Commodities from Amazon Biome: A Guide to Choosing Sustainable Paths
Abstract
:1. Introduction
2. Materials and Methods
2.1. Life Cycle Assessment (LCA)
2.1.1. Environmental Life Cycle Analysis (E-LCA)
Definition of the Objective and Scope of Environmental Life Cycle Assessment
Functional Unit and System Limits of Environmental Life Cycle Assessment
Environmental Life Cycle Inventory (E-LCI)
Environmental Life Cycle Impact Assessment (E-LCIA)
Carbon Balance
2.1.2. Social Life Cycle Analysis (S-LCA)
Definition of the Objective and Scope of Social Life Cycle Analysis
Functional Unit and System Limits of Social Life Cycle Analysis
Social Life Cycle Inventory (S-LCI)
Social Life Cycle Impact Assessment (S-LCIA)
2.1.3. LCA Interpretation
2.2. Economic Analysis
3. Results and Discussion
3.1. Environmental Performance
3.2. Economic Performance of Production Systems
3.3. Social Sustainability
3.4. Integrated Interpretation, Limitations and Sustainability Trade-Offs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Araujo, E.C.G.; Sanquetta, C.R.; Dalla Corte, A.P.; Pelissari, A.L.; Orso, G.A.; Silva, T.C. Global review and state-of-the-art of biomass and carbon stock in the Amazon. J. Environ. Manag. 2023, 331, 117251. [Google Scholar] [CrossRef] [PubMed]
- Kröger, M. Extractivisms, Existences and Extinctions: Monoculture Plantations and Amazon Deforestation; Taylor & Francis: Boca Raton, FL, USA, 2022; p. 176. [Google Scholar] [CrossRef]
- Huera-Lucero, T.; Lopez-Piñeiro, A.; Torres, B.; Bravo-Medina, C. Biodiversity and Carbon Sequestration in Chakra-Type Agroforestry Systems and Humid Tropical Forests of the Ecuadorian Amazon. Forests 2024, 15, 557. [Google Scholar] [CrossRef]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.; Tejada, G.; Aragão, L.E.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- ICCO—International Cocoa Organization. Quarterly Bulletin of Cocoa Statistics: Edition No. 4—Volume 49—Cocoa Year 2022/23; ICCO: Abidjan, Côte d’Ivoire, 2023; Available online: https://www.icco.org/november-2023-quarterly-bulletin-of-cocoa-statistics/ (accessed on 3 September 2024).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Cocoa Production in 2022. 2024. Available online: https://www.ibge.gov.br/explica/producao-agropecuaria/cacau/br (accessed on 18 August 2024).
- EMBRAPA—Brazilian Agricultural Research Corporation. Açaí: Weed Control. EMBRAPA Portal: Eastern Amazon, 2024. 2024. Available online: https://www.embrapa.br/agencia-de-informacao-tecnologica/cultivos/acai/producao/tratos-culturais/manejo-de-perfilhos-limpeza-das-touceiras-e-controle-do-mato (accessed on 3 September 2024).
