- Cavalieri, E.L.; Rogan, E.G. Unbalanced Metabolism of Endogenous Estrogens in the Etiology and Prevention of Human Cancer. J. Steroid Biochem. Mol. Biol. 2011, 125, 169–180. [Google Scholar] [CrossRef]
- Nyaga, S.G.; Lohani, A.; Jaruga, P.; Trzeciak, A.R.; Dizdaroglu, M.; Evans, M.K. Reduced Repair of 8-Hydroxyguanine in the Human Breast Cancer Cell Line, HCC1937. BMC Cancer 2006, 6, 297. [Google Scholar] [CrossRef]
- Mambo, E.; Nyaga, S.G.; Bohr, V.A.; Evans, M.K. Defective Repair of 8-Hydroxyguanine in Mitochondria of MCF-7 and MDA-MB-468 Human Breast Cancer Cell Lines. Cancer Res. 2002, 62, 1349–1355. [Google Scholar]
- Hu, J.; Nelson, O.; Takita, C.; Case, D.; Wright, J.L.; Lee, E.; Baez-Diaz, L.; Brown, D.R.; Strasser, J.; Enevold, G.; et al. Oxidative DNA Damage in Radiation Therapy Related Early Adverse Skin Reactions in Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, S108. [Google Scholar] [CrossRef]
- Lin, S.-Y.; Xia, W.; Wang, J.C.; Kwong, K.Y.; Spohn, B.; Wen, Y.; Pestell, R.G.; Hung, M.-C. β-Catenin, a Novel Prognostic Marker for Breast Cancer: Its Roles in Cyclin D1 Expression and Cancer Progression. Proc. Natl. Acad. Sci. USA 2000, 97, 4262–4266. [Google Scholar] [CrossRef]
- Geyer, F.C.; Lacroix-Triki, M.; Savage, K.; Arnedos, M.; Lambros, M.B.; MacKay, A.; Natrajan, R.; Reis-Filho, J.S. β-Catenin Pathway Activation in Breast Cancer Is Associated with Triple-Negative Phenotype but Not with CTNNB1 Mutation. Mod. Pathol. 2011, 24, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Prosperi, J.R.; Choudhury, N.; Olopade, O.I.; Goss, K.H. β-Catenin Is Required for the Tumorigenic Behavior of Triple-Negative Breast Cancer Cells. PLoS ONE 2015, 10, e0117097. [Google Scholar] [CrossRef]
- Li, S.; Li, S.; Sun, Y.; Li, L. The Expression of β-Catenin in Different Subtypes of Breast Cancer and Its Clinical Significance. Tumor Biol. 2014, 35, 7693–7698. [Google Scholar] [CrossRef]
- d Liu, C.-C.; Prior, J.; Piwnica-Worms, D.; Bu, G. LRP6 Overexpression Defines a Class of Breast Cancer Subtype and Is a Target for Therapy. Proc. Natl. Acad. Sci. USA 2010, 107, 5136–5141. [Google Scholar] [CrossRef]
- Yang, L.; Wu, X.; Wang, Y.; Zhang, K.; Wu, J.; Yuan, Y.-C.; Deng, X.; Chen, L.; Kim, C.C.H.; Lau, S.; et al. FZD7 Has a Critical Role in Cell Proliferation in Triple Negative Breast Cancer. Oncogene 2011, 30, 4437–4446. [Google Scholar] [CrossRef] [PubMed]
- Gunther, E.J.; Moody, S.E.; Belka, G.K.; Hahn, K.T.; Innocent, N.; Dugan, K.D.; Cardiff, R.D.; Chodosh, L.A. Impact of P53 Loss on Reversal and Recurrence of Conditional Wnt-Induced Tumorigenesis. Genes Dev. 2003, 17, 488–501. [Google Scholar] [CrossRef]
- Klauzinska, M.; Baljinnyam, B.; Raafat, A.; Rodriguez-Canales, J.; Strizzi, L.; Endo Greer, Y.; Rubin, J.S.; Callahan, R. Rspo2 / Int7 Regulates Invasiveness and Tumorigenic Properties of Mammary Epithelial Cells. J. Cell. Physiol. 2012, 227, 1960–1971. [Google Scholar] [CrossRef]
- Cleary, A.S.; Leonard, T.L.; Gestl, S.A.; Gunther, E.J. Tumour Cell Heterogeneity Maintained by Cooperating Subclones in Wnt-Driven Mammary Cancers. Nature 2014, 508, 113–117. [Google Scholar] [CrossRef]
