The Clinical Potential of Dimethyltryptamine: Breakthroughs into the Other Side of Mental Illness, Neurodegeneration, and Consciousness
Abstract
:1. Introduction: DMT’s Path to Medical Relevance
2. DMT Synthesis and Metabolic Transformation: Tryptophan’s Path to Hallucinogenic Activity and Oxidative Deamination
3. DMT’s Multi-Receptor Pharmacodynamics: Serotonergic, Sigma-1, and Trace Amine-Associated Pathways
3.1. Serotonin Receptors
3.2. Sigma-1 Receptor
3.3. Trace Amine-Associated Receptors (TAARs)
Receptor | Affinity: Ki (nM) | DMT Action | Signaling Pathway(s) | Downstream Effects | Reference(s) |
---|---|---|---|---|---|
5-HT1D | 39 | agonist | Gi/G0 | inhibits neurotransmission | [22,37,38,39,40] |
5-HT2A | 127 | agonist | Gq | increases phosphoinositide hydrolysis; increases mTOR-dependent structural plasticity, neurite growth, and spinogenesis | [22,55,56] |
5-HT1B | 129 | agonist | Gi/G0 | inhibits neurotransmission | [22,37] |
5-HT1A | 183 | agonist | Gi/G0 | acute inhibition of dorsal raphe firing; anxiolytic, and antidepressant | [22] |
5-HT2B | 184 | agonist | Gq and β-arrestin 2 | transport and regulation of serotonin plasma levels; vasoconstriction and platelet morphology; maintains cardiac valve leaflets | [22,57,58,59] |
5-HT7 | 206 | partial agonist | adenylate cyclase; CDK5, and GTPase Cdc42 | serotonergic system-related neuropsychiatric disorders; prolonged activation of dendritic spine formation and synaptogenesis in cortical and striatal neurons; acute activation of neurite elongation in striatal and cortical neurons; establishment of correct neuronal cytoarchitecture during development and remodeling of neuronal circuits in the mature brain | [22,38,39,40,60,61,62] |
5-HT2C | 360 | agonist | Gq | desensitizes over time, unlike 5-HT2A | [22,63] |
5-HT6 | 464 | partial agonist | Gs, Erk1/2, Jun, mTOR | modulation of cognitive processes, mood regulation, and motivated behaviors | [22,38,39,40,64,65] |
5-HT1E | 517 | agonist | Gi/G0 | inhibits neurotransmission | [22,37] |
5-HT5A | 2135 | partial agonist | Gi and G0 | control of circadian rhythms, mood, and cognitive function, and implicated in schizophrenia | [22,66,67] |
Sigma-1 | Kd ~15 µM | agonist | BDNF and EGF | neural plasticity, protection from oxidative stress, and antidepressant | [22,51,68] |
TAAR1 | Unknown | agonist | Gs | dopamine efflux via dopamine transporter internalization | [22,54,69] |
4. Elucidating the Molecular Basis of DMT’s Role in Neuronal Development: Insights into Neurogenesis and Neuritogenesis Mechanisms
5. Therapeutic Insights for DMT: Bridging Animal Models and Clinical Studies in Humans
5.1. DMT and Analogs: Neurobehavioral Insights from Rodent Studies
5.2. Exploring the Effects and Safety of DMT in Healthy Subjects through Clinical Trials
5.3. DMT and 5-MeO-DMT as Emerging Treatments for Post-Traumatic Stress Disorder (PTSD) and Treatment-Resistant Depression
5.4. Unlocking DMT’s Promise in Treating Neurodegenerative Disorders
5.4.1. Stroke
5.4.2. Parkinson’s Disease (PD)
5.4.3. Alzheimer’s Disease (AD)
6. DMT’s Influence on Brain Network Reorganization and Consciousnesses: Insights from Psychedelic Neuroimaging
6.1. Unraveling the Impact of DMT on Brain Network Connectivity
6.2. Insights into Consciousness Alteration from DMT-Induced Changes in Brain Function and Perception
7. Future Directions and Challenges: Exploring the Potential of DMT and Other Psychedelics in Clinical Practice
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rivier, L.; Lindgren, J.-E. “Ayahuasca”, the South American Hallucinogenic Drink: An Ethnobotanical and Chemical Investigation. Econ. Bot. 1972, 26, 101–129. [Google Scholar] [CrossRef]
- Rodríguez, L.; López, A.; Moyna, G.; Seoane, G.A.; Davyt, D.; Vázquez, Á.; Hernández, G.; Carrera, I. New Insights into the Chemical Composition of Ayahuasca. ACS Omega 2022, 7, 12307–12317. [Google Scholar] [CrossRef]
- Houle, S.K.D.; Evans, D.; Carter, C.A.; Schlagenhauf, P. Ayahuasca and the Traveller: A Scoping Review of Risks and Possible Benefits. Travel Med. Infect. Dis. 2021, 44, 102206. [Google Scholar] [CrossRef]
- James, E.; Keppler, J.; Robertshaw, T.L.; Sessa, B. N,N-dimethyltryptamine and Amazonian Ayahuasca Plant Medicine. Hum. Psychopharmacol.-Clin. Exp. 2022, 37, e2835. [Google Scholar] [CrossRef]
- Rossi, G.N.; Guerra, L.T.L.; Baker, G.B.; Dursun, S.M.; Saiz, J.C.B.; Hallak, J.E.C.; dos Santos, R.G. Molecular Pathways of the Therapeutic Effects of Ayahuasca, a Botanical Psychedelic and Potential Rapid-Acting Antidepressant. Biomolecules 2022, 12, 1618. [Google Scholar] [CrossRef] [PubMed]
- Daldegan-Bueno, D.; Simionato, N.M.; Favaro, V.M.; Maia, L.O. The Current State of Ayahuasca Research in Animal Models: A Systematic Review. Progress. Neuro-Psychopharmacol. Biol. Psychiatry 2023, 125, 110738. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Luís, Â.; Gallardo, E.; Duarte, A.P. A Systematic Review on the Therapeutic Effects of Ayahuasca. Plants 2023, 12, 2573. [Google Scholar] [CrossRef]
- Kometer, M.; Vollenweider, F.X. Serotonergic Hallucinogen-Induced Visual Perceptual Alterations. In Behavioral Neurobiology of Psychedelic Drugs; Halberstadt, A.L., Vollenweider, F.X., Nichols, D.E., Eds.; Current Topics in Behavioral Neurosciences; Springer: Berlin/Heidelberg, Germany, 2016; Volume 36, pp. 257–282. ISBN 978-3-662-55878-2. [Google Scholar]
- Chambers, M.I.; Appley, M.G.; Longo, C.M.; Musah, R.A. Detection and Quantification of Psychoactive N,N-Dimethyltryptamine in Ayahuasca Brews by Ambient Ionization High-Resolution Mass Spectrometry. ACS Omega 2020, 5, 28547–28554. [Google Scholar] [CrossRef]
- Burchett, S.A.; Hicks, T.P. The Mysterious Trace Amines: Protean Neuromodulators of Synaptic Transmission in Mammalian Brain. Prog. Neurobiol. 2006, 79, 223–246. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E. N,N-Dimethyltryptamine and the Pineal Gland: Separating Fact from Myth. J. Psychopharmacol. 2018, 32, 30–36. [Google Scholar] [CrossRef]
- Barker, S.A.; Borjigin, J.; Lomnicka, I.; Strassman, R. LC/MS/MS Analysis of the Endogenous Dimethyltryptamine Hallucinogens, Their Precursors, and Major Metabolites in Rat Pineal Gland Microdialysate. Biomed. Chromatogr. 2013, 27, 1690–1700. [Google Scholar] [CrossRef]
- Osmond, H.; Smythies, J. Schizophrenia: A New Approach. Br. J. Psychiatry 1952, 98, 309–315. [Google Scholar] [CrossRef]
- Tanimukai, H.; Ginther, R.; Spaide, J.; Bueno, J.R.; Himwich, H.E. Detection of Psychotomimetic N,N-Dimethylated Indoleamines in the Urine of Four Schizophrenic Patients. Br. J. Psychiatry 1970, 117, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Rodnight, R.; Murray, R.M.; Oon, M.C.H.; Brockington, I.F.; Nicholls, P.; Birley, J.L.T. Urinary Dimethyltryptamine and Psychiatric Symptomatology and Classification. Psychol. Med. 1977, 6, 649–657. [Google Scholar] [CrossRef]
- Murray, R.M.; Oon, M.C.H.; Rodnight, R.; Birley, J.L.T.; Smith, A. Increased Excretion of Dimethyltryptamine and Certain Features of Psychosis: A Possible Association. Arch. Gen. Psychiatry 1979, 36, 644–649. [Google Scholar] [CrossRef]
- Checkley, S.A.; Murray, R.M.; Oon, M.C.H.; Rodnight, R.; Birley, J.L.T. A Longitudinal Study of Urinary Excretion of N,N-Dimethyltryptamine in Psychotic Patients. Br. J. Psychiatry 1980, 137, 236–239. [Google Scholar] [CrossRef]
- Acero, V.P.; Cribas, E.S.; Browne, K.D.; Rivellini, O.; Burrell, J.C.; O’Donnell, J.C.; Das, S.; Cullen, D.K. Bedside to Bench: The Outlook for Psychedelic Research. Front. Pharmacol. 2023, 14, 1240295. [Google Scholar] [CrossRef]
- Chi, T.; Gold, J.A. A Review of Emerging Therapeutic Potential of Psychedelic Drugs in the Treatment of Psychiatric Illnesses. J. Neurol. Sci. 2020, 411, 116715. [Google Scholar] [CrossRef] [PubMed]
- Kozlowska, U.; Nichols, C.; Wiatr, K.; Figiel, M. From Psychiatry to Neurology: Psychedelics as Prospective Therapeutics for Neurodegenerative Disorders. J. Neurochem. 2021, 162, 89–108. [Google Scholar] [CrossRef] [PubMed]
- Strassman, R.J.; Qualls, C.R. Dose-Response Study of N,N-Dimethyltryptamine in Humans, I. Neuroendocrine, Autonomic, and Cardiovascular Effects. Arch. Gen. Psychiatry 1994, 51, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Cameron, L.P.; Olson, D.E. Dark Classics in Chemical Neuroscience: N,N-Dimethyltryptamine (DMT). ACS Chem. Neurosci. 2018, 9, 2344–2357. [Google Scholar] [CrossRef] [PubMed]
- PubChem. Dimethyltryptamine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6089 (accessed on 19 September 2023).
