Does Conformation Affect the Analytical Response? A Structural and Infrared Spectral Evaluation of Phenethylamines (2C-H, 25H-NBOH, and 25I-NBOMe) Using In Silico Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Step I: Selection of Molecules
2.2. Step II: Construction of Inputs
2.3. Step III: Determination of Minimum Energy Structures
2.3.1. Step III.1. Determination of the Minimum Energy Structure from Crystallographic Structures
2.3.2. Step III.2. Determination of Minimum Energy Structures from Systematic Search
2.4. Step IV: Structure Comparison
2.5. Step V: Infrared Spectra
3. Results and Discussion
3.1. Step I. Adjustment of Structures
3.2. Step II. Construction of Inputs
3.3. Step III. Determination of Minimum Energy Structures
3.3.1. Step III.1. Determination of the Minimum Energy Structure from Crystallographic Structures
3.3.2. Step III.2. Determination of Minimum Energy Structures from Systematic Search
3.4. Step IV: Structure Comparison
3.5. Step V: Infrared Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Office for Drugs and Crime (UNODC). Early Warning Advisory on New Psychoactive Substances. 2022. Available online: https://www.unodc.org/LSS/Page/NPS (accessed on 22 February 2024).
- Rodrigues, C.H.P. Química a Serviço da Inteligência Forense: Estudo de Novas Substâncias Psicoativas por Metodologia In Silico; Universidade de São Paulo: Ribeirão Preto, Brazil, 2023. [Google Scholar]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New psychoactive substances: A review and updates. Ther. Adv. Psychopharmacol. 2020, 10, 204512532096719. [Google Scholar] [CrossRef] [PubMed]
- Meira, V.L.; de Oliveira, A.S.; Cohen, L.S.A.; de Bhering, A.C.; de Oliveira, K.M.; de Siqueira, D.S.; de Oliveira, M.A.M.; de Aquino Neto, F.R.; Vanini, G. Chemical and statistical analyses of blotter paper matrix drugs seized in the State of Rio de Janeiro. Forensic Sci. Int. 2021, 318, 110588. [Google Scholar] [CrossRef] [PubMed]
- Henrique Pinke, C.; Neves, L.; Gallati, M.; Paula Costa, M.; do Prado, C.; Antônio, J.; Thaís, A. Study of the Population’s Perception of the Brazilian Drug Law (Estudo Sobre a Percepção da População em Relação à lei de Drogas Brasileira). Electron. J. 2019, ssrn 3397354. [Google Scholar]
- Rodrigues, C.H.P.; Leite, V.B.P.; Bruni, A.T. Can NMR spectroscopy discriminate between NPS amphetamines and cathinones? An evaluation by in silico studies and chemometrics. Chemom. Intell. Lab. Syst. 2021, 210, 104265. [Google Scholar] [CrossRef]
- Chia, X.W.S.; Ong, M.C.; Yeo, Y.Y.C.; Ho, Y.J.; Binte Ahmad Nasir, E.I.; Tan, L.-L.J.; Chua, P.Y.; Yap, T.W.A.; Lim, J.L.W. Simultaneous analysis of 2Cs, 25-NBOHs, 25-NBOMes and LSD in seized exhibits using liquid chromatography–tandem mass spectrometry: A targeted approach. Forensic Sci. Int. 2019, 301, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Wagmann, L.; Brandt, S.D.; Stratford, A.; Maurer, H.H.; Meyer, M.R. Interactions of phenethylamine-derived psychoactive substances of the 2C-series with human monoamine oxidases. Drug Test. Anal. 2019, 11, 318–324. [Google Scholar] [CrossRef]
- Wagmann, L.; Hempel, N.; Richter, L.H.J.; Brandt, S.D.; Stratford, A.; Meyer, M.R. Phenethylamine-derived new psychoactive substances 2C-E-FLY, 2C-EF-FLY, and 2C-T-7-FLY: Investigations on their metabolic fate including isoenzyme activities and their toxicological detectability in urine screenings. Drug Test. Anal. 2019, 11, 1507–1521. [Google Scholar] [CrossRef]
