Plant-Derived Natural Products: A Source for Drug Discovery and Development
Abstract
:1. Introduction
2. Methodology
3. Historical Significance
3.1. Ancient Egyptian Healing Practices (Circa 1500 BCE)
3.2. Chinese Herbal Medicine (Ancient Times)
3.3. Plant-Derived Products in the Traditional Pharmacopeias
3.4. Quinine: A Malaria Breakthrough from Cinchona (17th Century)
3.5. Aspirin: A Gift from the Willow Tree (19th Century)
4. Importance of Plant-Derived Natural Products in Drug Discovery
4.1. Chemical Diversity
4.2. Evolutionary Adaptations
4.3. Traditional Knowledge
5. Methods for Discovery
5.1. Plant Collection
5.2. Extraction
5.3. Isolation and Purification
5.4. Bioassays
5.5. Structural Characterization
5.6. Lead Optimization
6. Biodiversity of Medicinal Plants
7. Diversity of Plant-Derived Compounds
8. The Place of Plants in the Traditional Pharmacopeia
9. The Role of Plants in Modern Medicine
10. Modern Approaches in the Field of Drug Discovery
11. Future Prospects
12. Challenges and Limitations
13. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Okigbo, R.N.; Anuagasi, C.L.; Amadi, J.E. Advances in selected medicinal and aromatic plants indigenous to Africa. J. Med. Plants Res. 2009, 3, 86–95. [Google Scholar]
- Chaachouay, N.; Azeroual, A.; Ansari, M.K.A.; Zidane, L. Use of Plants as Medicines and Aromatics by Indigenous Communities of Morocco: Pharmacognosy, Ecology and Conservation. In Plants as Medicine and Aromatics; CRC Press: Boca Raton, FL, USA, 2023; pp. 33–44. [Google Scholar]
- Ansari, M.K.A.; Iqbal, M.; Chaachouay, N.; Ansari, A.A.; Owens, G. The Concept and Status of Medicinal and Aromatic Plants: History, Pharmacognosy, Ecology, and Conservation. In Plants as Medicine and Aromatics; CRC Press: Boca Raton, FL, USA, 2023; pp. 129–144. [Google Scholar]
- Chaachouay, N.; Douira, A.; Hassikou, R.; Brhadda, N.; Dahmani, J.; Belahbib, N.; Ziri, R.; Zidane, L. Etude Floristique et Ethnomédicinale des Plantes Aromatiques et Médicinales dans le Rif (Nord du Maroc). Ph.D. Thesis, Université Ibn Tofail, Kénitra, Morocco, 2020. Available online: https://tel.archives-ouvertes.fr/tel-03376377 (accessed on 18 October 2021).
- Orch, H.; Chaachouay, N.; Douiri, E.M.; Faiz, N.; Zidane, L.; Douira, A. Use of medicinal plants in dermato-cosmetology: An ethnobotanical study among the population of Izarène. Jordan J. Pharm. Sci. 2021, 14, 323–340. [Google Scholar]
- Benkhnigue, O.; Chaachouay, N.; Khamar, H.; El Azzouzi, F.; Douira, A.; Zidane, L. Ethnobotanical and ethnopharmacological study of medicinal plants used in the treatment of anemia in the region of Haouz-Rehamna (Morocco). J. Pharm. Pharmacogn. Res. 2022, 10, 279–302. [Google Scholar] [CrossRef]
- Avery, L.M.; Hains, B.J. Oral traditions: A contextual framework for complex science concepts—Laying the foundation for a paradigm of promise in rural science education. Cult. Stud. Sci. Educ. 2017, 12, 129–166. [Google Scholar] [CrossRef]
- d’Avigdor, E.; Wohlmuth, H.; Asfaw, Z.; Awas, T. The current status of knowledge of herbal medicine and medicinal plants in Fiche, Ethiopia. J. Ethnobiol. Ethnomed. 2014, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci. 2005, 78, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Ma, J.K.-C. Plant-made pharmaceuticals: Leading products and production platforms. Biotechnol. Appl. Biochem. 2011, 58, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Brook, K.; Bennett, J.; Desai, S.P. The chemical history of morphine: An 8000-year journey, from resin to de-novo synthesis. J. Anesth. Hist. 2017, 3, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Ma, Q.; Ye, L.; Piao, G. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.-M.; Goh, N.-K.; Chia, L.-S.; Chia, T.-F. Recent advances in traditional plant drugs and orchids. Acta Pharmacol. Sin. 2003, 24, 7–21. [Google Scholar]
- Ernest, T.B.; Elder, D.P.; Martini, L.G.; Roberts, M.; Ford, J.L. Developing paediatric medicines: Identifying the needs and recognizing the challenges. J. Pharm. Pharmacol. 2010, 59, 1043–1055. [Google Scholar] [CrossRef]
- Katiyar, C.; Gupta, A.; Kanjilal, S.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu 2012, 33, 10. [Google Scholar] [CrossRef]
- Shakya, A.K. Medicinal plants: Future source of new drugs. Int. J. Herb. Med. 2016, 4, 59–64. [Google Scholar]
- Rates, S.M.K. Plants as source of drugs. Toxicon 2001, 39, 603–613. [Google Scholar] [CrossRef]
- Jia, W.; Gao, W.; Yan, Y.; Wang, J.; Xu, Z.; Zheng, W.; Xiao, P. The rediscovery of ancient Chinese herbal formulas. Phytother. Res. 2004, 18, 681–686. [Google Scholar] [CrossRef]
- Salim, A.A.; Chin, Y.-W.; Kinghorn, A.D. Drug discovery from plants. In Bioactive Molecules and Medicinal Plants; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–24. [Google Scholar]
- Chin, Y.-W.; Balunas, M.J.; Chai, H.B.; Kinghorn, A.D. Drug discovery from natural sources. AAPS J. 2006, 8, E239–E253. [Google Scholar] [CrossRef] [PubMed]
- Mohr, C. Plant Made Pharmaceuticals (PMPs) as Medicinal Products for Human Use—A Review of Current Regulatory Issues and Challenges to Achieve a Marketing Authorisation in the EU. 2015. Available online: https://www.dgra.de/media/pdf/studium/masterthesis/master_mohr_c.pdf (accessed on 5 November 2015).
- Subramoniam, A. Present scenario, challenges and future perspectives in plant based medicine development. Ann. Phytomed 2014, 3, 31–36. [Google Scholar]
- Veeresham, C. Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 2012, 3, 200. [Google Scholar] [CrossRef]
- Reis, H.T. Relationship experiences and emotional well-being. In Emotion, Social Relationships, and Health; Oxford University Press: New York, NY, USA, 2001; pp. 57–86. [Google Scholar]
- Aboelsoud, N.H. Herbal medicine in ancient Egypt. J. Med. Plants Res. 2010, 4, 82–86. [Google Scholar]
- Sam, S. Importance and effectiveness of herbal medicines. J. Pharmacogn. Phytochem. 2019, 8, 354–357. [Google Scholar]
- Yaniv, Z. Introduction: Medicinal Plants in Ancient Traditions. In Medicinal and Aromatic Plants of the Middle-East; Yaniv, Z., Dudai, N., Eds.; Medicinal and Aromatic Plants of the World; Springer: Dordrecht, The Netherlands, 2014; Volume 2, pp. 1–7. [Google Scholar] [CrossRef]
- Sendker, J.; Sheridan, H. History and Current Status of Herbal Medicines. In Toxicology of Herbal Products; Pelkonen, O., Duez, P., Vuorela, P.M., Vuorela, H., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 11–277. [Google Scholar] [CrossRef]
- Msomi, N.Z.; Simelane, M.B. Herbal Medicine. In Herbal Medicine; IntechOpen: London, UK, 2018. [Google Scholar]
- Forshaw, R. Before Hippocrates. Healing practices in ancient Egypt. In Medicine, Healing and Performance; Oxbow Books: Oxford, UK, 2014; pp. 25–41. [Google Scholar]
- David, R.; Forshaw, R. Medicine and Healing Practices in Ancient Egypt; Liverpool University Press: Liverpool, UK, 2023; Available online: https://books.google.com/books?hl=fr&lr=&id=gbjYEAAAQBAJ&oi=fnd&pg=PR1&dq=Ancient+Egyptian+Healing+Practices+&ots=TEZbQd8Fk6&sig=ZoI0NRKi_KCTGMEx3RuKtHF1Svw (accessed on 8 November 2023).