- Nichols, D.E. Studies of the Relationship between Molecular Structure and Hallucinogenic Activity. Pharmacol. Biochem. Behav. 1986, 24, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Carbonaro, T.M.; Gatch, M.B. Neuropharmacology of N,N-Dimethyltryptamine. Brain Res. Bull. 2016, 126, 74–88. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.-L.; Sargeant, S.; Narasimhachari, N. Indolethylamine-N-Methyltransferase in Developing Rabbit Lung. Dev. Psychobiol. 1974, 7, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Dean, J.G.; Liu, T.; Huff, S.; Sheler, B.; Barker, S.A.; Strassman, R.J.; Wang, M.M.; Borjigin, J. Biosynthesis and Extracellular Concentrations of N,N-Dimethyltryptamine (DMT) in Mammalian Brain. Sci. Rep. 2019, 9, 9333. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, J.H.; Bouso, J.C. Significance of Mammalian N,N-Dimethyltryptamine (DMT): A 60-Year-Old Debate. J. Psychopharmacol. 2022, 36, 905–919. [Google Scholar] [CrossRef]
- Brandt, S.D.; Moore, S.A.; Freeman, S.; Kanu, A.B. Characterization of the Synthesis of N,N-Dimethyltryptamine by Reductive Amination Using Gas Chromatography Ion Trap Mass Spectrometry. Drug Test. Anal. 2010, 2, 330–338. [Google Scholar] [CrossRef]
- Speeter, M.E.; Anthony, W.C. The Action of Oxalyl Chloride on Indoles: A New Approach to Tryptamines. J. Am. Chem. Soc. 1954, 76, 6208–6210. [Google Scholar] [CrossRef]
- Frecska, E.; Bokor, P.; Winkelman, M. The Therapeutic Potentials of Ayahuasca: Possible Effects against Various Diseases of Civilization. Front. Pharmacol. 2016, 7, 35. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.M.; Pieper, W.A. The Effects of N,N-Dimethyltryptamine on Operant Behavior in Squirrel Monkeys. Psychopharmacologia 1973, 29, 107–112. [Google Scholar] [CrossRef]
- Gillin, J.C.; Cannon, E.; Magyar, R.; Schwartz, M.; Wyatt, R.J. Failure of N,N-Dimethyltryptamine to Evoke Tolerance in Cats. Biol. Psychiatry 1973, 7, 213–220. [Google Scholar] [PubMed]
- Strassman, R.J.; Qualls, C.R.; Berg, L.M. Differential Tolerance to Biological and Subjective Effects of Four Closely Spaced Doses of N,N-Dimethyltryptamine in Humans. Biol. Psychiatry 1996, 39, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.E.; Isbell, H.; Miner, E.J.; Logan, C.R. The Effect of N,N-Dimethyltryptamine in Human Subjects Tolerant to Lysergic Acid Diethylamide. Psychopharmacologia 1964, 5, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Jenner, P.; Marsden, C.D.; Marsden, C.D.; Thanki, C.M. Behavioural Changes Induced by N,N-Dimethyl-Tryptamine in Rodents. Br. J. Pharmacol. 1980, 69, 69–80. [Google Scholar] [CrossRef]
- Lanfumey, L.; Hamon, M. 5-HT1 Receptors. Curr. Drug Targets-CNS Neurol. Disord. 2004, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Keiser, M.J.; Setola, V.; Irwin, J.J.; Laggner, C.; Abbas, A.I.; Hufeisen, S.J.; Jensen, N.H.; Kuijer, M.B.; Matos, R.C.; Tran, T.B.; et al. Predicting New Molecular Targets for Known Drugs. Nature 2009, 462, 175–181. [Google Scholar] [CrossRef]
- Pierce, P.A.; Peroutka, S.J. Hallucinogenic Drug Interactions with Neurotransmitter Receptor Binding Sites in Human Cortex. Psychopharmacology 1989, 97, 118–122. [Google Scholar] [CrossRef] [PubMed]
- Heuring, R.E.; Peroutka, S.J. Characterization of a Novel 3H-5-Hydroxytryptamine Binding Site Subtype in Bovine Brain Membranes. J. Neurosci. 1987, 7, 894–903. [Google Scholar] [CrossRef]
- Barker, S.A. N,N-Dimethyltryptamine (DMT), an Endogenous Hallucinogen: Past, Present, and Future Research to Determine Its Role and Function. Front. Neurosci. 2018, 12, 536. [Google Scholar] [CrossRef]
- Kaplan, J.; Mandel, L.R.; Stillman, R.; Walker, R.W.; VandenHeuvel, W.J.A.; Gillin, J.C.; Wyatt, R.J. Blood and Urine Levels of N,N-Dimethyltryptamine Following Administration of Psychoactive Dosages to Human Subjects. Psychopharmacologia 1974, 38, 239–245. [Google Scholar] [CrossRef]
- Riba, J.; McIlhenny, E.H.; Bouso, J.C.; Barker, S.A. Metabolism and Urinary Disposition of N,N-dimethyltryptamine after Oral and Smoked Administration: A Comparative Study. Drug Test. Anal. 2015, 7, 401–406. [Google Scholar] [CrossRef]
- McClure-Begley, T.D.; Roth, B.L. The Promises and Perils of Psychedelic Pharmacology for Psychiatry. Nat. Rev. Drug Discov. 2022, 21, 463–473. [Google Scholar] [CrossRef]
- Wallach, J.V. Endogenous Hallucinogens as Ligands of the Trace Amine Receptors: A Possible Role in Sensory Perception. Med. Hypotheses 2009, 72, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Su, T.-P.; Hayashi, T.; Vaupel, D.B. When the Endogenous Hallucinogenic Trace Amine N,N-Dimethyltryptamine Meets the Sigma-1 Receptor. Sci. Signal. 2009, 2, pe12. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Su, T. The Sigma Receptor: Evolution of the Concept in Neuropsychopharmacology. Curr. Neuropharmacol. 2005, 3, 267–280. [Google Scholar] [CrossRef]
- Stern, P. The Sigma-1 Receptor—Orphan No More. Sci. Signal. 2009, 2, ec57. [Google Scholar] [CrossRef]
- Kourrich, S.; Su, T.-P.; Fujimoto, M.; Bonci, A. The Sigma-1 Receptor: Roles in Neuronal Plasticity and Disease. Trends Neurosci. 2012, 35, 762–771. [Google Scholar] [CrossRef]
- Ryskamp, D.A.; Korban, S.; Zhemkov, V.; Kraskovskaya, N.; Bezprozvanny, I. Neuronal Sigma-1 Receptors: Signaling Functions and Protective Roles in Neurodegenerative Diseases. Front. Neurosci. 2019, 13, 862. [Google Scholar] [CrossRef]
- Fontanilla, D.; Johannessen, M.; Hajipour, A.R.; Cozzi, N.V.; Jackson, M.B.; Ruoho, A.E. The Hallucinogen N,N-Dimethyltryptamine (DMT) Is an Endogenous Sigma-1 Receptor Regulator. Science 2009, 323, 934–937. [Google Scholar] [CrossRef]
- Nguyen, L.; Lucke-Wold, B.; Mookerjee, S.A.; Kaushal, N.; Matsumoto, R.R. Sigma-1 Receptors and Neurodegenerative Diseases: Towards a Hypothesis of Sigma-1 Receptors as Amplifiers of Neurodegeneration and Neuroprotection. Adv. Exp. Med. Biol. 2017, 964, 133–152. [Google Scholar] [CrossRef]
- Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; et al. Trace Amines: Identification of a Family of Mammalian G Protein-Coupled Receptors. Proc. Natl. Acad. Sci. USA. 2001, 98, 8966–8971. [Google Scholar] [CrossRef]
- Bunzow, J.R.; Sonders, M.S.; Arttamangkul, S.; Harrison, L.M.; Zhang, G.; Quigley, D.I.; Darland, T.; Suchland, K.L.; Pasumamula, S.; Kennedy, J.L.; et al. Amphetamine, 3,4-Methylenedioxymethamphetamine, Lysergic Acid Diethylamide, and Metabolites of the Catecholamine Neurotransmitters Are Agonists of a Rat Trace Amine Receptor. Mol. Pharmacol. 2001, 60, 1181–1188. [Google Scholar] [CrossRef]
- Glennon, R.A.; Young, R.; Rosecrans, J.A.; Kallman, M.J. Hallucinogenic Agents as Discriminative Stimuli: A Correlation with Serotonin Receptor Affinities. Psychopharmacology 1980, 68, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Ly, C.; Greb, A.C.; Cameron, L.P.; Wong, J.M.; Barragan, E.V.; Wilson, P.C.; Burbach, K.F.; Zarandi, S.S.; Sood, A.; Paddy, M.R.; et al. Psychedelics Promote Structural and Functional Neural Plasticity. Cell Rep. 2018, 23, 3170–3182. [Google Scholar] [CrossRef] [PubMed]