- Schneider, A.T.; Dias, R.R.; Deprá, M.C.; Dutra, D.A.; Machado, R.L.S.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. The Intersectionality Between Amazon and Commodities Production: A Close Look at Sustainability. Land 2024, 2024, 13. [Google Scholar] [CrossRef]
- Rosenfeld, T.; Pokorny, B.; Marcovitch, J.; Poschen, P. Bioeconomy based on non-timber forest products for development and forest conservation-untapped potential or false hope? A systematic review for the Brazilian amazon. For. Policy Econ. 2024, 163, 103228. [Google Scholar] [CrossRef]
- Marconi, L.; Armengot, L. Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agric. Ecosyst. Environ. 2020, 287, 106664. [Google Scholar] [CrossRef]
- Niether, W.; Jacobi, J.; Blaser, W.J.; Andres, C.; Armengot, L. Cocoa agroforestry systems versus monocultures: A multi-dimensional meta-analysis. Environ. Res. Lett. 2020, 15, 104085. [Google Scholar] [CrossRef]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and organic agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Parra-Paitan, C.; Verburg, P.H. Accounting for land use changes beyond the farm-level in sustainability assessments: The impact of cocoa production. Sci. Total Environ. 2022, 825, 154032. [Google Scholar] [CrossRef]
- Gama-Rodrigues, A.C.; Müller, M.W.; Gama-Rodrigues, E.F.; Mendes, F.A.T. Cacao-based agroforestry systems in the Atlantic Forest and Amazon Biomes: An ecoregional analysis of land use. Agric. Syst. 2021, 194, 103270. [Google Scholar] [CrossRef]
- Vizuete-Montero, M.; Carrera-Oscullo, P.; Barreno-Silva, N.D.L.M.; Sánchez, M.; Figueroa-Saavedra, H.; Moya, W. Agroecological alternatives for small and medium tropical crop farmers in the Ecuadorian Amazon for adaptation to climate change. Agric. Syst. 2024, 218, 103998. [Google Scholar] [CrossRef]
- Freitas, M.A.B.; Vieira, I.C.G.; Albernaz, A.L.K.M.; Magalhães, J.L.L.; Lees, A.C. Floristic impoverishment of Amazonian floodplain forests managed for açaí fruit production. For. Ecol. Manag. 2015, 351, 20–27. [Google Scholar] [CrossRef]
- Mattalia, G.; Wezel, A.; Costet, P.; Jagoret, P.; Deheuvels, O.; Migliorini, P.; David, C. Contribution of cacao agroforestry versus mono-cropping systems for enhanced sustainability. A Rev. A Focus yield. Agrofor. Syst. 2022, 96, 1077–1089. [Google Scholar] [CrossRef]
- Scordia, D.; Corinzia, S.A.; Coello, J.; Vilaplana Ventura, R.; Jiménez-De-Santiago, D.E.; Singla Just, B.; Castaño-Sánchez, O.; Casas Arcarons, C.; Tchamitchian, M.; Garreau, L.; et al. Are agroforestry systems more productive than monocultures in Mediterranean countries? A meta-analysis. Agron. Sustain. Dev. 2023, 43, 73. [Google Scholar] [CrossRef]
- Ariza-Salamanca, A.J.; Navarro-Cerrillo, R.M.; Crozier, J.; Stirling, C.; Mancini, A.; Blaser-Hart, W.; González-Moreno, P. Drivers of cocoa yield and growth in young monoculture and agroforestry systems. Agric. Syst. 2024, 219, 104044. [Google Scholar] [CrossRef]
- Deprá, M.C.; Dias, R.R.; Zepka, L.Q.; Jacob-Lopes, E. Building cleaner production: How to anchor sustainability in the food production chain? Environ. Adv. 2022, 9, 100295. [Google Scholar] [CrossRef]
- Dias, R.R.; Sartori, R.B.; Schneider, A.T. Food Sustainability Index. In Smart Food Industry: The Blockchain for Sustainable Engineering; CRC Press: Boca Raton, FL, USA, 2024; pp. 25–33. [Google Scholar]
- ISO-14040; Environmental Management–Life Cycle Assessment–Principles and Framework. ISO—International Standard Organization: Geneva, Switzerland, 2006.
- ISO-14044; 2006 Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO—International Organization for Standardization: Geneva, Switzerland, 2006.