- Xiao, L.-J.; Tao, R. Traditional Chinese Medicine (TCM) Therapy. In Substance and Non-substance Addiction; Zhang, X., Shi, J., Tao, R., Eds.; Advances in Experimental Medicine and Biology; Springer: Singapore, 2017; Volume 1010, pp. 261–280. [Google Scholar] [CrossRef]
- Tang, J.-L.; Liu, B.-Y.; Ma, K.-W. Traditional chinese medicine. Lancet 2008, 372, 1938–1940. [Google Scholar] [CrossRef]
- Fan, T.-P.; Deal, G.; Koo, H.-L.; Rees, D.; Sun, H.; Chen, S.; Dou, J.-H.; Makarov, V.G.; Pozharitskaya, O.N.; Shikov, A.N. Future development of global regulations of Chinese herbal products. J. Ethnopharmacol. 2012, 140, 568–586. [Google Scholar] [CrossRef]
- He, S. Chinese herbal dose in ancient and modern times: A comparative study. J. Tradit. Chin. Med. 2013, 33, 268–271. [Google Scholar] [CrossRef]
- Thirumurugan, D.; Cholarajan, A.; Raja, S.S.; Vijayakumar, R. An introductory chapter: Secondary metabolites. In Secondary Metabolites-Sources and Applications; IntechOpen: London, UK, 2018; pp. 3–21. [Google Scholar]
- Pagare, S.; Bhatia, M.; Tripathi, N.; Pagare, S.; Bansal, Y.K. Secondary metabolites of plants and their role: Overview. Curr. Trends Biotechnol. Pharm. 2015, 9, 293–304. [Google Scholar]
- Chaachouay, N.; Zidane, L. Atractylis gummifera (Stemless Atractylis). In Exploring Poisonous Plants; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Alamgir, A.N.M. Therapeutic Use of Medicinal Plants and Their Extracts: Volume 2: Phytochemistry and Bioactive Compounds; Progress in Drug Research; Springer International Publishing: Cham, Switzerland, 2018; Volume 74. [Google Scholar] [CrossRef]
- Ravina, E. The Evolution of Drug Discovery: From Traditional Medicines to Modern Drugs; John Wiley & Sons: Weinheim, Germany, 2011; Available online: https://books.google.com/books?hl=fr&lr=&id=iDNy0XxGqT8C&oi=fnd&pg=PR5&dq=Traditional+medicine+has+employed+these+compounds+for+their+respective+analgesic,+antimalarial,+and+stimulant+properties+for+centuries.+&ots=7ZdAOAZmJD&sig=vKX20dBhWq7HLQ2_LZLhsopY9kw (accessed on 18 December 2023).
- Gurib-Fakim, A. Medicinal plants: Traditions of yesterday and drugs of tomorrow. Mol. Asp. Med. 2006, 27, 1–93. [Google Scholar] [CrossRef]
- Chaachouay, N.; Azeroual, A.; Zidane, L. Taxonomy, Ethnobotany, Phytochemistry and Biological Activities of Thymus Saturejoides: A Review. Acta Bot. Hung. 2023, 65, 35–51. [Google Scholar] [CrossRef]
- Kennedy, D.O. Plants and the Human Brain; Oxford University Press: New York, NY, USA, 2014; Available online: https://books.google.com/books?hl=fr&lr=&id=YUNDAgAAQBAJ&oi=fnd&pg=PP1&dq=Traditional+pharmacopeias,+which+are+based+on+the+wisdom+and+methods+of+native+so-cieties,+often+depend+on+plant-based+substances+that+are+abundant+in+secondary+metabo-lites&ots=xRQhouo-16&sig=cuPTJumpfJxEF9xCxwP_RpmrO9k (accessed on 18 December 2023).
- Ahmed, M.N.; Azam, K.; Nur, M. Traditional knowledge and formulations of medicinal plants used by the traditional medical practitioners of Bangladesh to treat schizophrenia like psychosis. Schizophr. Res. Treat. 2014, 2014, 679810. Available online: https://www.hindawi.com/journals/SCHIZORT/2014/679810/ (accessed on 18 December 2023). [CrossRef] [PubMed]
- Chaachouay, N.; Azeroual, A.; Zidane, L. Ethnobotany, Ethnopharmacology, and Traditional Uses of Medicinal and Aromatic Plants. In Ethnobotany and Ethnopharmacology of Medicinal and Aromatic Plants; CRC Press: Boca Raton, FL, USA, 2023; ISBN 978-1-00-328421-5. [Google Scholar]
- Alamgir, A.N.M. Medicinal, Non-medicinal, Biopesticides, Color- and Dye-Yielding Plants; Secondary Metabolites and Drug Principles; Significance of Medicinal Plants; Use of Medicinal Plants in the Systems of Traditional and Complementary and Alternative Medicines (CAMs). In Therapeutic Use of Medicinal Plants and Their Extracts: Volume 1; Progress in Drug Research; Springer International Publishing: Cham, Switzerland, 2017; Volume 73, pp. 61–104. [Google Scholar] [CrossRef]
- Packard, R.M. The Making of a Tropical Disease: A Short History of Malaria; JHU Press: Baltimore, MD, USA, 2021; Available online: https://books.google.com/books?hl=fr&lr=&id=k_03EAAAQBAJ&oi=fnd&pg=PP1&dq=For+centuries+malaria+an+extremely+lethal+illness+induced+by+the+Plasmodium+parasite+has+afflicted+the+human+race&ots=PjOBMgfnZh&sig=GVvR89sv61IHanq3S4VicY-xcOg (accessed on 18 November 2023).
- Capasso, F. Phytotherapy: A Quick Reference to Herbal Medicine; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003; Available online: https://books.google.com/books?hl=fr&lr=&id=ejHpcJXzPTsC&oi=fnd&pg=PA1&dq=Quinine,+the+bioactive+compound+found+in+cinchona+bark,+was+recognized+as+an+excep-tionally+productive+malaria+remedy+during+the+17th+Century.&ots=sVmlho_9ck&sig=sGViyT8EOAH7R_3P-JNWigvs_CU (accessed on 18 November 2023).
- Dagen, M. History of malaria and its treatment. In Antimalarial Agents; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–48. Available online: https://www.sciencedirect.com/science/article/pii/B9780081012109000019 (accessed on 18 November 2023).
- Rogers, K. Out of Nature: Why Drugs from Plants Matter to the Future of Humanity; University of Arizona Press: Tucson, AZ, USA, 2012; Available online: https://books.google.com/books?hl=fr&lr=&id=HTbUdjdUBy8C&oi=fnd&pg=PR5&dq=The+historical+importance+of+plant-based+medicine+demonstrates+the+lasting+wisdom+of+ancient+civilizations+in+acknowledging+the+therapeutic+capabilities+of+the+natural+envi-ronment.+&ots=4see7IGWZI&sig=fEbOwy8tC0qI6ItW0U9hdq3qUiU (accessed on 18 November 2023).