- Callebert, J.; Esteve, J.M.; Hervé, P.; Peoc’h, K.; Tournois, C.; Drouet, L.; Launay, J.M.; Maroteaux, L. Evidence for a Control of Plasma Serotonin Levels by 5-Hydroxytryptamine2B Receptors in Mice. J. Pharmacol. Exp. Ther. 2006, 317, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Elangbam, C.S.; Job, L.E.; Zadrozny, L.M.; Barton, J.C.; Yoon, L.W.; Gates, L.D.; Slocum, N. 5-Hydroxytryptamine (5HT)-Induced Valvulopathy: Compositional Valvular Alterations Are Associated with 5HT2B Receptor and 5HT Transporter Transcript Changes in Sprague-Dawley Rats. Exp. Toxicol. Pathol. 2008, 60, 253–262. [Google Scholar] [CrossRef] [PubMed]
- McCorvy, J.D.; Wacker, D.; Wang, S.; Agegnehu, B.; Liu, J.; Lansu, K.; Tribo, A.R.; Olsen, R.H.J.; Che, T.; Jin, J.; et al. Structural Determinants of 5-HT2B Receptor Activation and Biased Agonism. Nat. Struct. Mol. Biol. 2018, 25, 787–796. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Monsma, F.J.; Metcalf, M.A.; Jose, P.A.; Hamblin, M.W.; Sibley, D.R. Molecular Cloning and Expression of a 5-Hydroxytryptamine7 Serotonin Receptor Subtype. J. Biol. Chem. 1993, 268, 18200–18204. [Google Scholar] [CrossRef]
- Speranza, L.; Labus, J.; Volpicelli, F.; Guseva, D.; Lacivita, E.; Leopoldo, M.; Bellenchi, G.C.; di Porzio, U.; Bijata, M.; Perrone-Capano, C.; et al. Serotonin 5-HT7 Receptor Increases the Density of Dendritic Spines and Facilitates Synaptogenesis in Forebrain Neurons. J. Neurochem. 2017, 141, 647–661. [Google Scholar] [CrossRef]
- Volpicelli, F.; Speranza, L.; di Porzio, U.; Crispino, M.; Perrone-Capano, C. The Serotonin Receptor 7 and the Structural Plasticity of Brain Circuits. Front. Behav. Neurosci. 2014, 8, 318. [Google Scholar] [CrossRef]
- Smith, R.L.; Canton, H.; Barrett, R.J.; Sanders-Bush, E. Agonist Properties of N,N-Dimethyltryptamine at Serotonin 5-HT2A and 5-HT2C Receptors. Pharmacol. Biochem. Behav. 1998, 61, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Fone, K.C.F. An Update on the Role of the 5-Hydroxytryptamine6 Receptor in Cognitive Function. Neuropharmacology 2008, 55, 1015–1022. [Google Scholar] [CrossRef]
- Karila, D.; Freret, T.; Bouet, V.; Boulouard, M.; Dallemagne, P.; Rochais, C. Therapeutic Potential of 5-HT6 Receptor Agonists. J. Med. Chem. 2015, 58, 7901–7912. [Google Scholar] [CrossRef]
- Francken, B.J.; Jurzak, M.; Vanhauwe, J.F.; Luyten, W.H.; Leysen, J.E. The Human 5-ht5A Receptor Couples to Gi/Go Proteins and Inhibits Adenylate Cyclase in HEK 293 Cells. Eur. J. Pharmacol. 1998, 361, 299–309. [Google Scholar] [CrossRef]
- Thomas, D.R. 5-ht5A Receptors as a Therapeutic Target. Pharmacol. Ther. 2006, 111, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Takebayashi, M.; Hayashi, T.; Su, T.-P. σ-1 Receptors Potentiate Epidermal Growth Factor Signaling towards Neuritogenesis in PC12 Cells: Potential Relation to Lipid Raft Reconstitution. Synapse 2004, 53, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.M. The Emerging Role of Trace Amine Associated Receptor 1 in the Functional Regulation of Monoamine Transporters and Dopaminergic Activity. J. Neurochem. 2011, 116, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Shao, L.-X.; Liao, C.; Gregg, I.; Davoudian, P.A.; Savalia, N.K.; Delagarza, K.; Kwan, A.C. Psilocybin Induces Rapid and Persistent Growth of Dendritic Spines in Frontal Cortex in Vivo. Neuron 2021, 109, 2535–2544. [Google Scholar] [CrossRef] [PubMed]
- Raval, N.R.; Johansen, A.; Donovan, L.L.; Ros, N.F.; Ozenne, B.; Hansen, H.D.; Knudsen, G.M. A Single Dose of Psilocybin Increases Synaptic Density and Decreases 5-HT2A Receptor Density in the Pig Brain. Int. J. Mol. Sci. 2021, 22, 835. [Google Scholar] [CrossRef]
- de la Fuente Revenga, M.; Zhu, B.; Guevara, C.A.; Naler, L.B.; Saunders, J.M.; Zhou, Z.; Toneatti, R.; Sierra, S.; Wolstenholme, J.T.; Beardsley, P.M.; et al. Prolonged Epigenomic and Synaptic Plasticity Alterations Following Single Exposure to a Psychedelic in Mice. Cell Rep. 2021, 37, 109836. [Google Scholar] [CrossRef] [PubMed]
- López-Giménez, J.F.; González-Maeso, J. Hallucinogens and Serotonin 5-HT2A Receptor-Mediated Signaling Pathways. Curr. Top. Behav. Neurosci. 2018, 36, 45–73. [Google Scholar] [CrossRef]
- Hoeffer, C.A.; Klann, E. mTOR Signaling: At the Crossroads of Plasticity, Memory, and Disease. Trends Neurosci. 2010, 33, 67–75. [Google Scholar] [CrossRef]
- Morales-García, J.A.; Calleja-Conde, J.; López-Moreno, J.A.; Alonso-Gil, S.; Sanz-SanCristobal, M.; Riba, J.; Perez-Castillo, A. N,N-Dimethyltryptamine Compound Found in the Hallucinogenic Tea Ayahuasca, Regulates Adult Neurogenesis in Vitro and in Vivo. Transl. Psychiatry 2020, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Borbély, E.; Varga, V.; Szögi, T.; Schuster, I.; Bozsó, Z.; Penke, B.; Fülöp, L. Impact of Two Neuronal Sigma-1 Receptor Modulators, PRE084 and DMT, on Neurogenesis and Neuroinflammation in an Aβ1–42-Injected, Wild-Type Mouse Model of AD. Int. J. Mol. Sci. 2022, 23, 2514. [Google Scholar] [CrossRef] [PubMed]
- Kobe, F.; Guseva, D.; Jensen, T.P.; Wirth, A.; Renner, U.; Hess, D.; Müller, M.; Medrihan, L.; Zhang, W.; Zhang, M.; et al. 5-HT7R/G12 Signaling Regulates Neuronal Morphology and Function in an Age-Dependent Manner. J. Neurosci. 2012, 32, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Canese, R.; Zoratto, F.; Altabella, L.; Porcari, P.; Mercurio, L.; de Pasquale, F.; Butti, E.; Martino, G.; Lacivita, E.; Leopoldo, M.; et al. Persistent Modification of Forebrain Networks and Metabolism in Rats Following Adolescent Exposure to a 5-HT7 Receptor Agonist. Psychopharmacology 2015, 232, 75–89. [Google Scholar] [CrossRef]
- Dayer, A.G.; Jacobshagen, M.; Chaumont-Dubel, S.; Marin, P. 5-HT6 Receptor: A New Player Controlling the Development of Neural Circuits. ACS Chem. Neurosci. 2015, 6, 951–960. [Google Scholar] [CrossRef]
- Duhr, F.; Déléris, P.; Raynaud, F.; Séveno, M.; Morisset-Lopez, S.; Mannoury la Cour, C.; Millan, M.J.; Bockaert, J.; Marin, P.; Chaumont-Dubel, S. Cdk5 Induces Constitutive Activation of 5-HT6 Receptors to Promote Neurite Growth. Nat. Chem. Biol. 2014, 10, 590–597. [Google Scholar] [CrossRef]
- Popova, N.K.; Ilchibaeva, T.V.; Naumenko, V.S. Neurotrophic Factors (BDNF and GDNF) and the Serotonergic System of the Brain. Biochemistry 2017, 82, 308–317. [Google Scholar] [CrossRef]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, A.; Constantine-Paton, M. Post-Synaptic BDNF-TrkB Signaling in Synapse Maturation, Plasticity and Disease. Dev. Neurobiol. 2010, 70, 304–322. [Google Scholar] [CrossRef]
- Gewirtz, J.C.; Chen, A.C.; Terwilliger, R.; Duman, R.C.; Marek, G.J. Modulation of DOI-Induced Increases in Cortical BDNF Expression by Group II mGlu Receptors. Pharmacol. Biochem. Behav. 2002, 73, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Desouza, L.A.; Benekareddy, M.; Fanibunda, S.E.; Mohammad, F.; Janakiraman, B.; Ghai, U.; Gur, T.; Blendy, J.A.; Vaidya, V.A. The Hallucinogenic Serotonin2A Receptor Agonist, 2,5-Dimethoxy-4-Iodoamphetamine, Promotes cAMP Response Element Binding Protein-Dependent Gene Expression of Specific Plasticity-Associated Genes in the Rodent Neocortex. Front. Mol. Neurosci. 2021, 14, 790213. [Google Scholar] [CrossRef]