- Ferri, B.G.; de Novais, C.O.; Bonani, R.S.; de Barros, W.A.; de Fátima, Â.; Vilela, F.C.; Giusti-Paiva, A. Psychoactive substances 25H-NBOMe and 25H-NBOH induce antidepressant-like behavior in male rats. Eur. J. Pharmacol. 2023, 955, 175926. [Google Scholar] [CrossRef]
- de Oliveira Magalhães, L.; Arantes, L.C.; Braga, J.W.B. Identification of NBOMe and NBOH in blotter papers using a handheld NIR spectrometer and chemometric methods. Microchem. J. 2019, 144, 151–158. [Google Scholar] [CrossRef]
- Andrade, A.C.G.; Rodrigues, C.H.P.; Mariotto, L.S.; Bruni, A.T. Aspectos forenses da lei de drogas: Desafios da ciência. Obs. Econ. Latinoam. 2023, 21, 2830–2853. [Google Scholar] [CrossRef]
- Maranhão, G.B.D.A. Desafio Analítico na Identificação, Quantificação e Caracterização das Catinonas Sintéticas no Contexto Forense; Universidade federal de Pernambuco, Centro de Tecnologias e Geociência Departamento de Engenharia Química: Recife, Brazil, 2022. [Google Scholar]
- Kumar, N.; Bansal, A.; Sarma, G.S.; Rawal, R.K. Chemometrics tools used in analytical chemistry: An overview. Talanta 2014, 123, 186–199. [Google Scholar] [CrossRef]
- McArdle, S.; Endo, S.; Aspuru-Guzik, A.; Benjamin, S.C.; Yuan, X. Quantum computational chemistry. Rev. Mod. Phys. 2020, 92, 015003. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef] [PubMed]
- Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in Drug Design—A Review. Curr. Top. Med. Chem. 2010, 10, 95–115. [Google Scholar] [CrossRef] [PubMed]
- United Nations Office On Drugs and Crime. Contemporary Issues on Drugs. 2023. Available online: https://www.unodc.org/res/WDR-2023/WDR23_Booklet_2.pdf (accessed on 22 February 2024).
- Alves de Barros, W.; Queiroz, M.P.; da Silva Neto, L.; Borges, G.M.; Martins, F.T.; de Fátima, Â. Synthesis of 25X-BOMes and 25X-NBOHs (X = H, I, Br) for pharmacological studies and as reference standards for forensic purposes. Tetrahedron Lett. 2021, 66, 152804. [Google Scholar] [CrossRef]
- Lucena, M.C.; Lopes, K.P.; Ayala, A.P.; Vidal, L.M.; Lopes, T.I.; Ricardo, N.M. The Use of Single Crystal X-ray Diffraction Technique for Characterization of 25I-NBOMe and 25R-NBOH (R = Cl, I, Br, Et) in Forensic Application. J. Braz. Chem. Soc. 2023, 34, 641–652. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform 2012, 4, 17. [Google Scholar] [CrossRef] [PubMed]
- Neese, F. Software update: The ORCA program system—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Fernández, J.A.; Unamuno, I.; Alejandro, E.; Longarte, A.; Castaño, F. Structure and identification of the amino-p-phenethylamine conformers. Phys. Chem. Chem. Phys. 2002, 4, 3297–3304. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, J. The B3LYP hybrid density functional study on solids. Front. Phys. China 2006, 1, 339–343. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Aouidate, A.; Ghaleb, A.; Ghamali, M.; Chtita, S.; Choukrad, M.; Sbai, A.; Bouachrine, M.; Lakhlifi, T. Combining DFT and QSAR studies for predicting psychotomimetic activity of substituted phenethylamines using statistical methods. J. Taibah Univ. Sci. 2016, 10, 787–796. [Google Scholar] [CrossRef]
- Frank Neese & Frank Wennmohs. ORCA Manual 5.0.2. 2021. Available online: https://orcaforum.kofo.mpg.de/app.php/dlext/?sid=3c9f3ea126c8f0db3d3a494ce025aad8 (accessed on 22 February 2024).