- David, B.; Wolfender, J.-L.; Dias, D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015, 14, 299–315. [Google Scholar] [CrossRef]
- Ugurlucan, M.; M Caglar, I.; N Turhan Caglar, F.; Ziyade, S.; Karatepe, O.; Yildiz, Y.; Zencirci, E.; Gungor Ugurlucan, F.; H Arslan, A.; Korkmaz, S. Aspirin: From a historical perspective. Recent Pat. Cardiovasc. Drug Discov. Discontin. 2012, 7, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Levesque, H.; Lafont, O. Aspirin throughout the ages: A historical review. Rev. Med. Interne 2000, 21, 8s–17s. [Google Scholar] [PubMed]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Balandrin, M.F.; Kinghorn, A.D.; Farnsworth, N.R. Plant-Derived Natural Products in Drug Discovery and Development: An Overview; American Chemical Society: Washington, DC, USA, 1993. [Google Scholar]
- Bahar, M.; Deng, Y.; Fletcher, J.N.; Kinghorn, A.D. Plant-derived natural products in drug discovery and development: Anoverview. In Selected Topics in the Chemistry of Natural Products; World Scientific: Singapore, 2007; p. 11. [Google Scholar]
- Newman, D.J.; Cragg, G.M.; Snader, K.M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 2000, 17, 215–234. [Google Scholar] [CrossRef] [PubMed]
- Bohlin, L.; Bruhn, J.G. Bioassay Methods in Natural Product Research and Drug Development; Springer Science & Business Media: Dordrecht, The Netherlands, 1999; Volume 43. [Google Scholar]
- Boakye, Y.D.; Osafo, N.; Danquah, C.A.; Adu, F.; Agyare, C. Antimicrobial agents: Antibacterial agents, anti-biofilm agents, antibacterial natural compounds, and antibacterial chemicals. Antimicrob. Antibiot. Resist. Antibiofilm Strateg. Act. Methods 2019, 13, 75. [Google Scholar]
- Jones, W.P.; Chin, Y.-W.; Kinghorn, A.D. The role of pharmacognosy in modern medicine and pharmacy. Curr. Drug Targets 2006, 7, 247–264. [Google Scholar] [CrossRef]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Cordell, G.A.; Farnsworth, N.R.; Beecher, C.W.; Soejarto, D.D.; Kinghorn, A.D.; Pezzuto, J.M.; Wall, M.E.; Wani, M.C.; Brown, D.M.; O’Neill, M.J. Novel Strategies for the Discovery of Plant-Derived Anticancer Agents; ACS Publications: Washington, DC, USA, 1993. [Google Scholar]
- Kinghorn, A.; Farnsworth, N.; Soejarto, D.; Cordell, G.; Swanson, S.; Pezzuto, J.; Wani, M.; Wall, M.; Oberlies, N.; Kroll, D. Novel strategies for the discovery of plant-derived anticancer agents. Pharm. Biol. 2003, 41, 53–67. [Google Scholar] [CrossRef]
- Brkljača, R.; Urban, S. Recent advancements in HPLC-NMR and applications for natural product profiling and identification. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1063–1076. [Google Scholar] [CrossRef]
- Gullo, V.P.; Hughes, D.E. Exploiting new approaches for natural product drug discovery in the biotechnology industry. Drug Discov. Today Technol. 2005, 2, 281–286. [Google Scholar] [CrossRef]
- Li, K.; Chung-Davidson, Y.-W.; Bussy, U.; Li, W. Recent advances and applications of experimental technologies in marine natural product research. Mar. Drugs 2015, 13, 2694–2713. [Google Scholar] [CrossRef]
- Lautie, E.; Russo, O.; Ducrot, P.; Boutin, J.A. Unraveling plant natural chemical diversity for drug discovery purposes. Front. Pharmacol. 2020, 11, 397. [Google Scholar] [CrossRef]
- Jeschke, P. The Unique Role of Fluorine in the Design of Active Ingredients for Modern Crop Protection. ChemBioChem 2004, 5, 570–589. [Google Scholar] [CrossRef] [PubMed]
- Schenone, M.; Dančík, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013, 9, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement. Transl. Res. Clin. Interv. 2017, 3, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Sze, D.M.; Miller, K.; Neilan, B. Development of taxol and other endophyte produced anti-cancer agents. Recent Pat. Anticancer Drug Discov. 2008, 3, 14–19. [Google Scholar] [CrossRef]
- Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat. Rev. Drug Discov. 2007, 6, 881–890. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Zhou, S.-F.; Gao, S.-H.; Yu, Z.-L.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ma, D.-L.; Han, Y.-F.; Fong, W.-F. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid.-Based Complement. Alternat. Med. 2013, 2013, 627375. [Google Scholar] [CrossRef]
- Buhner, S.H. The Secret Teachings of Plants: The Intelligence of the Heart in the Direct Perception of Nature; Inner Traditions/Bear & Co.: Rochester, VT, USA, 2004; Available online: https://books.google.com/books?hl=fr&lr=&id=GgRGF_uDp9AC&oi=fnd&pg=PP1&dq=Indigenous+and+traditional+systems+of+medicine+have+amassed+a+vast+amount+of+infor-mation+about+the+medicinal+qualities+of+plants+over+several+generations.+&ots=8-6OGOnw4r&sig=AEKSaerOcKYWhnhep-SMHInx7lc (accessed on 7 November 2023).