- Fujimoto, M.; Hayashi, T.; Urfer, R.; Mita, S.; Su, T.-P. Sigma-1 Receptor Chaperones Regulate the Secretion of Brain-Derived Neurotrophic Factor. Synapse 2012, 66, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K. Sigma-1 Receptor Chaperone and Brain-Derived Neurotrophic Factor: Emerging Links between Cardiovascular Disease and Depression. Prog. Neurobiol. 2013, 100, 15–29. [Google Scholar] [CrossRef]
- Moliner, R.; Girych, M.; Brunello, C.A.; Kovaleva, V.; Biojone, C.; Enkavi, G.; Antenucci, L.; Kot, E.F.; Goncharuk, S.A.; Kaurinkoski, K.; et al. Psychedelics Promote Plasticity by Directly Binding to BDNF Receptor TrkB. Nat. Neurosci. 2023, 26, 1032–1041. [Google Scholar] [CrossRef] [PubMed]
- Holze, F.; Vizeli, P.; Ley, L.; Müller, F.; Dolder, P.; Stocker, M.; Duthaler, U.; Varghese, N.; Eckert, A.; Borgwardt, S.; et al. Acute Dose-Dependent Effects of Lysergic Acid Diethylamide in a Double-Blind Placebo-Controlled Study in Healthy Subjects. Neuropsychopharmacology 2021, 46, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Hutten, N.R.P.W.; Mason, N.L.; Dolder, P.C.; Theunissen, E.L.; Holze, F.; Liechti, M.E.; Varghese, N.; Eckert, A.; Feilding, A.; Ramaekers, J.G.; et al. Low Doses of LSD Acutely Increase BDNF Blood Plasma Levels in Healthy Volunteers. ACS Pharmacol. Transl. Sci. 2020, 4, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Becker, A.M.; Klaiber, A.; Holze, F.; Istampoulouoglou, I.; Duthaler, U.; Varghese, N.; Eckert, A.; Liechti, M.E. Ketanserin Reverses the Acute Response to LSD in a Randomized, Double-Blind, Placebo-Controlled, Crossover Study in Healthy Participants. Int. J. Neuropsychopharmacol. 2022, 26, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Vogt, S.B.; Ley, L.; Erne, L.; Straumann, I.; Becker, A.M.; Klaiber, A.; Holze, F.; Vandersmissen, A.; Mueller, L.; Duthaler, U.; et al. Acute Effects of Intravenous DMT in a Randomized Placebo-Controlled Study in Healthy Participants. Transl. Psychiatry 2023, 13, 172. [Google Scholar] [CrossRef] [PubMed]
- Holze, F.; Ley, L.; Müller, F.; Becker, A.M.; Straumann, I.; Vizeli, P.; Kuehne, S.S.; Roder, M.A.; Duthaler, U.; Kolaczynska, K.E.; et al. Direct Comparison of the Acute Effects of Lysergic Acid Diethylamide and Psilocybin in a Double-Blind Placebo-Controlled Study in Healthy Subjects. Neuropsychopharmacology 2022, 47, 1180–1187. [Google Scholar] [CrossRef]
- He, X.P.; Pan, E.; Sciarretta, C.; Minichiello, L.; McNamara, J.O. Disruption of TrkB-Mediated Phospholipase Cγ Signaling Inhibits Limbic Epileptogenesis. J. Neurosci. 2010, 30, 6188–6196. [Google Scholar] [CrossRef]
- Revest, J.-M.; Le Roux, A.; Roullot-Lacarrière, V.; Kaouane, N.; Vallée, M.; Kasanetz, F.; Rougé-Pont, F.; Tronche, F.; Desmedt, A.; Piazza, P.V. BDNF-TrkB Signaling through Erk1/2MAPK Phosphorylation Mediates the Enhancement of Fear Memory Induced by Glucocorticoids. Mol. Psychiatry 2014, 19, 1001–1009. [Google Scholar] [CrossRef]
- Hua, Z.; Gu, X.; Dong, Y.; Tan, F.; Liu, Z.; Thiele, C.J.; Li, Z. PI3K and MAPK Pathways Mediate the BDNF/TrkB-Increased Metastasis in Neuroblastoma. Tumor Biol. 2016, 37, 16227–16236. [Google Scholar] [CrossRef] [PubMed]
- Takei, N.; Inamura, N.; Kawamura, M.; Namba, H.; Hara, K.; Yonezawa, K.; Nawa, H. Brain-Derived Neurotrophic Factor Induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites. J. Neurosci. 2004, 24, 9760–9769. [Google Scholar] [CrossRef] [PubMed]
- Weisstaub, N.V.; Zhou, M.; Lira, A.; Lambe, E.; González-Maeso, J.; Hornung, J.-P.; Sibille, E.; Underwood, M.; Itohara, S.; Dauer, W.T.; et al. Cortical 5-HT 2A Receptor Signaling Modulates Anxiety-Like Behaviors in Mice. Science 2006, 313, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Dakic, V.; Minardi Nascimento, J.; Costa Sartore, R.; Maciel, R.D.M.; De Araujo, D.B.; Ribeiro, S.; Martins-de-Souza, D.; Rehen, S.K. Short Term Changes in the Proteome of Human Cerebral Organoids Induced by 5-MeO-DMT. Sci. Rep. 2017, 7, 12863. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, L.R.; Phillips, A.G. Neuroplasticity as a Convergent Mechanism of Ketamine and Classical Psychedelics. Trends Pharmacol. Sci. 2021, 42, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Ermakova, A.O.; Dunbar, F.; Rucker, J.; Johnson, M.W. A Narrative Synthesis of Research with 5-MeO-DMT. J. Psychopharmacol. 2022, 36, 273–294. [Google Scholar] [CrossRef]
- Walters, J.K.; Sheard, M.H.; Davis, M. Effects of N,N-Dimethyltryptamine (DMT) and 5-Methoxy-N,N-Dimethyltryptamine (5-MeODMT) on Shock Elicited Fighting in Rats. Pharmacol. Biochem. Behav. 1978, 9, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Critchley, M.A.E.; Handley, S.L. Effects in the X-Maze Anxiety Model of Agents Acting at 5-HT1 and 5-HT2 Receptors. Psychopharmacology 1987, 93, 502–506. [Google Scholar] [CrossRef]
- Dickerson, A.K.; Mills, Z.G.; Hu, D.L. Wet Mammals Shake at Tuned Frequencies to Dry. J. R. Soc. Interface 2012, 9, 3208–3218. [Google Scholar] [CrossRef] [PubMed]
- Fone, K.C.; Robinson, A.J.; Marsden, C.A. Characterization of the 5-HT Receptor Subtypes Involved in the Motor Behaviours Produced by Intrathecal Administration of 5-HT Agonists in Rats. Br. J. Pharmacol. 1991, 103, 1547–1555. [Google Scholar] [CrossRef]
- Cata-Preta, E.G.; Serra, Y.A.; Moreira-Junior, E.d.C.; Reis, H.S.; Kisaki, N.D.; Libarino-Santos, M.; Silva, R.R.R.; Barros-Santos, T.; Santos, L.C.; Barbosa, P.C.R.; et al. Ayahuasca and Its DMT- and β-Carbolines–Containing Ingredients Block the Expression of Ethanol-Induced Conditioned Place Preference in Mice: Role of the Treatment Environment. Front. Pharmacol. 2018, 9, 561. [Google Scholar] [CrossRef]
- Serra, Y.A.; Barros-Santos, T.; Anjos-Santos, A.; Kisaki, N.D.; Jovita-Farias, C.; Leite, J.P.C.; Santana, M.C.E.; Coimbra, J.P.S.A.; de Jesus, N.M.S.; Sulima, A.; et al. Role of 5-HT2A Receptors in the Effects of Ayahuasca on Ethanol Self-Administration Using a Two-Bottle Choice Paradigm in Male Mice. Psychopharmacology 2022, 239, 1679–1687. [Google Scholar] [CrossRef]
- Cameron, L.P.; Benson, C.J.; Dunlap, L.E.; Olson, D.E. Effects of N,N-Dimethyltryptamine on Rat Behaviors Relevant to Anxiety and Depression. ACS Chem. Neurosci. 2018, 9, 1582–1590. [Google Scholar] [CrossRef]
- Daneluz, D.M.; Sohn, J.M.B.; Silveira, G.O.; Yonamine, M.; Stern, C.A. Evidence on the Impairing Effects of Ayahuasca on Fear Memory Reconsolidation. Psychopharmacology 2022, 239, 1–12. [Google Scholar] [CrossRef]
- Jacobs, G. A Double-Blind, Randomised, Placebo-Controlled Study to Evaluate the Pharmacokinetics, Safety and Pharmacodynamics of Ascending Single and Fixed Repeat Intravenous Doses of DMT in Healthy Subjects; National Library of Medicine. Available online: https://clinicaltrials.gov/study/NCT05559931?term=A%20Double-Blind,%20Randomised,%20Placebo-Controlled%20Study%20to%20Evaluate%20the%20Pharmacokinetics,%20Safety%20and%20Pharmacodynamics%20of%20Ascending%20Single%20and%20Fixed%20Repeat%20Intravenous%20Doses%20of%20DMT%20in%20Healthy%20Subject&rank=1 (accessed on 30 October 2023).