- Kim, S.; Goel, S.; Alexander, C.M. Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept. PLoS ONE 2011, 6, e19310. [Google Scholar] [CrossRef]
- Kallioniemi, O.P.; Kallioniemi, A.; Kurisu, W.; Thor, A.; Chen, L.C.; Smith, H.S.; Waldman, F.M.; Pinkel, D.; Gray, J.W. ERBB2 Amplification in Breast Cancer Analyzed by Fluorescence in Situ Hybridization. Proc. Natl. Acad. Sci. USA 1992, 89, 5321–5325. [Google Scholar] [CrossRef]
- He, Q.; Wu, J.; Liu, X.L.; Ma, Y.H.; Wu, X.T.; Wang, W.Y.; An, H.X. Clinicopathological and prognostic significance of cyclin D1 amplification in patients with breast cancer: A meta-analysis. J. Buon 2017, 22, 1209–1216. [Google Scholar] [PubMed]
- Yang, Y.; Li, F.; Luo, X.; Jia, B.; Zhao, X.; Liu, B.; Gao, R.; Yang, L.; Wei, W.; He, J. Identification of LCN1 as a Potential Biomarker for Breast Cancer by Bioinformatic Analysis. DNA Cell Biol. 2019, 38, 1088–1099. [Google Scholar] [CrossRef]
- Park, K.; Han, S.; Kim, H.J.; Kim, J.; Shin, E. HER2 Status in Pure Ductal Carcinoma in Situ and in the Intraductal and Invasive Components of Invasive Ductal Carcinoma Determined by Fluorescence in Situ Hybridization and Immunohistochemistry. Histopathology 2006, 48, 702–707. [Google Scholar] [CrossRef]
- Gabos, Z.; Sinha, R.; Hanson, J.; Chauhan, N.; Hugh, J.; Mackey, J.R.; Abdulkarim, B. Prognostic Significance of Human Epidermal Growth Factor Receptor Positivity for the Development of Brain Metastasis After Newly Diagnosed Breast Cancer. J. Clin. Oncol. 2006, 24, 5658–5663. [Google Scholar] [CrossRef]
- Subramani, T.; Yeap, S.K.; Ho, W.Y.; Ho, C.L.; Omar, A.R.; Aziz, S.A.; Rahman, N.M.A.N.A.; Alitheen, N.B. Vitamin C Suppresses Cell Death in MCF -7 Human Breast Cancer Cells Induced by Tamoxifen. J Cell. Mol. Med. 2014, 18, 305–313. [Google Scholar] [CrossRef]
- Alexandre, J.; Batteux, F.; Nicco, C.; Chéreau, C.; Laurent, A.; Guillevin, L.; Weill, B.; Goldwasser, F. Accumulation of Hydrogen Peroxide Is an Early and Crucial Step for Paclitaxel-induced Cancer Cell Death Both in Vitro and in Vivo. Int. J. Cancer 2006, 119, 41–48. [Google Scholar] [CrossRef]
- Fukui, M.; Yamabe, N.; Zhu, B.T. Resveratrol Attenuates the Anticancer Efficacy of Paclitaxel in Human Breast Cancer Cells in Vitro and in Vivo. Eur. J. Cancer 2010, 46, 1882–1891. [Google Scholar] [CrossRef]
- Peralta, E.A.; Viegas, M.L.; Louis, S.; Engle, D.L.; Dunnington, G.L. Effect of Vitamin E on Tamoxifen-Treated Breast Cancer Cells. Surgery 2006, 140, 607–615. [Google Scholar] [CrossRef]
- Liu, R.H. Health-Promoting Components of Fruits and Vegetables in the Diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Liu, R.H. Potential Synergy of Phytochemicals in Cancer Prevention: Mechanism of Action. J. Nutr. 2004, 134, 3479S–3485S. [Google Scholar] [CrossRef]
- Misotti, A.M.; Gnagnarella, P. Vitamin Supplement Consumption and Breast Cancer Risk: A Review. Ecancermedicalscience 2013, 7, 365. [Google Scholar] [CrossRef] [PubMed]
- Pantavos, A.; Ruiter, R.; Feskens, E.F.; De Keyser, C.E.; Hofman, A.; Stricker, B.H.; Franco, O.H.; Kiefte-de Jong, J.C. Total Dietary Antioxidant Capacity, Individual Antioxidant Intake and Breast Cancer Risk: The R Otterdam Study. Int. J. Cancer 2015, 136, 2178–2186. [Google Scholar] [CrossRef]