- Grynkiewicz, G.; Gadzikowska, M. Tropane alkaloids as medicinally useful natural products and their synthetic derivatives as new drugs. Pharmacol. Rep. 2008, 60, 439. [Google Scholar]
- Van Agtmael, M.A.; Eggelte, T.A.; Van Boxtel, C.J. Artemisinin drugs in the treatment of malaria: From medicinal herb to registered medication. Trends Pharmacol. Sci. 1999, 20, 199–205. [Google Scholar] [CrossRef]
- World Health Organization. WHO Traditional Medicine Strategy: 2014-2023; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic acid biosynthesis in plants. Front. Plant Sci. 2020, 11, 338. [Google Scholar] [CrossRef]
- Patole, J.; Shingnapurkar, D.; Padhye, S.; Ratledge, C. Schiff base conjugates of p-aminosalicylic acid as antimycobacterial agents. Bioorg. Med. Chem. Lett. 2006, 16, 1514–1517. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, J.; Cai, Z.; Feng, Y.; Wang, Y.; Zhang, D.; Pan, X. Detection of engineered nanoparticles in aquatic environments: Current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 2019, 6, 709–735. [Google Scholar] [CrossRef]
- Coley, P.D.; Heller, M.V.; Aizprua, R.; Araúz, B.; Flores, N.; Correa, M.; Gupta, M.; Solis, P.N.; Ortega-Barría, E.; Romero, L.I.; et al. Using ecological criteria to design plant collection strategies for drug discovery. Front. Ecol. Environ. 2003, 1, 421–428. [Google Scholar] [CrossRef]
- Maden, K. Plant collection and herbarium techniques. Our Nat. 2004, 2, 53–57. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef] [PubMed]
- Jones, W.P.; Kinghorn, A.D. Extraction of Plant Secondary Metabolites. In Natural Products Isolation; Sarker, S.D., Nahar, L., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2012; Volume 864, pp. 341–366. [Google Scholar] [CrossRef]
- Vinci, G.; Maddaloni, L.; Prencipe, S.A.; Orlandini, E.; Sambucci, M. Simple and reliable eco-extraction of bioactive compounds from dark chocolate by Deep Eutectic Solvents. A sustainable study. Int. J. Food Sci. Technol. 2023, 58, 4051–4065. [Google Scholar] [CrossRef]
- Machado, B.A.S.; Pereira, C.G.; Nunes, S.B.; Padilha, F.F.; Umsza-Guez, M.A. Supercritical Fluid Extraction Using CO2: Main Applications and Future Perspectives. Sep. Sci. Technol. 2013, 48, 2741–2760. [Google Scholar] [CrossRef]
- Sapkale, G.N.; Patil, S.M.; Surwase, U.S.; Bhatbhage, P.K. Supercritical fluid extraction. Int. J. Chem. Sci. 2010, 8, 729–743. [Google Scholar]
- Beaufils, N.; Boucher, J.; Peydecastaing, J.; Rigal, L.; Vilarem, G.; Villette, M.-J.; Candy, L.; Pontalier, P.-Y. The effect of time and temperature on the extraction of xylose and total phenolic compounds with pressurized hot water from hardwood species used for pulp and paper production in the South of France. Bioresour. Technol. Rep. 2021, 16, 100832. [Google Scholar] [CrossRef]
- Calvo-Flores, F.G.; Monteagudo-Arrebola, M.J.; Dobado, J.A.; Isac-García, J. Green and Bio-Based Solvents. Top. Curr. Chem. 2018, 376, 18. [Google Scholar] [CrossRef]
- Popoola, L.T. Progress on pharmaceutical drugs, plant extracts and ionic liquids as corrosion inhibitors. Heliyon 2019, 5, e01143. Available online: https://www.cell.com/heliyon/pdf/S2405-8440(18)33426-1.pdf (accessed on 18 December 2023). [CrossRef]
- Usmani, Z.; Sharma, M.; Tripathi, M.; Lukk, T.; Karpichev, Y.; Gathergood, N.; Singh, B.N.; Thakur, V.K.; Tabatabaei, M.; Gupta, V.K. Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications. Sci. Total Environ. 2023, 881, 163002. [Google Scholar] [CrossRef] [PubMed]
- Ghamartale, A.; Afzali, S.; Rezaei, N.; Zendehboudi, S. Asphaltene Deposition Control by Chemical Inhibitors: Theoretical and Practical Prospects; Gulf Professional Publishing: Cambridge, MA, USA, 2021. [Google Scholar]
- Bochkov, D.V.; Sysolyatin, S.V.; Kalashnikov, A.I.; Surmacheva, I.A. Shikimic acid: Review of its analytical, isolation, and purification techniques from plant and microbial sources. J. Chem. Biol. 2012, 5, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, V.K.; Majumder, R.; Park, J.G. Isolation and purification of plant secondary metabolites using column-chromatographic technique. Bangladesh J. Pharmacol. 2016, 11, 844–848. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, S.; Cai, Q.; Jin, H. Effective methods for isolation and purification of extracellular vesicles from plants. J. Integr. Plant Biol. 2021, 63, 2020–2030. [Google Scholar] [CrossRef] [PubMed]
- Araújo, A.S.F.; Monteiro, R.T.R. Plant bioassays to assess toxicity of textile sludge compost. Sci. Agric. 2005, 62, 286–290. [Google Scholar] [CrossRef]
- Grant, W.F. The present status of higher plant bioassays for the detection of environmental mutagens. Mutat. Res. Mol. Mech. Mutagen. 1994, 310, 175–185. [Google Scholar] [CrossRef]
- Hu, W.; Yu, A.; Wang, S.; Bai, Q.; Tang, H.; Yang, B.; Wang, M.; Kuang, H. Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review. Molecules 2023, 28, 3855. [Google Scholar] [CrossRef]
- Frederick, S.E.; Newcomb, E.H.; Vigil, E.L.; Wergin, W.P. Fine-structural characterization of plant microbodies. Planta 1968, 81, 229–252. [Google Scholar] [CrossRef]
- Jin, H.; Geng, Y.; Yu, Z.; Tao, K.; Hou, T. Lead optimization and anti-plant pathogenic fungi activities of daphneolone analogues from Stellera chamaejasme L. Pestic. Biochem. Physiol. 2009, 93, 133–137. [Google Scholar] [CrossRef]
- Bregman, H.; Simard, J.R.; Andrews, K.L.; Ayube, S.; Chen, H.; Gunaydin, H.; Guzman-Perez, A.; Hu, J.; Huang, L.; Huang, X.; et al. The Discovery and Hit-to-Lead Optimization of Tricyclic Sulfonamides as Potent and Efficacious Potentiators of Glycine Receptors. J. Med. Chem. 2017, 60, 1105–1125. [Google Scholar] [CrossRef] [PubMed]
- Kayser, O. Medicinal Plant Biotechnology; Wiley-Vch Verlag GmbH & Co.: Weinheim, Germany, 2007; Available online: https://ds.amu.edu.et/xmlui/bitstream/handle/123456789/10990/%5Bed._by_Jorg_Knablein%5D_Medicinal_Plant_Biotechnolo.pdf?sequence=1&isAllowed=y (accessed on 7 November 2023).
- Puzari, U.; Fernandes, P.A.; Mukherjee, A.K. Pharmacological re-assessment of traditional medicinal plants-derived inhibitors as antidotes against snakebite envenoming: A critical review. J. Ethnopharmacol. 2022, 292, 115208. [Google Scholar] [CrossRef]
- DeLong, D.C., Jr. Defining biodiversity. Wildl. Soc. Bull. 1996, 24, 738–749. [Google Scholar]
- Kaennel, M. Biodiversity: A diversity in definition. In Assessment of Biodiversity for Improved Forest Planning; Springer: Dordrecht, The Netherlands, 1998; pp. 71–81. [Google Scholar]
- Yacoub, K.; Cibis, K.; Risch, C. Biodiversity of Medicinal Plants. In Biodiversity, Natural Products and Cancer Treatment; World Scientific: Singapore, 2014; pp. 1–32. [Google Scholar]
- Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibaoui, H.; Zidane, L. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Heliyon 2019, 5, e02191. [Google Scholar] [CrossRef] [PubMed]
- Swingland, I.R. Biodiversity, definition of. Encycl. Biodivers. 2001, 1, 377–391. [Google Scholar]
- Archibold, O.W. Ecology of World Vegetation; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Willis, K. State of the World’s Plants 2016; Royal Botanics Gardens Kew: London, UK, 2016; Available online: https://kew.iro.bl.uk (accessed on 5 November 2015).