- Nalley, L.L.; Dixon, B.L.; Popp, J.S. An optimal phased replanting approach for cocoa trees with application to Ghana. Agric. Econ. 2014, 45, 291–302. [Google Scholar] [CrossRef]
- Utomo, B.; Prawoto, A.A.; Bonnet, S.; Bangviwat, A.; Gheewala, S.H. Environmental performance of cocoa production from monoculture and agroforestry systems in Indonesia. J. Clean. Prod. 2016, 134, 583–591. [Google Scholar] [CrossRef]
- Piasentin, F.B.; Saito, C.H. The different methods of cocoa cultivation in southeastern Bahia, Brazil: Historical aspects and perceptions. Bulletin of the Emílio Goeldi Museum of Pará. Hum. Sci. 2014, 9, 61–78. [Google Scholar] [CrossRef]
- Silva, C.E.; Gonçalves, J.F.D.C.; Feldpausch, T.R.; Luizão, F.J.; Morais, R.R.; Ribeiro, G.O. Nutrient use efficiency by pioneer species grown on degraded pastures in central Amazonia. Acta Amaz. 2006, 36, 503–512. [Google Scholar] [CrossRef]
- Waheed, M.A.; Jekayinfa, S.O.; Ojediran, J.O.; Imeokparia, O.E. Energetic analysis of fruit juice processing operations in Nigeria. Energy 2008, 33, 35–45. [Google Scholar] [CrossRef]
- Veloso, C.A.; Silva, A.; Sales, A. Management of NPK fertilization in the formation of açaí in a Yellow Latosol of northeastern Pará. Encycl. Biosph. 2015, 11, 2175–2182. [Google Scholar]
- Bezerra, V.; Freitas-Silva, O.; Damasceno, L.; Mamede, A.; Cabral, L. Sensory Analysis and Consumers Studies of Açai Beverage After Thermal, Chlorine and Ozone Treatments of the Fruits: Sensory Analysis and Consumers Studies. J. Food Process. Preservation. 2016, 41, e12961. [Google Scholar] [CrossRef]
- Ortiz-Rodríguez, O.O.; Villamizar-Gallardo, R.A.; Naranjo-Merino, C.A.; García-Caceres, R.G.; Castañeda-Galvís, M.T. Carbon footprint of the colombian cocoa production. Eng. Agrícola 2016, 36, 260–270. [Google Scholar] [CrossRef]
- Ogunsina, B.S.; Adeyemi, M.A.; Morakinyo, T.A.; Aremu, O.J.; Bamgboye, A.I. Direct energy utilization in the processing of cocoa beans into powder. Agric. Eng. Int. CIGR J. 2017, 19, 213–218. [Google Scholar]
- Carvalho, J.E.U.D.; Nascimento, W. Technological innovations in the propagation of Açaí palm and Bacuri. Rev. Bras. De Frutic. 2018, 40, e-679. [Google Scholar] [CrossRef]
- Recanati, F.; Marveggio, D.; Dotelli, G. From beans to bar: A life cycle assessment towards sustainable chocolate supply chain. Sci. Total Environ. 2018, 613, 1013–1023. [Google Scholar] [CrossRef]
- Trinh, L.T.K.; Hu, A.H.; Lan, Y.C.; Chen, Z.H. Comparative life cycle assessment for conventional and organic coffee cultivation in Vietnam. Int. J. Environ. Sci. Technol. 2020, 17, 1307–1324. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaute, C. Greenhouse gas emissions from inorganic and organic fertilizer production and use: A review of emission factors and their variability. J. Environ. Manag. 2020, 276, 111211. [Google Scholar] [CrossRef]
- De Araujo, M.K.D.C.; de Cristo Silva, R.R.; da Silva, M.A.P.; Antunes, A.M. Cocoa almonds (Theobroma cacao L.) submitted to different temperatures and drying times in northern Brazil. Braz. J. Dev. 2022, 8, 77409–77421. [Google Scholar] [CrossRef]
- Carneiro, A.O.; Silva, e.H.B.C. Energy balance in the production of mango pulps: From cultivation to storage. Electron. J. Environ. Manag. Technol. 2022, 10, 82–92. [Google Scholar]
- Queiroga, V.; Mendes, N.; Gomes, J.; Lima, D.; de Melo, B.; Queiroz, A.; Albuquerque, E. AÇAI (Euterpe oleracea Mart.) Fruit Production on Dry Land and Use. 2023, 1 v. ISBN: 978-65-00-77777-7. Available online: https://www.researchgate.net/publication/374505968 (accessed on 10 September 2024).