- Kaufmann, S.H.; Earnshaw, W.C. Induction of Apoptosis by Cancer Chemotherapy. Exp. Cell Res. 2000, 256, 42–49. [Google Scholar] [CrossRef]
- Florea, A.-M.; Büsselberg, D. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers 2011, 3, 1351–1371. [Google Scholar] [CrossRef]
- Šimůnek, T.; Štěrba, M.; Popelová, O.; Adamcová, M.; Hrdina, R.; Geršl, V. Anthracycline-Induced Cardiotoxicity: Overview of Studies Examining the Roles of Oxidative Stress and Free Cellular Iron. Pharmacol. Rep. 2009, 61, 154–171. [Google Scholar] [CrossRef]
- Kotamraju, S.; Chitambar, C.R.; Kalivendi, S.V.; Joseph, J.; Kalyanaraman, B. Transferrin Receptor-Dependent Iron Uptake Is Responsible for Doxorubicin-Mediated Apoptosis in Endothelial Cells. J. Biol. Chem. 2002, 277, 17179–17187. [Google Scholar] [CrossRef]
- Miller, W.H.; Schipper, H.M.; Lee, J.S.; Singer, J.; Waxman, S. Mechanisms of Action of Arsenic Trioxide. Cancer Res. 2002, 62, 3893–3903. [Google Scholar]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-Negative Breast Cancer: Clinical Features and Patterns of Recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef]
- Rottenberg, S.; Jaspers, J.E.; Kersbergen, A.; Van Der Burg, E.; Nygren, A.O.H.; Zander, S.A.L.; Derksen, P.W.B.; De Bruin, M.; Zevenhoven, J.; Lau, A.; et al. High Sensitivity of BRCA1-Deficient Mammary Tumors to the PARP Inhibitor AZD2281 Alone and in Combination with Platinum Drugs. Proc. Natl. Acad. Sci. USA 2008, 105, 17079–17084. [Google Scholar] [CrossRef]
- Townsend, D.M.; He, L.; Hutchens, S.; Garrett, T.E.; Pazoles, C.J.; Tew, K.D. NOV-002, a Glutathione Disulfide Mimetic, as a Modulator of Cellular Redox Balance. Cancer Res. 2008, 68, 2870–2877. [Google Scholar] [CrossRef]
- Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for Breast Cancer Prevention and Therapy: Preclinical Evidence and Molecular Mechanisms. Semin. Cancer Biol. 2016, 40–41, 209–232. [Google Scholar] [CrossRef]
- Smolarek, A.K.; So, J.Y.; Burgess, B.; Kong, A.-N.T.; Reuhl, K.; Lin, Y.; Shih, W.J.; Li, G.; Lee, M.-J.; Chen, Y.-K.; et al. Dietary Administration of δ- and γ-Tocopherol Inhibits Tumorigenesis in the Animal Model of Estrogen Receptor–Positive, but Not HER-2 Breast Cancer. Cancer Prev. Res. 2012, 5, 1310–1320. [Google Scholar] [CrossRef]
- Bak Das Gupta, S.; Sae-tan, S.; Wahler, J.; So, J.Y.; Bak, M.J.; Cheng, L.C.; Lee, M.-J.; Lin, Y.; Shih, W.J.; Shull, J.D.; et al. Dietary γ-Tocopherol–Rich Mixture Inhibits Estrogen-Induced Mammary Tumorigenesis by Modulating Estrogen Metabolism, Antioxidant Response, and PPARγ. Cancer Prev. Res. 2015, 8, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, B.; Pan, M.-X.; Mo, X.-F.; Chen, Y.-M.; Zhang, C.-X. Specific Carotenoid Intake Is Inversely Associated with the Risk of Breast Cancer among Chinese Women. Br. J. Nutr. 2014, 111, 1686–1695. [Google Scholar] [CrossRef] [PubMed]
- Kabat, G.C.; Kim, M.; Adams-Campbell, L.L.; Caan, B.J.; Chlebowski, R.T.; Neuhouser, M.L.; Shikany, J.M.; Rohan, T.E. Longitudinal Study of Serum Carotenoid, Retinol, and Tocopherol Concentrations in Relation to Breast Cancer Risk among Postmenopausal Women. Am. J. Clin. Nutr. 2009, 90, 162–169. [Google Scholar] [CrossRef]
