Hippocampal Asymmetry Increases with Age
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Toga, A.W.; Narr, K.L.; Thompson, P.M.; Luders, E. Brain Asymmetry: Evolution. In Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Oxford, UK, 2009; pp. 303–311. [Google Scholar]
- Toga, A.W.; Thompson, P.M. Mapping brain asymmetry. Nat. Rev. Neurosci. 2003, 4, 37–48. [Google Scholar] [CrossRef]
- Corballis, M.C. The evolution and genetics of cerebral asymmetry. Philos. Trans. R. Soc. B Biol. Sci. 2008, 364, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Corballis, M.C. Left Brain, Right Brain: Facts and Fantasies. PLOS Biol. 2014, 12, e1001767. [Google Scholar] [CrossRef]
- Zilles, K.; Dabringhaus, A.; Geyer, S.; Amunts, K.; Qü, M.; Schleicher, A.; Gilissen, E.; Schlaug, G.; Steinmetz, H. Structural Asymmetries in the Human Forebrain and the Forebrain of Non-human Primates and Rats. Neurosci. Biobehav. Rev. 1996, 20, 593–605. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Gunturkun, O. The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: London, UK, 2018. [Google Scholar]
- Cabeza, R. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychol Aging. 2002, 17, 85–100. [Google Scholar] [CrossRef]
- Dolcos, F.; Rice, H.J.; Cabeza, R. Hemispheric asymmetry and aging: Right hemisphere decline or asymmetry reduction. Neurosci. Biobehav. Rev. 2002, 26, 819–825. [Google Scholar] [CrossRef]
- Minkova, L.; Habich, A.; Peter, J.; Kaller, C.P.; Eickhoff, S.B.; Klöppel, S. Gray matter asymmetries in aging and neurodegeneration: A review and meta-analysis. Hum. Brain Mapp. 2017, 38, 5890–5904. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.-Z.; Mathias, S.R.; Guadalupe, T.; Glahn, D.C.; Franke, B.; Crivello, F.; Tzourio-Mazoyer, N.; Fisher, S.E.; Thompson, P.M.; Francks, C.; et al. Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium. Proc. Natl. Acad. Sci. USA 2018, 115, E5154–E5163. [Google Scholar] [CrossRef]
- Thompson, P.M.; Hayashi, K.M.; de Zubicaray, G.; Janke, A.L.; Rose, S.E.; Semple, J.; Herman, D.; Hong, M.S.; Dittmer, S.S.; Doddrell, D.M.; et al. Dynamics of gray matter loss in Alzheimer’s disease. J. Neurosci. 2003, 23, 994–1005. [Google Scholar] [CrossRef]
- Plessen, K.J.; Hugdahl, K.; Bansal, R.; Hao, X.; Peterson, B.S. Sex, Age, and Cognitive Correlates of Asymmetries in Thickness of the Cortical Mantle Across the Life Span. J. Neurosci. 2014, 34, 6294–6302. [Google Scholar] [CrossRef] [PubMed]
- Berlingeri, M.; Danelli, L.; Bottini, G.; Sberna, M.; Paulesu, E. Reassessing the HAROLD model: Is the hemispheric asymmetry reduction in older adults a special case of compensatory-related utilisation of neural circuits? Exp. Brain Res. 2013, 224, 393–410. [Google Scholar] [CrossRef] [PubMed]
- Nenert, R.; Allendorfer, J.B.; Martin, A.M.; Banks, C.; Vannest, J.; Holland, S.K.; Szaflarski, J.P. Age-related language lateralization assessed by fMRI: The effects of sex and handedness. Brain Res. 2017, 1674, 20–35. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Park, D.C. Human Neuroscience and the Aging Mind: A New Look at Old Problems. J. Gerontol. Ser. B 2010, 65, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Hausmann, M.; Güntürkün, O.; Corballis, M. Age-related changes in hemispheric asymmetry depend on sex. Laterality 2003, 8, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Ocklenburg, S.; Gunturkun, O. Hemispheric Asymmetries over the Lifespan. In The Lateralized Brain: The Neuroscience and Evolution of Hemispheric Asymmetries; Academic Press: London, UK, 2018; pp. 263–288. [Google Scholar]