- Lewis-Atwell, T.; Townsend, P.A.; Grayson, M.N. Comparisons of different force fields in conformational analysis and searching of organic molecules: A review. Tetrahedron 2021, 79, 131865. [Google Scholar] [CrossRef]
- Tcharkhetian, A.E.G.; Bruni, A.T.; Rodrigues, C.H.P. Combining experimental and theoretical approaches to study the structural and spectroscopic properties of Flakka (α-pyrrolidinopentiophenone). Results Chem. 2021, 3, 100254. [Google Scholar] [CrossRef]
- Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des. 2019, 93, 12–20. [Google Scholar] [CrossRef]
- Halgren, T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996, 17, 490–519. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction. J. Chem. Phys. 1992, 97, 9173–9177. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, K.; Liu, Z.; Zhao, J.; Wang, J.; Dang, Y.; Hu, J. An optimization algorithm for conformer generation based on the bond contribution ranking. Comput. Biol. Chem. 2022, 100, 107751. [Google Scholar] [CrossRef]
- Semidalas, E.C.; Semidalas, C.E. Structure and vibrational spectra of p-coumaric acid dimers by DFT methods. Vib. Spectrosc. 2019, 101, 100–108. [Google Scholar] [CrossRef]
- Kesharwani, M.K.; Brauer, B.; Martin, J.M.L. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided? J. Phys. Chem. A 2015, 119, 1701–1714. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.F.D.O. Análise de Correlação do Bitcoin com NASDAQ-100 e Ouro; Universidade Federal de Santa Catarina Campus Florianópolis: Florrianópolis, Brazil, 2022. [Google Scholar]
- Iannucci, L. Chemometrics for Data Interpretation: Application of Principal Components Analysis (PCA) to Multivariate Spectroscopic Measurements. IEEE Instrum. Meas. Mag. 2021, 24, 42–48. [Google Scholar] [CrossRef]
- Sinnokrot, M.O.; Sherrill, C.D. Highly Accurate Coupled Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-Displaced Configurations. J. Phys. Chem. A 2004, 108, 10200–10207. [Google Scholar] [CrossRef]
- Sinnokrot, M.O.; Sherrill, C.D. High-Accuracy Quantum Mechanical Studies of π−π Interactions in Benzene Dimers. J. Phys. Chem. A 2006, 110, 10656–10668. [Google Scholar] [CrossRef]
- de Souza Corrêa, R. Xantonas Oxigenadas Bioativas: Cristalização, Estrutura e Suas Interações intra e Intermoleculares; Universidade de São Paulo: São Carlos, Brazil, 2009. [Google Scholar]
- Hunter, C.A.; Sanders, J.K.M. The nature of.pi.-.pi. interactions. J. Am. Chem. Soc. 1990, 112, 5525–5534. [Google Scholar] [CrossRef]
- Carter-Fenk, K.; Herbert, J.M. Electrostatics does not dictate the slip-stacked arrangement of aromatic π–π interactions. Chem. Sci. 2020, 11, 6758–6765. [Google Scholar] [CrossRef]
- Podeszwa, R.; Bukowski, R.; Szalewicz, K. Potential Energy Surface for the Benzene Dimer and Perturbational Analysis of π−π Interactions. J. Phys. Chem. A 2006, 110, 10345–10354. [Google Scholar] [CrossRef]
- Lee, E.C.; Kim, D.; Jurečka, P.; Tarakeshwar, P.; Hobza, P.; Kim, K.S. Understanding of Assembly Phenomena by Aromatic−Aromatic Interactions: Benzene Dimer and the Substituted Systems. J. Phys. Chem. A 2007, 111, 3446–3457. [Google Scholar] [CrossRef]
- Selvarengan, P.; Kolandaivel, P. Studies of solvent effects on conformers of glycine molecule. J. Mol. Struct. Theochem 2002, 617, 99–106. [Google Scholar] [CrossRef]
- Selvaraj, A.R.K.; Murugan, N.A.; Ågren, H. Solvent Polarity-Induced Conformational Unlocking of Asparagine. J. Phys. Chem. A 2012, 116, 11702–11708. [Google Scholar] [CrossRef] [PubMed]
- ORCA. ORCA Input Library. Available online: https://sites.google.com/site/orcainputlibrary/numerical-precision (accessed on 22 February 2024).