- Maillard, V.; Kuriki, K.; Lefebvre, B.; Boutron-Ruault, M.; Lenoir, G.M.; Joulin, V.; Clavel-Chapelon, F.; Chajès, V. Serum Carotenoid, Tocopherol and Retinol Concentrations and Breast Cancer Risk in the E3N-EPIC Study. Int. J. Cancer 2010, 127, 1188–1196. [Google Scholar] [CrossRef] [PubMed]
- Sartoratto, A.; Machado, A.L.M.; Delarmelina, C.; Figueira, G.M.; Duarte, M.C.T.; Rehder, V.L.G. Composition and Antimicrobial Activity of Essential Oils from Aromatic Plants Used in Brazil. Braz. J. Microbiol. 2004, 35, 275–280. [Google Scholar] [CrossRef]
- Jadhav, B.K.; Khandelwal, K.R.; Ketkar, A.R.; Pisal, S.S. Formulation and Evaluation of Mucoadhesive Tablets Containing Eugenol for the Treatment of Periodontal Diseases. Drug Dev. Ind. Pharm. 2004, 30, 195–203. [Google Scholar] [CrossRef]
- Sosa, V.; Abdullah, M.L.; Hafez, M.M.; Al-Hoshani, A.; Al-Shabanah, O. Anti-Metastatic and Anti-Proliferative Activity of Eugenol against Triple Negative and HER2 Positive Breast Cancer Cells. BMC Complement. Altern. Med. 2018, 18, 321. [Google Scholar] [CrossRef]
- Pisano, M.; Pagnan, G.; Loi, M.; Mura, M.E.; Tilocca, M.G.; Palmieri, G.; Fabbri, D.; Dettori, M.A.; Delogu, G.; Ponzoni, M.; et al. Antiproliferative and Pro-Apoptotic Activity of Eugenol-Related Biphenyls on Malignant Melanoma Cells. Mol. Cancer 2007, 6, 8. [Google Scholar] [CrossRef]
- Pandey, P.; Khan, F.; Qari, H.A.; Oves, M. Rutin (Bioflavonoid) as Cell Signaling Pathway Modulator: Prospects in Treatment and Chemoprevention. Pharmaceuticals 2021, 14, 1069. [Google Scholar] [CrossRef]
- Nouri, Z.; Fakhri, S.; Nouri, K.; Wallace, C.E.; Farzaei, M.H.; Bishayee, A. Targeting Multiple Signaling Pathways in Cancer: The Rutin Therapeutic Approach. Cancers 2020, 12, 2276. [Google Scholar] [CrossRef]
- Takahashi, M.; Ishiko, T.; Kamohara, H.; Hidaka, H.; Ikeda, O.; Ogawa, M.; Baba, H. Curcumin (1,7-Bis(4-Hydroxy-3-Methoxyphenyl)-1, 6-Heptadiene-3,5-Dione) Blocks the Chemotaxis of Neutrophils by Inhibiting Signal Transduction through IL-8 Receptors. Mediat. Inflamm. 2007, 2007, 010767. [Google Scholar] [CrossRef]
- Hu, S.; Xu, Y.; Meng, L.; Huang, L.; Sun, H. Curcumin Inhibits Proliferation and Promotes Apoptosis of Breast Cancer Cells. Exp. Ther. Med. 2018, 16, 1266–1272. [Google Scholar] [CrossRef]
- Bak, M.J.; Furmanski, P.; Shan, N.L.; Lee, H.J.; Bao, C.; Lin, Y.; Shih, W.J.; Yang, C.S.; Suh, N. Tocopherols Inhibit Estrogen-Induced Cancer Stemness and OCT4 Signaling in Breast Cancer. Carcinogenesis 2018, 39, 1045–1055. [Google Scholar] [CrossRef]
- Giani, M.; Montoyo-Pujol, Y.G.; Peiró, G.; Martínez-Espinosa, R.M. Haloarchaeal Carotenoids Exert an in Vitro Antiproliferative Effect on Human Breast Cancer Cell Lines. Sci. Rep. 2023, 13, 7148. [Google Scholar] [CrossRef]
- Abdullah, M.L.; Al-Shabanah, O.; Hassan, Z.K.; Hafez, M.M. Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Int. J. Mol. Sci. 2021, 22, 9243. [Google Scholar] [CrossRef] [PubMed]