- Swanepoel, W.; Le Roux, M.M.; Wojciechowski, M.F.; Van Wyk, A.E. Oberholzeria (Fabaceae subfam. Faboideae), a new monotypic legume genus from Namibia. PLoS ONE 2015, 10, e0122080. [Google Scholar] [CrossRef]
- Heywood, V.H. Conserving plants within and beyond protected areas–still problematic and future uncertain. Plant Divers. 2019, 41, 36–49. [Google Scholar] [CrossRef]
- Conner, A.J.; Glare, T.R.; Nap, J. The release of genetically modified crops into the environment: Part II. Overview of ecological risk assessment. Plant J. 2003, 33, 19–46. [Google Scholar] [CrossRef]
- Thuiller, W. BIOMOD–Optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 2003, 9, 1353–1362. [Google Scholar] [CrossRef]
- Nic Lughadha, E.; Bachman, S.P.; Leão, T.C.; Forest, F.; Halley, J.M.; Moat, J.; Acedo, C.; Bacon, K.L.; Brewer, R.F.; Gâteblé, G. Extinction risk and threats to plants and fungi. Plants People Planet 2020, 2, 389–408. [Google Scholar] [CrossRef]
- Dudareva, N.; Klempien, A.; Muhlemann, J.K.; Kaplan, I. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytol. 2013, 198, 16–32. [Google Scholar] [CrossRef]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 2011, 50, 586–621. [Google Scholar] [CrossRef] [PubMed]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Azeroual, A.; Benkhnigue, O.; Zidane, L. Alkaloids: A Suitable Precursor for Nanomaterials Synthesis, and Their Various Applications. In Secondary Metabolites Based Green Synthesis of Nanomaterials and Their Applications; Husen, A., Ed.; Springer Nature: Singapore, 2023; pp. 23–48. [Google Scholar] [CrossRef]
- Zahid, Z.; Khan, S.; Nadeem, F.; Azeem, M.W. The review of power of Poppy: Harnessing benefits of nature’s most dangerous Plant. Int. Sci. Organ. 2015, 8, 56–64. [Google Scholar]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X2090355. [Google Scholar] [CrossRef]
- Ludwiczuk, A.; Skalicka-Woźniak, K.; Georgiev, M.I. Terpenoids. In Pharmacognosy; Elsevier: Amsterdam, The Netherlands, 2017; pp. 233–266. [Google Scholar] [CrossRef]
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health benefits of polyphenols: A concise review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Han, Z.; Granato, D. Polyphenols in foods: Classification, methods of identification, and nutritional aspects in human health. Adv. Food Nutr. Res. 2021, 98, 1–33. [Google Scholar]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Testai, L.; Calderone, V. Nutraceutical value of citrus flavanones and their implications in cardiovascular disease. Nutrients 2017, 9, 502. [Google Scholar] [CrossRef]
- Rafael, F.-D.; Isidro, V.-M.; Héctor-Gabriel, A.-M.; Abraham, P.-O.; Yolanda, C.-U.; Tania, R.-G.; Rosa-Isela, G.-G.; Lorena, P.-C.; Socorro, H.-M. Berry Supplementation and Their Beneficial Effects on Some Central Nervous System Disorders. In Behavioral Pharmacology-From Basic to Clinical Research; IntechOpen: London, UK, 2019; Available online: https://books.google.com/books?hl=fr&lr=&id=yGwtEAAAQBAJ&oi=fnd&pg=PA27&dq=Berries,+such+as+blueberries+and+strawberries,+include+anthocyanins,+which+are+flavo-noids+known+for+their+anti-inflammatory+properties+and+beneficial+benefits+on+cognitive+function&ots=YmelhXzckE&sig=wFmx2dJsFRnvjuB-OPsgvPxqsqc (accessed on 18 December 2023).
- Hussain, S.Z.; Naseer, B.; Qadri, T.; Fatima, T.; Bhat, T.A. Peach (Prunus Persica)—Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas; Springer: Cham, Switzerland, 2021; pp. 207–217. [Google Scholar]
- Yadav, M.; Jain, S.; Bhardwaj, A.; Nagpal, R.; Puniya, M.; Tomar, R.; Singh, V.; Parkash, O.; Prasad, G.B.K.S.; Marotta, F.; et al. Biological and Medicinal Properties of Grapes and Their Bioactive Constituents: An Update. J. Med. Food 2009, 12, 473–484. [Google Scholar] [CrossRef]
- Singh, B.N.; Shankar, S.; Srivastava, R.K. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem. Pharmacol. 2011, 82, 1807–1821. [Google Scholar] [CrossRef]
- Fischer, S.R. History of Writing; Reaktion Books: London, UK, 2003. [Google Scholar]
- Robinson, A. Writing and Script: A Very Short Introduction; Oxford University Press: New York, NY, USA, 2009; Volume 208. [Google Scholar]
- Chaachouay, N.; Douira, A.; Zidane, L. Herbal Medicine Used in the Treatment of Human Diseases in the Rif, Northern Morocco. Arab. J. Sci. Eng. 2022, 47, 131–153. [Google Scholar] [CrossRef]
- Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibaoui, H.; El Ayadi, R.; Zidane, L. Ethnobotanical and ethnopharmacological study of medicinal and aromatic plants used in the treatment of respiratory system disorders in the Moroccan Rif. Ethnobot. Res. Appl. 2019, 18, 1–16. [Google Scholar] [CrossRef]
- Chaachouay, N.; Azeroual, A.; Douira, A.; Zidane, L. Ethnoveterinary practices of medicinal plants among the Zemmour and Zayane tribes, Middle Atlas, Morocco. S. Afr. J. Bot. 2022, 151, 826–840. [Google Scholar] [CrossRef]
- Chaachouay, N.; Azeroual, A.; Bencharki, B.; Douira, A.; Zidane, L. Ethnoveterinary medicines plants for animal therapy in the Rif, North of Morocco. S. Afr. J. Bot. 2022, 147, 176–191. [Google Scholar] [CrossRef]
- Houghton, P.J. The role of plants in traditional medicine and current therapy. J. Altern. Complement. Med. 1995, 1, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ayadi, R.; Zidane, L. Ethnobotanical study of medicinal plants used to treat osteoarticular diseases in the Moroccan Rif, Morocco. J. Pharm. Pharmacogn. Res. 2019, 7, 454–470. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Jafarikukhdan, A.; Hosseini, A.; Armand, R. The application of medicinal plants in traditional and modern medicine: A review of Thymus vulgaris. Int. J. Clin. Med. 2015, 6, 635. [Google Scholar] [CrossRef]
- Karunamoorthi, K.; Jegajeevanram, K.; Vijayalakshmi, J.; Mengistie, E. Traditional medicinal plants: A source of phytotherapeutic modality in resource-constrained health care settings. J. Evid.-Based Complement. Altern. Med. 2013, 18, 67–74. [Google Scholar] [CrossRef]
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The role and place of medicinal plants in the strategies for disease prevention. Afr. J. Tradit. Complement. Altern. Med. 2013, 10, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bharadvaja, N. Treasuring the computational approach in medicinal plant research. Prog. Biophys. Mol. Biol. 2021, 164, 19–32. [Google Scholar] [CrossRef]