Molecule | B3LYP-D3BJ | PBE0-D3BJ |
---|---|---|
2C-H | −594.9350010 | −594.569666 |
25H-NBOH | −940.347749 | −939.771682 |
25I-NBOMe | −1274.733976 | −1274.146490 |
Total Enthalpies | Gibbs Free Energy | |||
---|---|---|---|---|
Molecule | B3LYP-D3BJ | PBE0-D3BJ | B3LYP-D3BJ | PBE0-D3BJ |
2C-H #1 | −594.936933 | −594.571658 | −594.990244 | −594.624771 |
25H-NBOH #11 | −940.364575 | −939.782176 | −940.431149 | −939.847965 |
25I-NBOMe #7 | −1274.744139 | −1274.155596 | −1274.817674 | −1274.229062 |
Direct Optimization | Conformational Analysis Conf. #1 | ||
---|---|---|---|
B3LYP-D3BJ | PBE0-D3BJ | B3LYP-D3BJ | PBE0-D3BJ |
0.037 | 0.047 | 0.582 | 0.588 |
Direct Optimization | Conformational Analysis | |||
---|---|---|---|---|
Conf. #11 | Conf. #7 | |||
B3LYP-D3BJ | PBE0-D3BJ | B3LYP-D3BJ | PBE0-D3BJ | PBE0-D3BJ |
0.165 | 0.207 | 2.079 | 4.013 | 2.670 |
Direct Optimization | Conformational Analysis Conf. #7 | ||
---|---|---|---|
B3LYP-D3BJ | PBE0-D3BJ | B3LYP-D3BJ | PBE0-D3BJ |
0.343 | 0.373 | 2.303 | 2.290 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariotto, L.S.; Rodrigues, C.H.P.; Bruni, A.T. Does Conformation Affect the Analytical Response? A Structural and Infrared Spectral Evaluation of Phenethylamines (2C-H, 25H-NBOH, and 25I-NBOMe) Using In Silico Methodology. Psychoactives 2024, 3, 78-92. https://doi.org/10.3390/psychoactives3010006
Mariotto LS, Rodrigues CHP, Bruni AT. Does Conformation Affect the Analytical Response? A Structural and Infrared Spectral Evaluation of Phenethylamines (2C-H, 25H-NBOH, and 25I-NBOMe) Using In Silico Methodology. Psychoactives. 2024; 3(1):78-92. https://doi.org/10.3390/psychoactives3010006
Chicago/Turabian StyleMariotto, Lívia Salviano, Caio Henrique Pinke Rodrigues, and Aline Thais Bruni. 2024. "Does Conformation Affect the Analytical Response? A Structural and Infrared Spectral Evaluation of Phenethylamines (2C-H, 25H-NBOH, and 25I-NBOMe) Using In Silico Methodology" Psychoactives 3, no. 1: 78-92. https://doi.org/10.3390/psychoactives3010006
APA StyleMariotto, L. S., Rodrigues, C. H. P., & Bruni, A. T. (2024). Does Conformation Affect the Analytical Response? A Structural and Infrared Spectral Evaluation of Phenethylamines (2C-H, 25H-NBOH, and 25I-NBOMe) Using In Silico Methodology. Psychoactives, 3(1), 78-92. https://doi.org/10.3390/psychoactives3010006