Hippocampal Asymmetry Increases with Age
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toga, A.W.; Narr, K.L.; Thompson, P.M.; Luders, E. Brain Asymmetry: Evolution. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; pp. 303–311. [Google Scholar]
- Toga, A.W.; Thompson, P.M. Mapping brain asymmetry. Nat. Rev. Neurosci. 2003, 4, 37–48. [Google Scholar] [CrossRef]
- Corballis, M.C. The evolution and genetics of cerebral asymmetry. Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. Left Brain, Right Brain: Facts and Fantasies. PLOS Biol. 2014, 12, e1001767. [Google Scholar] [CrossRef]
- Zilles, K.; Dabringhaus, A.; Geyer, S.; Amunts, K.; Qü, M.; Schleicher, A.; Gilissen, E.; Schlaug, G.; Steinmetz, H. Structural Asymmetries in the Human Forebrain and the Forebrain of Non-human Primates and Rats. Neurosci. Biobehav. Rev. 1996, 20, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Gunturkun, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: London, UK, 2018. [Google Scholar]
- Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol Aging. 2002, 17, 85–100. [Google Scholar] [CrossRef]
- Dolcos, F.; Rice, H.J.; Cabeza, R. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002, 26, 819–825. [Google Scholar] [CrossRef]
- Minkova, L.; Habich, A.; Peter, J.; Kaller, C.P.; Eickhoff, S.B.; Klöppel, S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum. Brain Mapp. 2017, 38, 5890–5904. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-Z.; Mathias, S.R.; Guadalupe, T.; Glahn, D.C.; Franke, B.; Crivello, F.; Tzourio-Mazoyer, N.; Fisher, S.E.; Thompson, P.M.; Francks, C.; et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc. Natl. Acad. Sci. USA 2018, 115, E5154–E5163. [Google Scholar] [CrossRef]
- Thompson, P.M.; Hayashi, K.M.; de Zubicaray, G.; Janke, A.L.; Rose, S.E.; Semple, J.; Herman, D.; Hong, M.S.; Dittmer, S.S.; Doddrell, D.M.; et al. Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci. 2003, 23, 994–1005. [Google Scholar] [CrossRef]
- Plessen, K.J.; Hugdahl, K.; Bansal, R.; Hao, X.; Peterson, B.S. Sex, Age, and Cognitive Correlates of Asymmetries in Thickness of the Cortical Mantle Across the Life Span. J. Neurosci. 2014, 34, 6294–6302. [Google Scholar] [CrossRef] [PubMed]
- Berlingeri, M.; Danelli, L.; Bottini, G.; Sberna, M.; Paulesu, E. Reassessing the HAROLD model: Is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp. Brain Res. 2013, 224, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Nenert, R.; Allendorfer, J.B.; Martin, A.M.; Banks, C.; Vannest, J.; Holland, S.K.; Szaflarski, J.P. Age-related language lateralization assessed by fMRI: The effects of sex and handedness. Brain Res. 2017, 1674, 20–35. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Park, D.C. Human Neuroscience and the Aging Mind: A New Look at Old Problems. J. Gerontol. Ser. B 2010, 65, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, M.; Güntürkün, O.; Corballis, M. Age-related changes in hemispheric asymmetry depend on sex. Laterality 2003, 8, 277–290. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ocklenburg, S.; Gunturkun, O. Hemispheric Asymmetries over the Lifespan. In The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: London, UK, 2018; pp. 263–288. [Google Scholar]
- Fraser, M.A.; Shaw, M.E.; Cherbuin, N. A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage 2015, 112, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Cherbuin, N.; Luders, E. The impact of aging on subregions of the hippocampal complex in healthy adults. NeuroImage 2017, 163, 296–300. [Google Scholar] [CrossRef] [PubMed]
- De Flores, R.; La Joie, R.; Chételat, G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience 2015, 309, 29–50. [Google Scholar] [CrossRef]
- Mueller, S.; Stables, L.; Du, A.; Schuff, N.; Truran, D.; Cashdollar, N.; Weiner, M. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol. Aging 2007, 28, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Sachdev, P.; Lipnicki, D.M.; Zhang, H.; Liu, T.; Zhu, W.; Suo, C.; Zhuang, L.; Crawford, J.; Reppermund, S.; et al. A longitudinal study of brain atrophy over two years in community-dwelling older individuals. NeuroImage 2014, 86, 203–211. [Google Scholar] [CrossRef]
- Raz, N.; Daugherty, A.M.; Bender, A.R.; Dahle, C.L.; Land, S. Volume of the hippocampal subfields in healthy adults: Differential associations with age and a pro-inflammatory genetic variant. Anat. Embryol. 2015, 220, 2663–2674. [Google Scholar] [CrossRef]
- Cherbuin, N.; Réglade-Meslin, C.; Kumar, R.; Sachdev, P.; Anstey, K.J. Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: The PATH through life study. Front. Psychiatry 2010, 1, 11. [Google Scholar] [CrossRef]