- Rasoulian, B.; Kheirandish, F. Herbal medicines: From traditional medicine to modern experimental approaches. Herb. Med. J. Herb. Med. J. 2017, 2, 1–2. [Google Scholar]
- Hefferon, K. Let Thy Food Be Thy Medicine: Plants and Modern Medicine; OUP USA: New York, NY, USA, 2012; ISBN 978-0-19-987397-5. [Google Scholar]
- Jovovic, Z.; Andjelkovic, V.; Przulj, N.; Mandic, D. Untapped Genetic Diversity of Wild Relatives for Crop Improvement. In Rediscovery of Genetic and Genomic Resources for Future Food Security; Salgotra, R.K., Zargar, S.M., Eds.; Springer: Singapore, 2020; pp. 25–65. [Google Scholar] [CrossRef]
- Inoue, M.; Hayashi, S.; Craker, L.E. Role of medicinal and aromatic plants: Past, present, and future. In Pharmacognosy-Medicinal Plants; IntechOpen: London, UK, 2019. [Google Scholar]
- Mathur, S.; Hoskins, C. Drug development: Lessons from nature. Biomed. Rep. 2017, 6, 612–614. [Google Scholar] [CrossRef]
- Abdel-Aziz, S.M.; Aeron, A.; Kahil, T.A. Health Benefits and Possible Risks of Herbal Medicine. In Microbes in Food and Health; Garg, N., Abdel-Aziz, S.M., Aeron, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 97–116. [Google Scholar] [CrossRef]
- Valecha, N.; Looareesuwan, S.; Martensson, A.; Mohammed Abdulla, S.; Krudsood, S.; Tangpukdee, N.; Mohanty, S.; Mishra, S.K.; Tyagi, P.K.; Sharma, S.K. Arterolane, a new synthetic trioxolane for treatment of uncomplicated Plasmodium falciparum malaria: A phase II, multicenter, randomized, dose-finding clinical trial. Clin. Infect. Dis. 2010, 51, 684–691. [Google Scholar] [CrossRef]
- Salam, A.M.; Quave, C.L. Opportunities for plant natural products in infection control. Curr. Opin. Microbiol. 2018, 45, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Chaachouay, N.; Douira, A.; Zidane, L. COVID-19, prevention and treatment with herbal medicine in the herbal markets of Salé Prefecture, North-Western Morocco. Eur. J. Integr. Med. 2021, 42, 101285. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. The success of natural products in drug discovery. Pharmacol. Pharm. 2013, 4, 17–31. [Google Scholar] [CrossRef]
- Pascolutti, M.; Quinn, R.J. Natural products as lead structures: Chemical transformations to create lead-like libraries. Drug Discov. Today 2014, 19, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, C.; Harvey, K.; Forde, C.G.; Boss, P.K.; Davies, C. Auxin treatment of pre-veraison grape (Vitis vinifera L.) berries both delays ripening and increases the synchronicity of sugar accumulation. Aust. J. Grape Wine Res. 2011, 17, 1–8. [Google Scholar] [CrossRef]
- Majolo, F.; Delwing, L.K.D.O.B.; Marmitt, D.J.; Bustamante-Filho, I.C.; Goettert, M.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett. 2019, 31, 196–207. [Google Scholar] [CrossRef]
- Cassano, T.; Villani, R.; Pace, L.; Carbone, A.; Bukke, V.N.; Orkisz, S.; Avolio, C.; Serviddio, G. From Cannabis sativa to cannabidiol: Promising therapeutic candidate for the treatment of neurodegenerative diseases. Front. Pharmacol. 2020, 11, 124. [Google Scholar] [CrossRef]
- Chaachouay, N.; Azeroual, A.; Bencharki, B.; Douira, A.; Zidane, L. Cannabis sativa L.: A Review on Traditional Uses, Botany, Phytochemistry, and Pharmacological Aspects. Tradit. Integr. Med. 2023, 8, 97–116. [Google Scholar] [CrossRef]
- Wijeweera, G.; Wijekoon, N.; Gonawala, L.; Imran, Y.; Mohan, C.; De Silva, K.R.D. Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. Evid.-Based Complement. Alternat. Med. 2023, 2023, 5583996. [Google Scholar] [CrossRef]
- Khan, M.S.A.; Ahmad, I. Herbal medicine: Current trends and future prospects. In New Look to Phytomedicine; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–13. [Google Scholar] [CrossRef]
- Thomford, N.E.; Senthebane, D.A.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci. 2018, 19, 1578. [Google Scholar] [CrossRef] [PubMed]
- Cragg, G.M.; Newman, D.J. Natural product drug discovery in the next millennium. Pharm. Biol. 2001, 39, 8–17. [Google Scholar] [PubMed]
- Wang, X. Increased Taxol Production in Taxus× Media through Metabolic Engineering Approaches; Oklahoma State University: Stillwater, OK, USA, 2003. [Google Scholar]
- Canales, N.A.; Hansen, T.N.G.; Cornett, C.; Walker, K.; Driver, F.; Antonelli, A.; Maldonado, C.; Nesbitt, M.; Barnes, C.J.; Rønsted, N. Historical chemical annotations of Cinchona bark collections are comparable to results from current day high-pressure liquid chromatography technologies. J. Ethnopharmacol. 2020, 249, 112375. [Google Scholar] [CrossRef] [PubMed]
- Dumas, E.; Giraudo, M.; Goujon, E.; Halma, M.; Knhili, E.; Stauffert, M.; Batisson, I.; Besse-Hoggan, P.; Bohatier, J.; Bouchard, P. Fate and ecotoxicological impact of new generation herbicides from the triketone family: An overview to assess the environmental risks. J. Hazard. Mater. 2017, 325, 136–156. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.P.; Bonawitz, S.C.; Ostrovsky, O. The effects of delta-9-tetrahydrocannabinol (THC) on inflammation: A review. Cell. Immunol. 2020, 352, 104111. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.C.M. Contribution of Intestinal Lymphatic Transport to the Antiproliferative Effect of delta-9-Tetrahydrocannabinol. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. [Google Scholar]
- Ahn, Y.; Han, S.H.; Kim, M.G.; Hong, K.-B.; Kim, W.J.; Suh, H.J.; Jo, K. Anti-depressant effects of ethanol extract from Cannabis sativa (hemp) seed in chlorpromazine-induced Drosophila melanogaster depression model. Pharm. Biol. 2021, 59, 998–1007. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.A.; Premoli, M.; Tambaro, S.; Kumar, A.; Maccarinelli, G.; Memo, M.; Mastinu, A. Cannabis sativa: A comprehensive ethnopharmacological review of a medicinal plant with a long history. J. Ethnopharmacol. 2018, 227, 300–315. [Google Scholar] [CrossRef] [PubMed]
- Cantele, C.; Bertolino, M.; Bakro, F.; Giordano, M.; Jędryczka, M.; Cardenia, V. Antioxidant effects of hemp (Cannabis sativa L.) inflorescence extract in stripped linseed oil. Antioxidants 2020, 9, 1131. [Google Scholar] [CrossRef]
- Mohammad, A.; Faruqi, F.B.; Mustafa, J. Edible compounds as antitumor agents Ali Mohammad1, Fauzia Bano Faruqi1 and Jamal Mustafa2. Indian. J. Sci. Technol. 2009, 2, 62–74. [Google Scholar] [CrossRef]