- Salgado-Aristizabal, N.; Agudelo-Patiño, T.; Ospina-Corral, S.; Álvarez-Lanzarote, I.; Orrego, C.E. Environmental Life Cycle Analysis of Açaí (Euterpe oleracea) Powders Obtained via Two Drying Methods. Processes 2023, 11, 2290. [Google Scholar] [CrossRef]
- Idawati, I.; Sasongko, N.A.; Santoso, A.D.; Sani, A.W.; Apriyanto, H.; Boceng, A. Life cycle assessment of cocoa farming sustainability by implementing compound fertilizer. Glob. J. Environ. Sci. Manag. 2024, 10, 837–856. [Google Scholar] [CrossRef]
- Huijbregts, M.A.; Steinmann, Z.J.; Elshout, P.M.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; Van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Jacob-Lopes, E.; Zepka, L.Q.; Deprá, M.C. Sustainability Metrics and Indicators of Environmental Impact: Industrial and Agricultural Life Cycle Assessment; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Protocol, G.H.G. Metodologia do GHG Protocol da Agricultura. Greenh. Gas Protoc. 2014, 1–54. [Google Scholar]
- Zelarayán, M.L.; Celentano, D.; Oliveira, E.C.; Triana, S.P.; Sodré, D.N.; Muchavisoy, K.H.M.; Rousseau, G.X. Impact of manipulation on the total carbon stock of riparian forests in the Eastern Amazon, Brazil. Acta Amaz. 2015, 45, 271–282. [Google Scholar] [CrossRef]
- Condé, T.M.; Condé, J.D.; Sousa, C.W.L. Açaí fruit production and carbon stock in managed plantations in Southeast of Roraima. Rev. Agroambiente On-Line 2020, 14, 1–15. [Google Scholar] [CrossRef]
- Veit, P.; Gibbs, D.; Reytar, K. Indigenous Forests Are Some of the Amazon’s Last Carbon Sinks [Internet]; World Resources Institute: Washington, DC, USA, 2023. [Google Scholar]
- IBGE—Instituto Brasileiro de Geografia e Estatística. 2022. Available online: https://www.ibge.gov.br/estatisticas/todos-os-produtos-estatisticas.html (accessed on 2 September 2024).
- Benoît Norris, C.; Traverzo, M.; Neugebauer, S.; Ekener, E.; Schaubroeck, T.; Russo Garrido, S. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020; United Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Goncalves, N.; Andrade, D.; Batista, A.; Cullen, L.; Souza, A.; Gomes, H.; Uezu, A. Potential economic impact of carbon sequestration in coffee agroforestry systems. Agrofor. Syst. 2021, 95, 419–430. [Google Scholar] [CrossRef]
- Goñas, M.; Rojas-Briceño, N.B.; Gómez Fernández, D.; Iliquín Trigoso, D.; Atalaya Marin, N.; Bravo, V.C.; Díaz-Valderrama, J.R.; Maicelo-Quintana, J.L.; Oliva-Cruz, M. Economic Profitability of Carbon Sequestration of Fine-Aroma Cacao Agroforestry Systems in Amazonas, Peru. Forests 2024, 15, 500. [Google Scholar] [CrossRef]
- Barbosa, L.C.; Silva, C.G.N.; Silva, D.A.S.; Gutierrez, D.M.G.; da Silva, A.O.; do Nascimento, J.P.P.G.; de Jesus Matos Viégas, I.; Galvão, J.R.; da Silva, S.P. Cost analysis of açaí production, cultivar chumbinho (euterpe olearacea mart.) on a rural property in the municipality of Capanema-PA in 2019. Braz. Appl. Sci. Rev. 2020, 4, 491–509. [Google Scholar] [CrossRef]
- CONAB Historical Series—Costs—Cocoa—2011 to 2023 (SB). 2024. Available online: https://www.conab.gov.br/info-agro/custos-de-producao/planilhas-de-custo-de-producao/itemlist/category/843-cacau (accessed on 25 July 2024).