- Liechti, M.E.; Vogt, S.B. Acute Dose-Dependent Effects of DMT in Healthy Subjects: A Placebo-Controlled Cross-over Study; University Hospital: Basel, Switzerland, 2023. [Google Scholar]
- Liechti, M.E.; Vogt, S.B.; Erne, L.; Müller, L.N. Acute Dose-Dependent Effects of DMT-Bolus Applications in Healthy Subjects: A Placebo-Controlled Cross-over Study (DMT BDR-Study); University Hospital: Basel, Switzerland, 2023. [Google Scholar]
- de Araujo, D.B. Inhaled N,N-Dimethyltryptamine: A Safety and Tolerability Study in Healthy Adults; National Library of Medicine. Available online: https://clinicaltrials.gov/study/NCT05901012?term=Inhaled%20N,N-Dimethyltryptamine:%20A%20Safety%20and%20Tolerability%20Study%20in%20Healthy%20Adults&rank=1 (accessed on 30 October 2023).
- Biomind Labs Inc. Inhaled N,N-Dimethyltryptamine: A Phase I Study in Healthy Adults; National Library of Medicine. Available online: https://clinicaltrials.gov/study/NCT05573568?term=Inhaled%20N,%20N-Dimethyltryptamine:%20A%20Phase%20I%20Study%20in%20Healthy%20Adults&rank=1 (accessed on 30 October 2023).
- Reckweg, J.T.; Uthaug, M.V.; Szabo, A.; Davis, A.K.; Lancelotta, R.; Mason, N.L.; Ramaekers, J.G. The Clinical Pharmacology and Potential Therapeutic Applications of 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT). J. Neurochem. 2022, 162, 128–146. [Google Scholar] [CrossRef] [PubMed]
- Germann, C.B. 5-Methoxy-N,N-Dimethyltryptamine: An Ego-Dissolving Endogenous Neurochemical Catalyst of Creativity. Act. Nerv. Super. 2019, 61, 170–216. [Google Scholar] [CrossRef]
- Strassman, R.J. Human Psychopharmacology of N,N-Dimethyltryptamine. Behav. Brain Res. 1995, 73, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Scheidegger, M. Neurodynamics of Prosocial Emotional Processing Following Serotonergic Stimulation With N,N-Dimethyltryptamine (DMT) and Harmine in Healthy Subjects; National Library of Medicine. Available online: https://clinicaltrials.gov/study/NCT04716335?term=Neurodynamics%20of%20Prosocial%20Emotional%20Processing%20Following%20Serotonergic%20Stimulation%20With%20N,N-Dimethyltryptamine%20(DMT)%20and%20Harmine%20in%20Healthy%20Subjects&rank=1 (accessed on 30 October 2023).
- Scheidegger, M. Mindfulness and Psychedelics: A Combined Neurophenomenological and Pharmacological Approach to the Characterization of Mindfulness States in Experienced Meditators; National Library of Medicine: Bethesda, MD, USA, 2023. [Google Scholar]
- D’Souza, D.C. Fixed Order, Open-Label, Dose-Escalation Study of DMT in Humans; National Library of Medicine. Available online: https://clinicaltrials.gov/study/NCT04711915?term=Fixed%20Order,%20Open-Label,%20Dose-Escalation%20Study%20of%20DMT%20in%20Humans&rank=1 (accessed on 30 October 2023).
- Reckweg, J.; Mason, N.; Leeuwen, C.V.; Tönnes, S.; Terwey, T.; Ramaekers, J. A Phase 1, Dose-Ranging Study to Assess Safety and Psychoactive Effects of a Vaporized 5-Methoxy-N,N-dimethyltryptamine Formulation (GH001) in Healthy Volunteers. Eur. Psychiatry 2022, 65, S716. [Google Scholar] [CrossRef]
- Maia, L.O.; Daldegan-Bueno, D.; Wießner, I.; Araujo, D.B.; Tófoli, L.F. Ayahuasca’s Therapeutic Potential: What We Know—and What Not. Eur. Neuropsychopharmacol. 2023, 66, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Sherin, J.E.; Nemeroff, C.B. Post-Traumatic Stress Disorder: The Neurobiological Impact of Psychological Trauma. Dialogues Clin. Neurosci. 2011, 13, 263–278. [Google Scholar] [CrossRef]
- Sarmanlu, M.; Kuypers, K.P.C.; Vizeli, P.; Kvamme, T.L. MDMA-Assisted Psychotherapy for PTSD: Growing Evidence for Memory Effects Mediating Treatment Efficacy. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 128, 110843. [Google Scholar] [CrossRef]
- Feduccia, A.A.; Jerome, L.; Yazar-Klosinski, B.; Emerson, A.; Mithoefer, M.C.; Doblin, R. Breakthrough for Trauma Treatment: Safety and Efficacy of MDMA-Assisted Psychotherapy Compared to Paroxetine and Sertraline. Focus Am. Psychiatr. Publ. 2023, 21, 306–314. [Google Scholar] [CrossRef]
- Wolfgang, A.S.; Hoge, C.W. Psychedelic-Assisted Therapy in Military and Veterans Healthcare Systems: Clinical, Legal, and Implementation Considerations. Curr. Psychiatry Rep. 2023, 25, 513–532. [Google Scholar] [CrossRef]
- Davis, A.K.; Averill, L.A.; Sepeda, N.D.; Barsuglia, J.P.; Amoroso, T. Psychedelic Treatment for Trauma-Related Psychological and Cognitive Impairment Among US Special Operations Forces Veterans. Chronic Stress 2020, 4, 2470547020939564. [Google Scholar] [CrossRef]
- Xin, Y.; Armstrong, S.B.; Averill, L.A.; Sepeda, N.; Davis, A.K. Predictors of Psychedelic Treatment Outcomes among Special Operations Forces Veterans. Psychol. Conscious. Theory Res. Pract. 2023. [Google Scholar] [CrossRef]
- Bains, N.; Abdijadid, S. Major Depressive Disorder. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Otte, C.; Gold, S.M.; Penninx, B.W.; Pariante, C.M.; Etkin, A.; Fava, M.; Mohr, D.C.; Schatzberg, A.F. Major Depressive Disorder. Nat. Rev. Dis. Primers 2016, 2, 16065. [Google Scholar] [CrossRef]
- Pedersen, C.B.; Mors, O.; Bertelsen, A.; Waltoft, B.L.; Agerbo, E.; McGrath, J.J.; Mortensen, P.B.; Eaton, W.W. A Comprehensive Nationwide Study of the Incidence Rate and Lifetime Risk for Treated Mental Disorders. JAMA Psychiatry 2014, 71, 573–581. [Google Scholar] [CrossRef]
- Penninx, B.W.; Milaneschi, Y.; Lamers, F.; Vogelzangs, N. Understanding the Somatic Consequences of Depression: Biological Mechanisms and the Role of Depression Symptom Profile. BMC Med. 2013, 11, 129. [Google Scholar] [CrossRef]
- Akil, H.; Gordon, J.; Hen, R.; Javitch, J.; Mayberg, H.; McEwen, B.; Meaney, M.J.; Nestler, E.J.; Akil, H.; Gordon, J.; et al. Treatment Resistant Depression: A Multi-Scale, Systems Biology Approach. Neurosci. Biobehav. Rev. 2018, 84, 272–288. [Google Scholar] [CrossRef] [PubMed]
- American Psychological Association 2019 Guideline Development Panel for the Treatment of Depressive Disorders APA Clinical Practice Guideline for the Treatment of Depression Across Three Age Cohorts. Available online: https://www.apa.org/depression-guideline (accessed on 30 October 2023).