- Chaachouay, N.; Azeroual, A.; Bencherki, B.; Douira, A.; Zidane, L. Various Metabolites and or Bioactive Compounds from Vegetables, and Their Use Nanoparticles Synthesis, and Applications. In Nanomaterials from Agricultural and Horticultural Products; Husen, A., Ed.; Smart Nanomaterials Technology; Springer Nature: Singapore, 2023; pp. 187–209. [Google Scholar] [CrossRef]
- Grigoriev, O.V. Application of hempseed (Cannabis sativa L.) oil in the treatment of ear, nose and throat (ENT) disorders. J. Ind. Hemp 2002, 7, 5–15. [Google Scholar] [CrossRef]
- Havey, M.J. Onion: Allium cepa L. In Genetic Improvement of Vegetable Crops; Pergamon Press: Oxford, UK; New York, NY, USA, 1993; pp. 35–49. [Google Scholar]
- Ashraf, R.; Khan, R.A.; Ashraf, I. Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak. J. Pharm. Sci. 2011, 24, 565–570. [Google Scholar] [PubMed]
- Rajput, H. Effects of Atropa belladonna as an anti-cholinergic. Nat. Prod. Chem. Res. 2013, 1, 104. [Google Scholar] [CrossRef]
- Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res. 2008, 22, 999–1012. [Google Scholar] [CrossRef]
- López, V.; Calvo, M.I. White tea (Camellia sinensis Kuntze) exerts neuroprotection against hydrogen peroxide-induced toxicity in PC12 cells. Plant Foods Hum. Nutr. 2011, 66, 22–26. [Google Scholar] [CrossRef]
- Zhao, D.; Hamilton, J.P.; Pham, G.M.; Crisovan, E.; Wiegert-Rininger, K.; Vaillancourt, B.; DellaPenna, D.; Buell, C.R. De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin. GigaScience 2017, 6, gix065. [Google Scholar] [CrossRef]
- Novak, M.; Salemink, C.A.; Khan, I. Biological activity of the alkaloids of Erythroxylum coca and Erythroxylum novogranatense. J. Ethnopharmacol. 1984, 10, 261–274. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.P.; Utreja, P.; Tiwary, A.K.; Jain, S. Elastic liposomal formulation for sustained delivery of colchicine: In vitro characterization and in vivo evaluation of anti-gout activity. AAPS J. 2009, 11, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, M.; Tatsumi, K.; Yuui, K.; Terazawa, I.; Kudo, R.; Kasuda, S. Convallatoxin, the primary cardiac glycoside in lily of the valley (Convallaria majalis), induces tissue factor expression in endothelial cells. Vet. Med. Sci. 2021, 7, 2440–2444. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Alonso, N.; Wilken, D.; Gerth, A.; Jähn, A.; Nitzsche, H.-M.; Kerns, G.; Capote-Perez, A.; Jiménez, E. Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ. Cult. PCTOC 2009, 99, 151–156. [Google Scholar] [CrossRef]
- Bhusare, B.P.; John, C.K.; Bhatt, V.P.; Nikam, T.D. In Vitro propagation of Digitalis lanata Ehrh. through direct shoot regeneration—A source of cardiotonic glycosides. Ind. Crops Prod. 2018, 121, 313–319. [Google Scholar] [CrossRef]
- Limberger, R.P.; Jacques, A.L.B.; Schmitt, G.C.; Arbo, M.D. Pharmacological Effects of Ephedrine 38. In Natural Products; Springer: Berlin/Heidelberg, 2013. [Google Scholar]
- Pekić, B.; Lepojević, Ž.; Slavica, B.; Petrović, S.M. High-performance liquid chromatographic determination of glaucine inGlaucium flavum crantz. Chromatographia 1986, 21, 227–228. [Google Scholar] [CrossRef]
- Groen, J.; Pelser, H.; Willebrands, A.F.; Kamminga, C.E. Extract of licorice for the treatment of Addison’s disease. N. Engl. J. Med. 1951, 244, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Benyhe, S. Morphine: New aspects in the study of an ancient compound. Life Sci. 1994, 55, 969–979. [Google Scholar] [CrossRef]
- Nakanishi, K.; Berova, N.; Lo, L.-C.; Zhao, N.; Ludens, J.H.; Tymiak, A.A.; Warrack, B.; Haupert, G.T. Search for an endogenous mammalian cardiotonic factor. In Saponins Used in Traditional and Modern Medicine; Springer: Boston, MA, USA, 1996; pp. 219–224. [Google Scholar]
- Yeka, A.; Achan, J.; D’Alessandro, U.; Talisuna, A.O. Quinine monotherapy for treating uncomplicated malaria in the era of artemisinin-based combination therapy: An appropriate public health policy? Lancet Infect. Dis. 2009, 9, 448–452. [Google Scholar] [CrossRef]
- Kumari, R.; Rathi, B.; Rani, A.; Bhatnagar, S. Rauvolfia serpentina L. Benth. ex Kurz.: Phytochemical, pharmacological and therapeutic aspects. Int. J. Pharm. Sci. Rev. Res. 2013, 23, 348–355. [Google Scholar]
- Singh, A.P. Salicin-A natural analgesic. Ethnobot. Leafl. 2005, 2003, 8. [Google Scholar]
- Malami, I.; Halilu, M.E.; Mathias, S.; Alhassan, M.A. Phytochemical evaluation and investigations in to sedative properties of Datura stramonium (Linn) seeds in experimental mice. J. Pharm. Biol. Sci. 2014, 9, 1–3. [Google Scholar]
- Kvasnička, F.; Bıba, B.; Ševčík, R.; Voldřich, M.; Kratka, J. Analysis of the active components of silymarin. J. Chromatogr. A 2003, 990, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Haley, T.J. Metabolism and pharmacokinetics of theophylline in human neonates, children, and adults. Drug Metab. Rev. 1983, 14, 295–335. [Google Scholar] [CrossRef] [PubMed]
- Soković, M.; Glamočlija, J.; Ćirić, A.; Kataranovski, D.; Marin, P.D.; Vukojević, J.; Brkić, D. Antifungal activity of the essential oil of Thymus vulgaris L. and thymol on experimentally induced dermatomycoses. Drug Dev. Ind. Pharm. 2008, 34, 1388–1393. [Google Scholar] [CrossRef]
- Rai, V.; Tandon, P.K.; Khatoon, S. Effect of chromium on antioxidant potential of Catharanthus roseus varieties and production of their anticancer alkaloids: Vincristine and vinblastine. BioMed Res. Int. 2014, 2014, 934182. [Google Scholar] [CrossRef]
- Bailly, C. Yuanhuacin and Related Anti-Inflammatory and Anticancer Daphnane Diterpenes from Genkwa Flos—An Overview. Biomolecules 2022, 12, 192. [Google Scholar] [CrossRef]
- Ausländer, S.; Ausländer, D.; Fussenegger, M. Synthetic Biology—The Synthesis of Biology. Angew. Chem. Int. Ed. 2017, 56, 6396–6419. [Google Scholar] [CrossRef] [PubMed]
- Zajtchuk, R. New technologies in medicine: Biotechnology and nanotechnology. Dis. Mon. 1999, 45, 453–495. [Google Scholar] [CrossRef]
- Gottweis, H. Governing Molecules: The Discursive Politics of Genetic Engineering in Europe and the United States; MIT Press: Cambridge, MA, USA, 1998; Available online: https://books.google.com/books?hl=fr&lr=&id=aFqR_H1y5bsC&oi=fnd&pg=PP13&dq=A+notable+progress+is+the+amalgamation+of+biotechnology+and+synthetic+biology+meth-odologies+to+generate+these+substances+inside+regulated+settings.&ots=_M34Do4DIp&sig=UH0Z_ZQcrg13Ec_f4YDdLwKQxD4 (accessed on 7 November 2023).