- Nogueira, A.K.M.; Santana, A.C.D.; Garcia, W.S. The dynamics of the açaí fruit market in the State of Pará: From 1994 to 2009. Ceres Mag. 2013, 60, 324–331. [Google Scholar] [CrossRef]
- X-RATES, 2024. Brazilian Real Rates Table. Historic Lookup. Curr. Rates Your Bus. Available online: https://www.x-rates.com/historical/?from=USD&amount=1&date=2024-07-16 (accessed on 24 July 2024).
- Bandanaa, J.; Asante, I.K.; Egyir, I.S.; Schader, C.; Annang, T.Y.; Blockeel, J.; Kadzere, I.; Heidenreich, A. Sustainability performance of organic and conventional cocoa farming systems in Atwima Mponua District of Ghana. Environ. Sustain. Indic. 2021, 11, 100121. [Google Scholar] [CrossRef]
- Vervuurt, W.; Slingerland, M.A.; Pronk, A.A.; Van Bussel, L.G.J. Modelling green-house gas emissions of cacao production in the Republic of Côte d’Ivoire. Agrofor. Syst. 2022, 96, 417–434. [Google Scholar] [CrossRef]
- Asigbaase, M.; Dawoe, E.; Lomax, B.H.; Sjogersten, S. Biomass and carbon stocks of organic and conventional cocoa agroforests, Ghana. Agric. Ecosyst. Environ. 2021, 306, 107192. [Google Scholar] [CrossRef]
- Yao, M.K.; Koné, A.W.; Otinga, A.N.; Kassin, E.K.; Tano, Y. Carbon and nutrient cycling in tree plantations vs. natural forests: Implication for an efficient cocoa agroforestry system in West Africa. Reg. Environ. Change 2021, 21, 44. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.C.; Fleischmann, A.S.; Papa, F.; Paiva, R.C.; Wongchuig, S.; Melack, J.M.; Moreira, A.A.; Paris, A.; Ruhoff, A.; Barbosa, C.; et al. Amazon hydrology from space: Scientific advances and future challenges. Rev. Geophys. 2021, 59, e2020RG000728. [Google Scholar] [CrossRef]
- Gomes, C.V.A. Economic cycles of extractivism in the Amazon from the perspective of traveling naturalists. Bulletin of the Emílio Goeldi Museum of Pará. Hum. Sci. 2018, 13, 129–146. [Google Scholar] [CrossRef]
- Pérez-Neira, D.; Schneider, M.; Esche, L.; Armengot, L. Sustainability of food security in different cacao production systems: A land, labour, energy and food quality nexus approach. Resour. Conserv. Recycl. 2023, 190, 106874. [Google Scholar] [CrossRef]
- Armengot, L.; Beltrán, M.J.; Schneider, M.; Simón, X.; Pérez-Neira, D. Food-energy-water nexus of different cacao production systems from a LCA approach. J. Clean. Prod. 2021, 304, 126941. [Google Scholar] [CrossRef]
- Waldén, P.; Ollikainen, M.; Kahiluoto, H. Carbon revenue in the profitability of agroforestry relative to monocultures. Agrofor. Syst. 2020, 94, 15–28. [Google Scholar] [CrossRef]
- Brazil. Law No. 14,119 of January 13, 2021. Institutes the National Policy on Payment for Environmental Services and Amends Laws No. 8212 of July 24, 1991, 8629 of February 25, 1993, and 6015 of December 31, 1973, to Adapt Them to the New Policy—Official Gazette of the Union, Brasília, DF. 2021. Available online: https://www.in.gov.br/en/web/dou/-/lei-n-14.119-de-13-de-janeiro-de-2021-301303266 (accessed on 2 July 2024).