- Thase, M.E.; Schwartz, T.L. Choosing Medications for Treatment-Resistant Depression Based on Mechanism of Action. J. Clin. Psychiatry 2015, 76, 720–727. [Google Scholar] [CrossRef]
- Palhano-Fontes, F.; Barreto, D.; Onias, H.; Andrade, K.C.; Novaes, M.M.; Pessoa, J.A.; Mota-Rolim, S.A.; Osório, F.L.; Sanches, R.; dos Santos, R.G.; et al. Rapid Antidepressant Effects of the Psychedelic Ayahuasca in Treatment-Resistant Depression: A Randomized Placebo-Controlled Trial. Psychol. Med. 2019, 49, 655–663. [Google Scholar] [CrossRef] [PubMed]
- Palhano-Fontes, F.; Soares, B.L.; Galvão-Coelho, N.L.; Arcoverde, E.; Araujo, D.B. Ayahuasca for the Treatment of Depression. In Disruptive Psychopharmacology; Barrett, F.S., Preller, K.H., Eds.; Current Topics in Behavioral Neurosciences; Springer International Publishing: Cham, Switzerland, 2022; pp. 113–124. ISBN 978-3-031-12184-5. [Google Scholar]
- de Almeida, R.N.; Galvão, A.C.D.M.; da Silva, F.S.; Silva, E.A.D.S.; Palhano-Fontes, F.; Maia-de-Oliveira, J.P.; de Araújo, L.-S.B.; Lobão-Soares, B.; Galvão-Coelho, N.L. Modulation of Serum Brain-Derived Neurotrophic Factor by a Single Dose of Ayahuasca: Observation From a Randomized Controlled Trial. Front. Psychol. 2019, 10, 1234. [Google Scholar] [CrossRef]
- De Galvão, A.C.; de Almeida, R.N.; Silva, E.A.D.S.; Freire, F.A.M.; Palhano-Fontes, F.; Onias, H.; Arcoverde, E.; Maia-de-Oliveira, J.P.; de Araújo, D.B.; Lobão-Soares, B.; et al. Cortisol Modulation by Ayahuasca in Patients With Treatment Resistant Depression and Healthy Controls. Front. Psychiatry 2018, 9, 185. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, D.C.; Syed, S.A.; Flynn, L.T.; Safi-Aghdam, H.; Cozzi, N.V.; Ranganathan, M. Exploratory Study of the Dose-Related Safety, Tolerability, and Efficacy of Dimethyltryptamine (DMT) in Healthy Volunteers and Major Depressive Disorder. Neuropsychopharmacology 2022, 47, 1854–1862. [Google Scholar] [CrossRef]
- Reckweg, J.T.; van Leeuwen, C.J.; Henquet, C.; van Amelsvoort, T.; Theunissen, E.L.; Mason, N.L.; Paci, R.; Terwey, T.H.; Ramaekers, J.G. A Phase 1/2 Trial to Assess Safety and Efficacy of a Vaporized 5-Methoxy-N,N-dimethyltryptamine Formulation (GH001) in Patients with Treatment-Resistant Depression. Front. Psychiatry 2023, 14, 1133414. [Google Scholar] [CrossRef]
- Good, M.; Joel, Z.; Benway, T.; Routledge, C.; Timmermann, C.; Erritzoe, D.; Weaver, R.; Allen, G.; Hughes, C.; Topping, H.; et al. Pharmacokinetics of N,N-Dimethyltryptamine in Humans. Eur. J. Drug Metab. Pharmacokinet. 2023, 48, 311–327. [Google Scholar] [CrossRef]
- Kuntz, L. Positive Results from Phase 2a Trial of Psychedelic for Major Depressive Disorder. Psychiatr. Times—MJH Life Sci. 2023. Available online: https://www.psychiatrictimes.com/view/positive-results-from-phase-2a-trial-of-psychedelic-for-major-depressive-disorder (accessed on 30 October 2023).
- Schatzberg, A.F.; Nemeroff, C.B. The American Psychiatric Association Publishing Textbook of Psychopharmacology, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2017; ISBN 978-1-58562-523-9. [Google Scholar]
- Hasnain, M.; Vieweg, W.V.R. QTc Interval Prolongation and Torsade de Pointes Associated with Second-Generation Antipsychotics and Antidepressants: A Comprehensive Review. CNS Drugs 2014, 28, 887–920. [Google Scholar] [CrossRef]
- Thase, M.E. Effects of Venlafaxine on Blood Pressure: A Meta-Analysis of Original Data from 3744 Depressed Patients. J. Clin. Psychiatry 1998, 59, 502–508. [Google Scholar] [CrossRef]
- Goodwin, G.M.; Croal, M.; Feifel, D.; Kelly, J.R.; Marwood, L.; Mistry, S.; O’Keane, V.; Peck, S.K.; Simmons, H.; Sisa, C.; et al. Psilocybin for Treatment Resistant Depression in Patients Taking a Concomitant SSRI Medication. Neuropsychopharmacology 2023, 48, 1492–1499. [Google Scholar] [CrossRef]
- Nardai, S.; László, M.; Szabó, A.; Alpár, A.; Hanics, J.; Zahola, P.; Merkely, B.; Frecska, E.; Nagy, Z. N,N-Dimethyltryptamine Reduces Infarct Size and Improves Functional Recovery Following Transient Focal Brain Ischemia in Rats. Exp. Neurol. 2020, 327, 113245. [Google Scholar] [CrossRef]
- Ruscher, K.; Shamloo, M.; Rickhag, M.; Ladunga, I.; Soriano, L.; Gisselsson, L.; Toresson, H.; Ruslim-Litrus, L.; Oksenberg, D.; Urfer, R.; et al. The Sigma-1 Receptor Enhances Brain Plasticity and Functional Recovery after Experimental Stroke. Brain 2011, 134, 732–746. [Google Scholar] [CrossRef]
- Francardo, V.; Bez, F.; Wieloch, T.; Nissbrandt, H.; Ruscher, K.; Cenci, M.A. Pharmacological Stimulation of Sigma-1 Receptors Has Neurorestorative Effects in Experimental Parkinsonism. Brain 2014, 137, 1998–2014. [Google Scholar] [CrossRef]
- Miyazaki, I.; Asanuma, M.; Murakami, S.; Takeshima, M.; Torigoe, N.; Kitamura, Y.; Miyoshi, K. Targeting 5-HT1A Receptors in Astrocytes to Protect Dopaminergic Neurons in Parkinsonian Models. Neurobiol. Dis. 2013, 59, 244–256. [Google Scholar] [CrossRef]
- Gao, L.; Zhang, Y.; Sterling, K.; Song, W. Brain-Derived Neurotrophic Factor in Alzheimer’s Disease and Its Pharmaceutical Potential. Transl. Neurodegener. 2022, 11, 4. [Google Scholar] [CrossRef]
- Shin, M.-K.; Kim, H.-G.; Baek, S.-H.; Jung, W.-R.; Park, D.-I.; Park, J.-S.; Jo, D.-G.; Kim, K.-L. Neuropep-1 Ameliorates Learning and Memory Deficits in an Alzheimer’s Disease Mouse Model, Increases Brain-Derived Neurotrophic Factor Expression in the Brain, and Causes Reduction of Amyloid Beta Plaques. Neurobiol. Aging 2014, 35, 990–1001. [Google Scholar] [CrossRef]
- Ben Menachem-Zidon, O.; Ben Menahem, Y.; Ben Hur, T.; Yirmiya, R. Intra-Hippocampal Transplantation of Neural Precursor Cells with Transgenic Over-Expression of IL-1 Receptor Antagonist Rescues Memory and Neurogenesis Impairments in an Alzheimer’s Disease Model. Neuropsychopharmacology 2015, 40, 524. [Google Scholar] [CrossRef]
- Saeger, H.N.; Olson, D.E. Psychedelic-Inspired Approaches for Treating Neurodegenerative Disorders. J. Neurochem. 2022, 162, 109–127. [Google Scholar] [CrossRef]
- Grammenos, D.; Barker, S.A. On the Transmethylation Hypothesis: Stress, N,N-Dimethyltryptamine, and Positive Symptoms of Psychosis. J. Neural Transm. 2015, 122, 733–739. [Google Scholar] [CrossRef]
- Pomilio, A.B.; Vitale, A.A.; Ciprian-Ollivier, J.; Cetkovich-Bakmas, M.; Gómez, R.; Vázquez, G. Ayahoasca: An Experimental Psychosis That Mirrors the Transmethylation Hypothesis of Schizophrenia. J. Ethnopharmacol. 1999, 65, 29–51. [Google Scholar] [CrossRef]
- Dai, R.; Larkin, T.E.; Huang, Z.; Tarnal, V.; Picton, P.; Vlisides, P.E.; Janke, E.; McKinney, A.; Hudetz, A.G.; Harris, R.E.; et al. Classical and Non-Classical Psychedelic Drugs Induce Common Network Changes in Human Cortex. Neuroimage 2023, 273, 120097. [Google Scholar] [CrossRef] [PubMed]
- Daws, R.E.; Timmermann, C.; Giribaldi, B.; Sexton, J.D.; Wall, M.B.; Erritzoe, D.; Roseman, L.; Nutt, D.; Carhart-Harris, R. Increased Global Integration in the Brain after Psilocybin Therapy for Depression. Nat. Med. 2022, 28, 844–851. [Google Scholar] [CrossRef]