- Ramos, E.; Egea, J.; López-Muñoz, F.; Gil-Martín, E.; Romero, A. Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review. Pharmaceutics 2023, 15, 1616. [Google Scholar] [CrossRef]
- Xiao, Q.; Zhu, W.; Feng, W.; Lee, S.S.; Leung, A.W.; Shen, J.; Gao, L.; Xu, C. A Review of Resveratrol as a Potent Chemoprotective and Synergistic Agent in Cancer Chemotherapy. Front. Pharmacol. 2019, 9, 1534. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H.; Ahmed Jum’AH, D.A.; Attallah, Z.S.; Jallad, M.S.; Al Kury, L.T.; Hadi, R.W.; Mahmod, A.I. Role of Vitamins A, C, D, E in Cancer Prevention and Therapy: Therapeutic Potentials and Mechanisms of Action. Front. Nutr. 2024, 10, 1281879. [Google Scholar] [CrossRef] [PubMed]
- Griñan-Lison, C.; Blaya-Cánovas, J.L.; López-Tejada, A.; Ávalos-Moreno, M.; Navarro-Ocón, A.; Cara, F.E.; González-González, A.; Lorente, J.A.; Marchal, J.A.; Granados-Principal, S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants 2021, 10, 205. [Google Scholar] [CrossRef]
- Khallouki, F.; Hajji, L.; Saber, S.; Bouddine, T.; Edderkaoui, M.; Bourhia, M.; Mir, N.; Lim, A.; El Midaoui, A.; Giesy, J.P.; et al. An Update on Tamoxifen and the Chemo-Preventive Potential of Vitamin E in Breast Cancer Management. J. Pers. Med. 2023, 13, 754. [Google Scholar] [CrossRef]
- Thomson, C.A.; Stendell-Hollis, N.R.; Rock, C.L.; Cussler, E.C.; Flatt, S.W.; Pierce, J.P. Plasma and Dietary Carotenoids Are Associated with Reduced Oxidative Stress in Women Previously Treated for Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2008–2015. [Google Scholar] [CrossRef]
- Zhu, W.; Jia, L.; Chen, G.; Zhao, H.; Sun, X.; Meng, X.; Zhao, X.; Xing, L.; Yu, J.; Zheng, M. Epigallocatechin-3-Gallate Ameliorates Radiation-Induced Acute Skin Damage in Breast Cancer Patients Undergoing Adjuvant Radiotherapy. Oncotarget 2016, 7, 48607–48613. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Zheng, L.-W.; Ding, Y.; Chen, Y.-F.; Cai, Y.-W.; Wang, L.-P.; Huang, L.; Liu, C.-C.; Shao, Z.-M.; Yu, K.-D. Breast Cancer: Pathogenesis and Treatments. Sig. Transduct. Target. Ther. 2025, 10, 49. [Google Scholar] [CrossRef] [PubMed]
- Saghatelyan, T.; Tananyan, A.; Janoyan, N.; Tadevosyan, A.; Petrosyan, H.; Hovhannisyan, A.; Hayrapetyan, L.; Arustamyan, M.; Arnhold, J.; Rotmann, A.-R.; et al. Efficacy and Safety of Curcumin in Combination with Paclitaxel in Patients with Advanced, Metastatic Breast Cancer: A Comparative, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Phytomedicine 2020, 70, 153218. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, F.; Tröger, W. Complementary Treatment with Mistletoe Extracts During Chemotherapy: Safety, Neutropenia, Fever, and Quality of Life Assessed in a Randomized Study. J. Altern. Complement. Med. 2018, 24, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Sanaati, F.; Najafi, S.; Kashaninia, Z.; Sadeghi, M. Effect of Ginger and Chamomile on Nausea and Vomiting Caused by Chemotherapy in Iranian Women with Breast Cancer. Asian Pac. J. Cancer Prev. 2016, 17, 4125–4129. [Google Scholar]
- Kryston, T.B.; Georgiev, A.B.; Pissis, P.; Georgakilas, A.G. Role of Oxidative Stress and DNA Damage in Human Carcinogenesis. Mutat. Res. Fundam. Mol. Mech. Mutagen. 2011, 711, 193–201. [Google Scholar] [CrossRef]