- Caicedo-Vargas, C.; Pérez-Neira, D.; Abad-González, J.; Gallar, D. Agroecology as a means to improve energy metabolism and economic management in smallholder cocoa farmers in the Ecuadorian Amazon. Sustain. Prod. Consum. 2023, 41, 201–212. [Google Scholar] [CrossRef]
- Perkiss, S.; Bernardi, C.; Dumay, J.; Haslam, J. A sticky chocolate problem: Impression management and counter accounts in the shaping of corporate image. Crit. Perspect. Account. 2021, 81, 102229. [Google Scholar] [CrossRef]
- Tham-Agyekum, E.K.; Wongnaa, C.A.; Kwapong, N.A.; Boansi, D.; Ankuyi, F.; Prah, S.; Bakang, J.E.; Okorley, E.L.; Laten, E. Impact of children’s appropriate work participation in cocoa farms on household welfare: Evidence from Ghana. J. Agric. Food Res. 2023, 14, 100901. [Google Scholar] [CrossRef]
- Villanueva, E.; Glorio-Paulet, P.; Giusti, M.M.; Sigurdson, G.T.; Yao, S.; Rodríguez-Saona, L.E. Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy. Talanta 2023, 257, 124386. [Google Scholar] [CrossRef] [PubMed]
- Vinci, G.; Ruggeri, M.; Gobbi, L.; Savastano, M. Social Life Cycle Assessment of Cocoa Production: Evidence from West Africa. Environ. Earth Sci. 2024, 13(10), 141. [Google Scholar] [CrossRef]
- Savchenko, Y.; Lopez-Acevedo, G.; Robertson, R. Globalization and the gender earnings gap: Evidence from Sri Lanka and Cambodia. In World Bank Policy Research Working Paper; World Bank: Washington, DC, USA, 2016; p. 7930. [Google Scholar]
- Venturieri, A.; de Oliveira, R.R.; Igawa, T.K.; Fernandes, K.D.; Adami, M.; de Oliveira Júnior, M.C.; Almeida, C.A.; Silva, L.G.; Cabral, A.I.; Pinto, J.F.; et al. The sustainable expansion of the cocoa crop in the state of Pará and its contribution to altered areas recovery and fire reduction. J. Geogr. Inf. Syst. 2022, 14, 294–313. [Google Scholar] [CrossRef]
- Futemma, C.; De Castro, F.; Brondizio, E.S. Farmers and social innovations in rural development: Collaborative arrangements in eastern Brazilian Amazon. Land Use Policy 2020, 99, 104999. [Google Scholar] [CrossRef]
Process | Unit | Amount | |
---|---|---|---|
Cocoa | Açaí | ||
Temporary planting | |||
Input | |||
Fungicide | kg/ha | 3.18 | - |
Foliar Fertilizer | kg/ha | 1.10 | - |
Fertilizer organic | kg/ha | 180.80 | 280.00 |
Potassium | kg/ha | - | 0.15 |
Water irrigation | m3/ha | 1.10 | 0.20 |
Plastic bag/polyethylene | kg/ha | 0.67 | 0.36 |
Preparing soil | |||
Plaster | kg/ha | 500.00 | 500.00 |
Limestone | kg/ha | 1000.00 | 1000.00 |
Cultivation | |||
Fertilizer | - | ||
Nitrogen | kg/ha | 105.60 | 100.20 |
Phosphorus | kg/ha | 64.51 | 127.80 |
Potassium | kg/ha | 52.82 | 169.20 |
Triple superphosphate | kg/ha | - | 80.00 |
Pesticides | - | ||
Herbicide | kg/ha | 11.00 | 3.00 |
Insecticide | kg/ha | 10.00 | - |
Water irrigation | m3/ha | 95.62 | 232.50 |
Diesel irrigation | L/ha | 19.09 | 46.41 |
Output (i) | |||
Cocoa | kg/ha | 935.00 | - |
Açaí (fresh fruit) | kg/ha | - | 3600.00 |
Beneficiation | |||