- Delli Pizzi, S.; Chiacchiaretta, P.; Sestieri, C.; Ferretti, A.; Onofrj, M.; Della Penna, S.; Roseman, L.; Timmermann, C.; Nutt, D.J.; Carhart-Harris, R.L.; et al. Spatial Correspondence of LSD-Induced Variations on Brain Functioning at Rest With Serotonin Receptor Expression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, 8, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, S.; Roseman, L.; Kaelen, M.; Kringelbach, M.L.; Deco, G.; Carhart-Harris, R.L. Connectome-Harmonic Decomposition of Human Brain Activity Reveals Dynamical Repertoire Re-Organization under LSD. Sci. Rep. 2017, 7, 17661. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, E.; Roseman, L.; Kaelen, M.; Orban, C.; Muthukumaraswamy, S.D.; Murphy, K.; Laufs, H.; Leech, R.; McGonigle, J.; Crossley, N.; et al. Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution. Curr. Biol. 2016, 26, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Avram, M.; Müller, F.; Rogg, H.; Korda, A.; Andreou, C.; Holze, F.; Vizeli, P.; Ley, L.; Liechti, M.E.; Borgwardt, S. Characterizing Thalamocortical (Dys)Connectivity Following D-Amphetamine, LSD, and MDMA Administration. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2022, 7, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Delli Pizzi, S.; Chiacchiaretta, P.; Sestieri, C.; Ferretti, A.; Tullo, M.G.; Della Penna, S.; Martinotti, G.; Onofrj, M.; Roseman, L.; Timmermann, C.; et al. LSD-Induced Changes in the Functional Connectivity of Distinct Thalamic Nuclei. NeuroImage 2023, 283, 120414. [Google Scholar] [CrossRef] [PubMed]
- Gaddis, A.; Lidstone, D.E.; Nebel, M.B.; Griffiths, R.R.; Mostofsky, S.H.; Mejia, A.F.; Barrett, F.S. Psilocybin Induces Spatially Constrained Alterations in Thalamic Functional Organizaton and Connectivity. Neuroimage 2022, 260, 119434. [Google Scholar] [CrossRef] [PubMed]
- Avram, M.; Rogg, H.; Korda, A.; Andreou, C.; Müller, F.; Borgwardt, S. Bridging the Gap? Altered Thalamocortical Connectivity in Psychotic and Psychedelic States. Front. Psychiatry 2021, 12, 706017. [Google Scholar] [CrossRef]
- Tagliazucchi, E.; Carhart-Harris, R.; Leech, R.; Nutt, D.; Chialvo, D.R. Enhanced Repertoire of Brain Dynamical States during the Psychedelic Experience. Hum. Brain Mapp. 2014, 35, 5442–5456. [Google Scholar] [CrossRef]
- Girn, M.; Roseman, L.; Bernhardt, B.; Smallwood, J.; Carhart-Harris, R.; Nathan Spreng, R. Serotonergic Psychedelic Drugs LSD and Psilocybin Reduce the Hierarchical Differentiation of Unimodal and Transmodal Cortex. NeuroImage 2022, 256, 119220. [Google Scholar] [CrossRef] [PubMed]
- Roseman, L.; Leech, R.; Feilding, A.; Nutt, D.J.; Carhart-Harris, R.L. The Effects of Psilocybin and MDMA on Between-Network Resting State Functional Connectivity in Healthy Volunteers. Front. Hum. Neurosci. 2014, 8, 204. [Google Scholar] [CrossRef]
- Singleton, S.P.; Luppi, A.I.; Carhart-Harris, R.L.; Cruzat, J.; Roseman, L.; Nutt, D.J.; Deco, G.; Kringelbach, M.L.; Stamatakis, E.A.; Kuceyeski, A. Receptor-Informed Network Control Theory Links LSD and Psilocybin to a Flattening of the Brain’s Control Energy Landscape. Nat. Commun. 2022, 13, 5812. [Google Scholar] [CrossRef] [PubMed]
- Luppi, A.I.; Carhart-Harris, R.L.; Roseman, L.; Pappas, I.; Menon, D.K.; Stamatakis, E.A. LSD Alters Dynamic Integration and Segregation in the Human Brain. Neuroimage 2021, 227, 117653. [Google Scholar] [CrossRef] [PubMed]
- Timmermann, C.; Roseman, L.; Haridas, S.; Rosas, F.E.; Luan, L.; Kettner, H.; Martell, J.; Erritzoe, D.; Tagliazucchi, E.; Pallavicini, C.; et al. Human Brain Effects of DMT Assessed via EEG-fMRI. Proc Natl Acad Sci USA 2023, 120, e2218949120. [Google Scholar] [CrossRef] [PubMed]
- Bouso, J.C.; Dos Santos, R.G.; Alcázar-Córcoles, M.Á.; Hallak, J.E.C. Serotonergic Psychedelics and Personality: A Systematic Review of Contemporary Research. Neurosci. Biobehav. Rev. 2018, 87, 118–132. [Google Scholar] [CrossRef]
- Maciejewicz, B. Neuroscience of Consciousness: Cognition, Physics and Philosophy of Decoding the Human Brain: Neurociencia de La Conciencia: Cognición, Física y Filosofía de La Descodificación Del Cerebro Humano. JACN 2022, 3, e00274600. [Google Scholar] [CrossRef]
- Wang, J.; Gao, X.; Xiang, Z.; Sun, F.; Yang, Y. Evaluation of Consciousness Rehabilitation via Neuroimaging Methods. Front. Hum. Neurosci. 2023, 17, 1233499. [Google Scholar] [CrossRef]
- Michael, P.; Luke, D.; Robinson, O. An Encounter With the Other: A Thematic and Content Analysis of DMT Experiences From a Naturalistic Field Study. Front. Psychol. 2021, 12, 720717. [Google Scholar] [CrossRef]
- Davis, A.K.; Clifton, J.M.; Weaver, E.G.; Hurwitz, E.S.; Johnson, M.W.; Griffiths, R.R. Survey of Entity Encounter Experiences Occasioned by Inhaled N,N-Dimethyltryptamine: Phenomenology, Interpretation, and Enduring Effects. J. Psychopharmacol. 2020, 34, 1008–1020. [Google Scholar] [CrossRef]
- Luan, L.X.; Eckernäs, E.; Ashton, M.; Rosas, F.E.; Uthaug, M.V.; Bartha, A.; Jagger, S.; Gascon-Perai, K.; Gomes, L.; Nutt, D.J.; et al. Psychological and Physiological Effects of Extended DMT. J. Psychopharmacol. 2024, 38, 56–67. [Google Scholar] [CrossRef]
- Muthukumaraswamy, S.D.; Forsyth, A.; Lumley, T. Blinding and Expectancy Confounds in Psychedelic Randomized Controlled Trials. Expert Rev. Clin. Pharmacol. 2021, 14, 1133–1152. [Google Scholar] [CrossRef]
- Lii, T.R.; Smith, A.E.; Flohr, J.R.; Okada, R.L.; Nyongesa, C.A.; Cianfichi, L.J.; Hack, L.M.; Schatzberg, A.F.; Heifets, B.D. Randomized Trial of Ketamine Masked by Surgical Anesthesia in Patients with Depression. Nat. Ment. Health 2023, 1, 876–886. [Google Scholar] [CrossRef]
- Guo, J.; Qiu, D.; Gu, H.-W.; Wang, X.-M.; Hashimoto, K.; Zhang, G.-F.; Yang, J.-J. Efficacy and Safety of Perioperative Application of Ketamine on Postoperative Depression: A Meta-Analysis of Randomized Controlled Studies. Mol. Psychiatry 2023, 28, 2266–2276. [Google Scholar] [CrossRef]
- Butler, M.; Jelen, L.; Rucker, J. Expectancy in Placebo-Controlled Trials of Psychedelics: If so, so What? Psychopharmacology 2022, 239, 3047–3055. [Google Scholar] [CrossRef] [PubMed]
- Major Depressive Disorder (MDD)—DynaMedex. Available online: https://www.dynamedex.com/condition/major-depressive-disorder-mdd#KETAMINE (accessed on 26 October 2023).
- Canuso, C.M.; Singh, J.B.; Fedgchin, M.; Alphs, L.; Lane, R.; Lim, P.; Pinter, C.; Hough, D.; Sanacora, G.; Manji, H.; et al. Efficacy and Safety of Intranasal Esketamine for the Rapid Reduction of Symptoms of Depression and Suicidality in Patients at Imminent Risk for Suicide: Results of a Double-Blind, Randomized, Placebo-Controlled Study. Am. J. Psychiatry 2018, 175, 620–630. [Google Scholar] [CrossRef]
- Dean, R.L.; Hurducas, C.; Hawton, K.; Spyridi, S.; Cowen, P.J.; Hollingsworth, S.; Marquardt, T.; Barnes, A.; Smith, R.; McShane, R.; et al. Ketamine and Other Glutamate Receptor Modulators for Depression in Adults with Unipolar Major Depressive Disorder. Cochrane Database Syst. Rev. 2021, 9, CD011612. [Google Scholar] [CrossRef]
- Reif, A.; Bitter, I.; Buyze, J.; Cebulla, K.; Frey, R.; Fu, D.-J.; Ito, T.; Kambarov, Y.; Llorca, P.-M.; Oliveira-Maia, A.J.; et al. Esketamine Nasal Spray versus Quetiapine for Treatment-Resistant Depression. N. Engl. J. Med. 2023, 389, 1298–1309. [Google Scholar] [CrossRef]
- Depression Alternative Treatments—DynaMedex. Available online: https://www.dynamedex.com/management/depression-alternative-treatments#TOPIC_JQX_Q4G_KPB (accessed on 26 October 2023).