- Saintot, M.; Mathieu-Daude, H.; Astre, C.; Grenier, J.; Simony-Lafontaine, J.; Gerber, M. Oxidant-antioxidant Status in Relation to Survival among Breast Cancer Patients. Int. J. Cancer 2002, 97, 574–579. [Google Scholar] [CrossRef]
- Watters, J.L.; Satia, J.A.; Kupper, L.L. Correlates of Antioxidant Nutrients and Oxidative DNA Damage Differ by Race in a Cross-Sectional Study of Healthy African American and White Adults. Nutr. Res. 2008, 28, 565–576. [Google Scholar] [CrossRef]
Drug Name | Type of Cancer | Mechanism |
---|---|---|
Doxorubicin | Breast cancer, sarcoma | Fenton’s reaction, electron leakage [94] |
Arsenic trioxide | Lung cancer | Electron leakage [95] |
5-florouracil | Colon cancer | P53-dependent ROS [96] |
Platinum drugs (synergistically used with PARP inhibitors) | Breast cancer | ROS-dependent DNA damage [97] |
NOV-002 | HER-2 negative breast cancer | GSSG Mimetic [98] |
Phytochemical | Type of Cancer Cells | Dose | Results |
---|---|---|---|
Resveratrol | MDA-231 | 12.5–50 μM | Cisplatin treatment when combined with resveratrol shows an inhibition in the viability of MDA231 cells [112] |
Tocopherols | MCF-7 | 1 μM | Inhibited the estrogen-induced expansion of the breast cancer stem population [113] |
Carotenoids | MDA-MB-231 | IC50 51.8 µg/mL | Significant impairment of cell adhesion [114] |
Eugenol | SK-BR-3 | 5–20 μM | Anti-proliferative and anti-apoptotic effect [115] |
Rutin | MDA-MB-231 | 200–400 μM | Causes invasion and migration of cancer cells [110] |
Curcumin | T47D | IC50 2.07 μM | G2/M cell cycle arrest [112] |
Phytochemical | Year of Study | Mechanism |
---|---|---|
EGCG | 2016 | EGCG along with standard drugs exhibited significant reduction in pain, itching, and burning feeling [122] |
Silymarin | 2025 | Helps in reducing severity of radiotherapy [123] |
Curcumin (with Paclitaxel) | 2020 | Synergistic use proved to be more effective than paclitaxel-placebo group [124] |
Mistletoe extract | 2020 | Improved pain management and reduced appetite loss in patients undergoing surgery and chemotherapy [125] |
Ginger | 2016 | Effective in relieving chemotherapy-induced nausea and vomiting [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubey, A.; Sharma, B. Targeting Oxidative Stress Biomarkers in Breast Cancer Development and the Potential Protective Effect of Phytochemicals. Drugs Drug Candidates 2025, 4, 23. https://doi.org/10.3390/ddc4020023
Dubey A, Sharma B. Targeting Oxidative Stress Biomarkers in Breast Cancer Development and the Potential Protective Effect of Phytochemicals. Drugs and Drug Candidates. 2025; 4(2):23. https://doi.org/10.3390/ddc4020023
Chicago/Turabian StyleDubey, Anchal, and Bechan Sharma. 2025. "Targeting Oxidative Stress Biomarkers in Breast Cancer Development and the Potential Protective Effect of Phytochemicals" Drugs and Drug Candidates 4, no. 2: 23. https://doi.org/10.3390/ddc4020023
APA StyleDubey, A., & Sharma, B. (2025). Targeting Oxidative Stress Biomarkers in Breast Cancer Development and the Potential Protective Effect of Phytochemicals. Drugs and Drug Candidates, 4(2), 23. https://doi.org/10.3390/ddc4020023