- Zhong, J.-J. Recent advances in bioreactor engineering. Korean J. Chem. Eng. 2010, 27, 1035–1041. [Google Scholar] [CrossRef]
- Deparis, Q.; Claes, A.; Foulquié-Moreno, M.R.; Thevelein, J.M. Engineering tolerance to industrially relevant stress factors in yeast cell factories. FEMS Yeast Res. 2017, 17, fox036. [Google Scholar] [CrossRef]
- Ismail, F.M.; Nahar, L.; Sarker, S.D. High-Throughput Screening of Phytochemicals: Application of Computational Methods. In Computational Phytochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 165–192. [Google Scholar]
- Liu, B.; Li, S.; Hu, J. Technological Advances in High-Throughput Screening. Am. J. PharmacoGenomics 2004, 4, 263–276. [Google Scholar] [CrossRef]
- Dhoundiyal, S.; Alam, M.A. Advances in Pharmacokinetic Modelling and Computational Approaches for Nanoparticles in Drug Delivery Systems. Recent. Adv. Drug Deliv. Formul. Former. Recent. Pat. Drug Deliv. Formul. 2023, 17, 210–227. [Google Scholar] [CrossRef]
- Bischoff, G.; Hoffmann, S. DNA-binding of drugs used in medicinal therapies. Curr. Med. Chem. 2002, 9, 321–348. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Pati, S.P.; Kumar, P.P.; Pradeep, H.N.; Sastry, G.N. Virtual screening in drug discovery-a computational perspective. Curr. Protein Pept. Sci. 2007, 8, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Xia, X. Bioinformatics and drug discovery. Curr. Top. Med. Chem. 2017, 17, 1709–1726. [Google Scholar] [CrossRef] [PubMed]
- Ambrosino, L.; Tangherlini, M.; Colantuono, C.; Esposito, A.; Sangiovanni, M.; Miralto, M.; Sansone, C.; Chiusano, M.L. Bioinformatics for marine products: An overview of resources, bottlenecks, and perspectives. Mar. Drugs 2019, 17, 576. [Google Scholar] [CrossRef] [PubMed]
- Cravens, A.; Payne, J.; Smolke, C.D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 2019, 10, 2142. [Google Scholar] [CrossRef] [PubMed]
- Pereira, G.C. Application of Biotechnology in Producing Plant Bio-active Compounds. In Natural Bio-Active Compounds; Akhtar, M.S., Swamy, M.K., Eds.; Springer: Singapore, 2019; pp. 59–78. [Google Scholar] [CrossRef]
- Sharma, V.; Sarkar, I.N. Bioinformatics opportunities for identification and study of medicinal plants. Brief. Bioinform. 2013, 14, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. Bioinformatics in Drug Development and Assessment. Drug Metab. Rev. 2005, 37, 279–310. [Google Scholar] [CrossRef]
- Marchev, A.S.; Vasileva, L.V.; Amirova, K.M.; Savova, M.S.; Balcheva-Sivenova, Z.P.; Georgiev, M.I. Metabolomics and health: From nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell. Mol. Life Sci. 2021, 78, 6487–6503. [Google Scholar] [CrossRef]
- Dörnenburg, H. Progress in kalata peptide production via plant cell bioprocessing. Biotechnol. J. 2009, 4, 632–645. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, S.P. Plants as Bioreactors for Industrial Molecules; John Wiley & Sons: Hoboken, NJ, USA, 2023; Available online: https://books.google.com/books?hl=fr&lr=&id=EeurEAAAQBAJ&oi=fnd&pg=PA15&dq=Bioreactors,+which+are+enclosed+settings,+provide+a+sustainable+and+scalable+method+for+producing+plant-derived+molecules+while+also+addressing+ecological+issues.+&ots=MpLiAeBwRB&sig=cK306w31-44x8gpRAVU_AMOp7ak (accessed on 7 November 2023).
- Moon, K.-B.; Park, J.-S.; Park, Y.-I.; Song, I.-J.; Lee, H.-J.; Cho, H.S.; Jeon, J.-H.; Kim, H.-S. Development of systems for the production of plant-derived biopharmaceuticals. Plants 2019, 9, 30. [Google Scholar] [CrossRef]
- Ottinger, M.A.; Geiselman, C. One Health Meets the Exposome: Human, Wildlife, and Ecosystem Health; Elsevier: Amsterdam, The Netherlands, 2023; Available online: https://books.google.com/books?hl=fr&lr=&id=b7F3EAAAQBAJ&oi=fnd&pg=PP1&dq=Using+genomic+and+metabolomic+data,+researchers+can+tailor+therapies+based+on+an+in-dividual%27s+genetic+makeup+and+health+characteristics&ots=x3zzr5PlVH&sig=BmOgQAyJq4zCAW8cVIPdcZCRtAw (accessed on 18 December 2023).
- Shu, Y.-Z. Recent natural products based drug development: A pharmaceutical industry perspective. J. Nat. Prod. 1998, 61, 1053–1071. [Google Scholar] [CrossRef]
- Yang, L.; Wen, K.-S.; Ruan, X.; Zhao, Y.-X.; Wei, F.; Wang, Q. Response of plant secondary metabolites to environmental factors. Molecules 2018, 23, 762. [Google Scholar] [CrossRef] [PubMed]
- Lan, K.; Jia, W. An integrated metabolomics and pharmacokinetics strategy for multi-component drugs evaluation. Curr. Drug Metab. 2010, 11, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sharma, M. Herbal nanomedicine interactions to enhance pharmacokinetics, pharmacodynamics, and therapeutic index for better bioavailability and biocompatibility of herbal formulations. J. Mater. Nanosci. 2018, 5, 35–60. [Google Scholar]
- Nicoletti, M. Nutraceuticals and botanicals: Overview and perspectives. Int. J. Food Sci. Nutr. 2012, 63, 2–6. [Google Scholar] [CrossRef]
Plant-Derived Natural Products | Botanical Source | Medicinal Application | Reference |
---|---|---|---|
Atropine | Atropa belladonna L. | Anticholinergic | [176] |
Berberine | Berberis vulgaris L. | Bacillary dysentery | [177] |
Caffeine | Camellia sinensis (L.) Kuntze | Neuroprotection | [178] |
Camptothecin | Camptotheca acuminata Decne. | Anticancer | [179] |
Cocaine | Erythroxylum coca Lam. | Anesthetic | [180] |
Colchicine | Colchicum autumnale L. | Antigout, antitumor | [181] |
Convallatoxin | Convallaria majalis L. | Cardiotonic | [182] |
Digitoxin | Digitalis purpurea L. | Cardiotonic | [183] |
Digoxin | Digitalis lanata Ehrh. | Cardiotonic | [184] |
Ephedrine | Ephedra sinica Stapf | Sympathomimetic | [185] |
Glaucine | Glaucium flavum Crantz | Antitussive | [186] |
Glycyrrhizin | Glycyrrhiza glabra L. | Treatment of Addison’s disease | [187] |
Morphine | Papaver somniferum L. | Analgesic | [188] |
Ouabain | Strophanthus gratus (Wall. & Hook.) Baill. | Cardiotonic | [189] |
Quinine | Cinchona officinalis L. | Antimalarial | [190] |
Reserpine | Rauvolfia serpentina (L.) Benth. ex Kurz | Antihypertensive | [191] |
Salicin | Salix alba L. | Analgesic | [192] |
Scopolamine | Datura metel L. | Sedative | [193] |
Silymarin | Silybum marianum (L.) Gaertn. | Antihepatotoxic | [194] |
Taxol | Taxus brevifolia Nutt. | Anticancer | [71] |
Theophylline | Theobroma cacao L. | Diuretic | [195] |
Thymol | Thymus vulgaris L. | Topical antifungal | [196] |
Vinblastine | Catharanthus roseus (L.) G.Don | Anticancer | [197] |
Vincristine | Catharanthus roseus (L.) G.Don | Anticancer | [197] |
Yuanhuacine | Daphne genkwa Siebold & Zucc. | Abortifacient | [198] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaachouay, N.; Zidane, L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs Drug Candidates 2024, 3, 184-207. https://doi.org/10.3390/ddc3010011
Chaachouay N, Zidane L. Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates. 2024; 3(1):184-207. https://doi.org/10.3390/ddc3010011
Chicago/Turabian StyleChaachouay, Noureddine, and Lahcen Zidane. 2024. "Plant-Derived Natural Products: A Source for Drug Discovery and Development" Drugs and Drug Candidates 3, no. 1: 184-207. https://doi.org/10.3390/ddc3010011
APA StyleChaachouay, N., & Zidane, L. (2024). Plant-Derived Natural Products: A Source for Drug Discovery and Development. Drugs and Drug Candidates, 3(1), 184-207. https://doi.org/10.3390/ddc3010011