- Bookheimer, S.Y.; Salat, D.H.; Terpstra, M.; Ances, B.M.; Barch, D.M.; Buckner, R.L.; Burgess, G.C.; Curtiss, S.W.; Diaz-Santos, M.; Elam, J.S.; et al. The Lifespan Human Connectome Project in Aging: An overview. NeuroImage 2019, 185, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Cherbuin, N.; Luders, E. Reduced age-related degeneration of the hippocampal subiculum in long-term meditators. Psychiatry Res. 2015, 232, 214–218. [Google Scholar] [CrossRef]
- Kurth, F.; Jancke, L.; Luders, E. Integrating cytoarchitectonic tissue probabilities with MRI-based signal intensities to calculate volumes of interest. Spalletta, G., Gili, T., Piras, F., editors. In Brain Morphometry: Methods and Clinical Applications; Humana Press: New York, NY, USA, 2017; pp. 121–129. [Google Scholar]
- Kurth, F.; Jancke, L.; Luders, E. Sexual dimorphism of Broca’s region: More gray matter in female brains in Brodmann areas 44 and 45. J. Neurosci. Res. 2016, 95, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Luders, E.; Kurth, F.; Toga, A.W.; Narr, K.L.; Gaser, C. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping. Front. Psychol. 2013, 4, 398. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. NeuroImage 2011, 55, 954–967. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J.; Ashburner, J.; Friston, K.J.; Ashburner, J.; Friston, K.J. Voxel-Based Morphometry—The Methods. NeuroImage 2000, 11, 805–821. [Google Scholar] [CrossRef]
- Good, C.D.; Johnsrude, I.S.; Ashburner, J.; Henson, R.N.A.; Friston, K.J.; Frackowiak, R.S.J. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage 2001, 14, 21–36. [Google Scholar] [CrossRef]
- Kurth, F.; Luders, E.; Gaser, C. Voxel-based Morphometry. In Brain Mapping: An Encyclopedic Reference; Toga, A., Ed.; Academic Press: London, UK, 2015; pp. 345–349. [Google Scholar]
- Amunts, K.; Kedo, O.; Kindler, M.; Pieperhoff, P.; Mohlberg, H.; Shah, N.; Habel, U.; Schneider, F.; Zilles, K. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat. Embryol. 2005, 210, 343–352. [Google Scholar] [CrossRef]
- Amunts, K.; Mohlberg, H.; Bludau, S.; Caspers, S.; Brandstetter, A.; Eickhoff, S.B.; Pieperhoff, P.; Dickscheid, T. Julich-Brain Atlas-Whole-Brain Collections of Cytoarchitectonic Probabilistic Maps (v2.9). Ebrains 2021. [Google Scholar] [CrossRef]
- Kurth, F.; Gaser, C.; Luders, E. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat. Protoc. 2015, 10, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Thompson, P.M.; Luders, E. Investigating the differential contributions of sex and brain size to gray matter asymmetry. Cortex 2018, 99, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Brown, J.W.; Jaffe, J. Hypothesis on cerebral dominance. Neuropsychologia 1975, 13, 107–110. [Google Scholar] [CrossRef] [PubMed]
Variable | Statistics |
---|---|
N | 725 |
Sex (F/M) | 406/319 |
Age (Mean ± SD [range]) | 60.36 ± 15.73 [36–100] |
Handedness (L/R) | 76/649 |
Handedness Score (Mean ± SD (range)) | 66.92 ± 48.76 [−100–100] |
TIV (Mean ± SD (range)) | 1.453 ± 152 [1.021–1.959] liters |
N by Site (MGH, UCLA, UMinn, WashU) | 163, 148, 205, 209 |
Region | Change in Asymmetry | Cohen’s d | T|df | p, Corrected |
---|---|---|---|---|
CA1 | rightward | 1.14 | 30.5|720 | <0.001 |
CA2 | rightward | 1.39 | 37.4|720 | <0.001 |
CA3 | rightward | 0.30 | 7.9|720 | <0.001 |
DG | leftward | −0.22 | −5.9|720 | <0.001 |
Subiculum | rightward | 1.45 | 38.9|720 | <0.001 |
Entorhinal | leftward | −0.17 | −4.4|720 | <0.001 |
Hippo | rightward | 0.68 | 18.2|720 | <0.001 |
Region | Change in Magnitude | Correlation Coefficient (r) | T|df | p, Corrected |
---|---|---|---|---|
CA1 | increase | 0.09 | 2.5|720 | 0.013 |
CA2 | increase | 0.11 | 2.9|720 | 0.006 |
CA3 | increase | 0.15 | 4.2|720 | <0.001 |
DG | not significant | 0.07 | 1.8|720 | 0.073 |
Subiculum | increase | 0.22 | 6.2|720 | <0.001 |
Entorhinal | increase | 0.12 | 3.1|720 | 0.003 |
Hippo | increase | 0.18 | 4.8|720 | <0.001 |
Region | Change in Asymmetry|Change in Magnitude | Correlation Coefficient (r) | T|df | p, Corrected |
---|---|---|---|---|
CA1 | not significant | 0.07 | 1.9|720 | 0.067 |
CA2 | rightward|increase | 0.09 | 2.5|720 | 0.028 |
CA3 | rightward|increase | 0.06 | 2.3|720 | 0.034 |
DG | leftward|decrease | 0.17 | 4.5|720 | <0.001 |
Subiculum | rightward|increase | 0.22 | 6.2|720 | <0.001 |
Entorhinal | not significant | −0.02 | 0.5|720 | 0.645 |
Hippo | rightward|increase | 0.08 | 2.3|720 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurth, F.; Luders, E. Hippocampal Asymmetry Increases with Age. Anatomia 2023, 2, 328-335. https://doi.org/10.3390/anatomia2040029
Kurth F, Luders E. Hippocampal Asymmetry Increases with Age. Anatomia. 2023; 2(4):328-335. https://doi.org/10.3390/anatomia2040029
Chicago/Turabian StyleKurth, Florian, and Eileen Luders. 2023. "Hippocampal Asymmetry Increases with Age" Anatomia 2, no. 4: 328-335. https://doi.org/10.3390/anatomia2040029
APA StyleKurth, F., & Luders, E. (2023). Hippocampal Asymmetry Increases with Age. Anatomia, 2(4), 328-335. https://doi.org/10.3390/anatomia2040029