- von Rotz, R.; Schindowski, E.M.; Jungwirth, J.; Schuldt, A.; Rieser, N.M.; Zahoranszky, K.; Seifritz, E.; Nowak, A.; Nowak, P.; Jäncke, L.; et al. Single-Dose Psilocybin-Assisted Therapy in Major Depressive Disorder: A Placebo-Controlled, Double-Blind, Randomised Clinical Trial. eClinicalMedicine 2023, 56, 101809. [Google Scholar] [CrossRef] [PubMed]
- Polito, V.; Stevenson, R.J. A Systematic Study of Microdosing Psychedelics. PLoS ONE 2019, 14, e0211023. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, R.G.; Osório, F.L.; Crippa, J.A.S.; Hallak, J.E.C. Classical Hallucinogens and Neuroimaging: A Systematic Review of Human Studies: Hallucinogens and Neuroimaging. Neurosci. Biobehav. Rev. 2016, 71, 715–728. [Google Scholar] [CrossRef] [PubMed]
- Vollenweider, F.X.; Kometer, M. The Neurobiology of Psychedelic Drugs: Implications for the Treatment of Mood Disorders. Nat. Rev. Neurosci. 2010, 11, 642–651. [Google Scholar] [CrossRef] [PubMed]
- U.S. Ketamine Clinics Market Size & Share Report. Available online: https://www.grandviewresearch.com/industry-analysis/us-ketamine-clinics-market-report (accessed on 26 October 2023).
- Garel, N.; Drury, J.; Lévesque, J.T.; Goyette, N.; Lehmann, A.; Looper, K.; Erritzoe, D.; Dames, S.; Turecki, G.; Rej, S.; et al. The Montreal Model: An Integrative Biomedical-Psychedelic Approach to Ketamine for Severe Treatment-Resistant Depression. Front. Psychiatry 2023, 14, 1268832. [Google Scholar] [CrossRef]
- Olson, D.E. Biochemical Mechanisms Underlying Psychedelic-Induced Neuroplasticity. Biochemistry 2022, 61, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.E. Psychoplastogens: A Promising Class of Plasticity-Promoting Neurotherapeutics. J. Exp. Neurosci. 2018, 12, 1179069518800508. [Google Scholar] [CrossRef]
- De Vos, C.M.H.; Mason, N.L.; Kuypers, K.P.C. Psychedelics and Neuroplasticity: A Systematic Review Unraveling the Biological Underpinnings of Psychedelics. Front. Psychiatry 2021, 12, 724606. [Google Scholar] [CrossRef]
- Vargas, M.V.; Meyer, R.; Avanes, A.A.; Rus, M.; Olson, D.E. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front. Psychiatry 2021, 12, 727117. [Google Scholar] [CrossRef]
- He, D.-Y.; McGough, N.N.H.; Ravindranathan, A.; Jeanblanc, J.; Logrip, M.L.; Phamluong, K.; Janak, P.H.; Ron, D. Glial Cell Line-Derived Neurotrophic Factor Mediates the Desirable Actions of the Anti-Addiction Drug Ibogaine against Alcohol Consumption. J. Neurosci. 2005, 25, 619–628. [Google Scholar] [CrossRef]
- Iyer, R.N.; Favela, D.; Zhang, G.; Olson, D.E. The Iboga Enigma: The Chemistry and Neuropharmacology of Iboga Alkaloids and Related Analogs. Nat. Prod. Rep. 2021, 38, 307–329. [Google Scholar] [CrossRef] [PubMed]
- Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical Basis of Cognitive Alterations in Alzheimer’s Disease: Synapse Loss Is the Major Correlate of Cognitive Impairment. Ann. Neurol. 1991, 30, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Scheff, S.W.; Neltner, J.H.; Nelson, P.T. Is Synaptic Loss a Unique Hallmark of Alzheimer’s Disease? Biochem. Pharmacol. 2014, 88, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Pchitskaya, E.I.; Zhemkov, V.A.; Bezprozvanny, I.B. Dynamic Microtubules in Alzheimer’s Disease: Association with Dendritic Spine Pathology. Biochemistry 2018, 83, 1068–1074. [Google Scholar] [CrossRef] [PubMed]
- Lowe, H.; Toyang, N.; Steele, B.; Valentine, H.; Grant, J.; Ali, A.; Ngwa, W.; Gordon, L. The Therapeutic Potential of Psilocybin. Molecules 2021, 26, 2948. [Google Scholar] [CrossRef]
Trial Identifier | Sponsor | Study Type | DMT Administration | Key Outcomes | References |
---|---|---|---|---|---|
NCT05559931 | Algernon Pharma | Phase 1 double-blind randomized control trial | intravenous infusion over six hours with loading bolus and infusion | overall safety, ECG, vitals, physical examination, lab values, injection site reactions, C-SSRS, psychotic symptoms, 5-HT toxicity syndrome, adverse events | [110] |
NCT05384678 | University Hospital, Basel, Switzerland | Phase 1 double-blind crossover study | intravenous infusion with varying DMT doses and placebo | altered states of consciousness profiles (5D-ASC), subjective effect ratings | [111] |
NCT05695495 | University Hospital, Basel, Switzerland | Phase 1 randomized trial | intravenous DMT bolus doses and placebo | altered states of consciousness profiles (OAV), subjective effect ratings | [112] |
NCT04353024 | University Hospital, Basel, Switzerland | Double-blind crossover study | four different DMT doses and placebo | altered states of consciousness, subjective effect ratings, mood ratings, mystical-type experiences, autonomic effects, plasma levels, oxytocin levels, renal clearance, adverse effects | [92] |
NCT04716335 | Psychiatric University Hospital, Zurich | Phase 1 study | investigating neurodynamics of prosocial emotional processing following serotonergic stimulation with DMT and harmine | pharmacological EEG, behavioral outcome measures, biomarkers | [118] |
NCT05901012 | Universidade Federal do Rio Grande do Norte | Phase 1 double-blind randomized control trial | inhalation of DMT at experimental and placebo doses | blood pressure, heart rate, respiratory rate, oxygen saturation | [113] |
NCT05780216 | University Medical Center Freiburg | Early phase 1 study | functional magnetic resonance imaging (fMRI) assessment of brain connectivity before and after a meditation group retreat with ayahuasca or placebo | fMRI comparisons of brain connectivity, effects of DMT-enhanced mindfulness on the default mode network | [119] |
NCT04711915 | Yale School of Medicine | Phase 1 non-randomized escalating dose study | intravenous DMT at two different doses | changes in blood pressure, heart rate, modified ASC scale readings, anxiety levels, drug reinforcing effects, overall tolerability | [120] |
NCT05573568 | Biomind Labs Inc. and Universidade Federal do Rio Grande do Norte | Phase 1 non-randomized sequential assignment open-label study | two sessions of inhaled DMT with varying doses | clinical and psychiatric adverse events, blood pressure, heart rate, respiratory rate, oxygen saturation changes | [114] |
NCT04640831 | Maastricht University, Maastricht, Netherlands; Goethe-Universität Frankfurt am Main, Institut Für Rechtsmedizin, Frankfurt am Main, Germany; 3GH Research PLC, Dublin, Ireland | Phase 1 in healthy volunteers | single doses of novel vaporized 5-MeO-DMT formulation (GH001) | dose-related increments in the intensity of psychedelic experience questionnaires ratings | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colosimo, F.A.; Borsellino, P.; Krider, R.I.; Marquez, R.E.; Vida, T.A. The Clinical Potential of Dimethyltryptamine: Breakthroughs into the Other Side of Mental Illness, Neurodegeneration, and Consciousness. Psychoactives 2024, 3, 93-122. https://doi.org/10.3390/psychoactives3010007
Colosimo FA, Borsellino P, Krider RI, Marquez RE, Vida TA. The Clinical Potential of Dimethyltryptamine: Breakthroughs into the Other Side of Mental Illness, Neurodegeneration, and Consciousness. Psychoactives. 2024; 3(1):93-122. https://doi.org/10.3390/psychoactives3010007
Chicago/Turabian StyleColosimo, Frankie A., Philip Borsellino, Reese I. Krider, Raul E. Marquez, and Thomas A. Vida. 2024. "The Clinical Potential of Dimethyltryptamine: Breakthroughs into the Other Side of Mental Illness, Neurodegeneration, and Consciousness" Psychoactives 3, no. 1: 93-122. https://doi.org/10.3390/psychoactives3010007
APA StyleColosimo, F. A., Borsellino, P., Krider, R. I., Marquez, R. E., & Vida, T. A. (2024). The Clinical Potential of Dimethyltryptamine: Breakthroughs into the Other Side of Mental Illness, Neurodegeneration, and Consciousness. Psychoactives, 3(1), 93-122. https://doi.org/10.3390/psychoactives3010007