Cocoa | kg/ha | 935.00 | - |
Açaí (fresh fruit) | kg/ha | - | 3600.00 |
Water | m3/ha | - | 1.66 |
Hypochlorite | L/ha | - | 2.48 |
Electricity | kwh/ha | 8409.70 | 1086.00 |
Output (ii) | |||
Cocoa beans | kg/ha | 935.00 | - |
Pulp açaí | kg/ha | - | 2160.00 |
Process | Unit | Amount | |
---|---|---|---|
Cocoa | Açaí | ||
Temporary planting | |||
Input | |||
Fungicide | kg/ha | 2.23 | - |
Foliar Fertilizer | kg/ha | 0.77 | - |
Fertilizer organic | kg/ha | 126.56 | 84.00 |
Potassium | kg/ha | - | 0.05 |
Water irrigation | m3/ha | 0.77 | 0.06 |
Plastic bag/polyethylene | kg/ha | 0.47 | 0.11 |
Preparing soil | |||
Plaster | kg/ha | 350.00 | 150.00 |
Limestone | kg/ha | 700.00 | 300.00 |
Cultivation | |||
Fertilizer | - | ||
Nitrogen | kg/ha | 73.92 | 30.06 |
Phosphorus | kg/ha | 45.16 | 38.16 |
Potassium | kg/ha | 36.97 | 50.76 |
Triple superphosphate | kg/ha | - | 24.00 |
Pesticides | - | ||
Herbicide | kg/ha | 7.70 | 0.90 |
Insecticide | kg/ha | 7.00 | - |
Water irrigation | m3/ha | 66.93 | 69.75 |
Diesel irrigation | L/ha | 13.36 | 13.92 |
Output (i) | |||
Cocoa | kg/ha | 654.50 | - |
Açaí (fresh fruit) | kg/ha | - | 1080.00 |
Beneficiation | |||
Cocoa | kg/ha | 654.50 | - |
Açaí (fresh fruit) | kg/ha | - | 1080.00 |
Water | m3/ha | - | 0.50 |
Hypochlorite | L/ha | - | 0.74 |
Electricity | kwh/ha | 5886.79 | 325.94 |
Output (ii) | |||
Cocoa beans | kg/ha | 654.50 | - |
Pulp açaí | kg/ha | - | 648.00 |
Process | Unit | Amount | |
---|---|---|---|
Cocoa | Açaí | ||
Beneficiation | |||
Input | |||
Cocoa | 309.60 | - | |
Açaí (fresh fruit) | - | 2100.00 | |
Water | m3/ha | - | 0.97 |
Hypochlorite | L/ha | - | 1.45 |
Electricity | kwh/ha | 4204.85 | 633.79 |
Output | |||
Cocoa beans | kg/ha | 309.60 | - |
Pulp açaí | kg/ha | - | 1260.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, R.L.S.; Dias, R.R.; Deprá, M.C.; Schneider, A.T.; Dutra, D.A.; de Menezes, C.R.; Zepka, L.Q.; Jacob-Lopes, E. Commodities from Amazon Biome: A Guide to Choosing Sustainable Paths. Commodities 2025, 4, 8. https://doi.org/10.3390/commodities4020008
Machado RLS, Dias RR, Deprá MC, Schneider AT, Dutra DA, de Menezes CR, Zepka LQ, Jacob-Lopes E. Commodities from Amazon Biome: A Guide to Choosing Sustainable Paths. Commodities. 2025; 4(2):8. https://doi.org/10.3390/commodities4020008
Chicago/Turabian StyleMachado, Richard Luan Silva, Rosangela Rodrigues Dias, Mariany Costa Deprá, Adriane Terezinha Schneider, Darissa Alves Dutra, Cristiano R. de Menezes, Leila Q. Zepka, and Eduardo Jacob-Lopes. 2025. "Commodities from Amazon Biome: A Guide to Choosing Sustainable Paths" Commodities 4, no. 2: 8. https://doi.org/10.3390/commodities4020008
APA StyleMachado, R. L. S., Dias, R. R., Deprá, M. C., Schneider, A. T., Dutra, D. A., de Menezes, C. R., Zepka, L. Q., & Jacob-Lopes, E. (2025). Commodities from Amazon Biome: A Guide to Choosing Sustainable Paths. Commodities, 4(2), 8. https://doi.org/10.3390/commodities4020008