- Fraser, M.A.; Shaw, M.E.; Cherbuin, N. A systematic review and meta-analysis of longitudinal hippocampal atrophy in healthy human ageing. NeuroImage 2015, 112, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Cherbuin, N.; Luders, E. The impact of aging on subregions of the hippocampal complex in healthy adults. NeuroImage 2017, 163, 296–300. [Google Scholar] [CrossRef] [PubMed]
- De Flores, R.; La Joie, R.; Chételat, G. Structural imaging of hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience 2015, 309, 29–50. [Google Scholar] [CrossRef]
- Mueller, S.; Stables, L.; Du, A.; Schuff, N.; Truran, D.; Cashdollar, N.; Weiner, M. Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiol. Aging 2007, 28, 719–726. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Sachdev, P.; Lipnicki, D.M.; Zhang, H.; Liu, T.; Zhu, W.; Suo, C.; Zhuang, L.; Crawford, J.; Reppermund, S.; et al. A longitudinal study of brain atrophy over two years in community-dwelling older individuals. NeuroImage 2014, 86, 203–211. [Google Scholar] [CrossRef]
- Raz, N.; Daugherty, A.M.; Bender, A.R.; Dahle, C.L.; Land, S. Volume of the hippocampal subfields in healthy adults: Differential associations with age and a pro-inflammatory genetic variant. Anat. Embryol. 2015, 220, 2663–2674. [Google Scholar] [CrossRef]
- Cherbuin, N.; Réglade-Meslin, C.; Kumar, R.; Sachdev, P.; Anstey, K.J. Mild cognitive disorders are associated with different patterns of brain asymmetry than normal aging: The PATH through life study. Front. Psychiatry 2010, 1, 11. [Google Scholar] [CrossRef]
- Bookheimer, S.Y.; Salat, D.H.; Terpstra, M.; Ances, B.M.; Barch, D.M.; Buckner, R.L.; Burgess, G.C.; Curtiss, S.W.; Diaz-Santos, M.; Elam, J.S.; et al. The Lifespan Human Connectome Project in Aging: An overview. NeuroImage 2019, 185, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Cherbuin, N.; Luders, E. Reduced age-related degeneration of the hippocampal subiculum in long-term meditators. Psychiatry Res. 2015, 232, 214–218. [Google Scholar] [CrossRef]
- Kurth, F.; Jancke, L.; Luders, E. Integrating cytoarchitectonic tissue probabilities with MRI-based signal intensities to calculate volumes of interest. Spalletta, G., Gili, T., Piras, F., editors. In Brain Morphometry: Methods and Clinical Applications; Humana Press: New York, NY, USA, 2017; pp. 121–129. [Google Scholar]
- Kurth, F.; Jancke, L.; Luders, E. Sexual dimorphism of Broca’s region: More gray matter in female brains in Brodmann areas 44 and 45. J. Neurosci. Res. 2016, 95, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Luders, E.; Kurth, F.; Toga, A.W.; Narr, K.L.; Gaser, C. Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping. Front. Psychol. 2013, 4, 398. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, J.; Friston, K.J. Diffeomorphic registration using geodesic shooting and Gauss–Newton optimisation. NeuroImage 2011, 55, 954–967. [Google Scholar] [CrossRef]
- Ashburner, J.; Friston, K.J.; Ashburner, J.; Friston, K.J.; Ashburner, J.; Friston, K.J. Voxel-Based Morphometry—The Methods. NeuroImage 2000, 11, 805–821. [Google Scholar] [CrossRef]
- Good, C.D.; Johnsrude, I.S.; Ashburner, J.; Henson, R.N.A.; Friston, K.J.; Frackowiak, R.S.J. A Voxel-Based Morphometric Study of Ageing in 465 Normal Adult Human Brains. NeuroImage 2001, 14, 21–36. [Google Scholar] [CrossRef]
- Kurth, F.; Luders, E.; Gaser, C. Voxel-based Morphometry. In Brain Mapping: An Encyclopedic Reference; Toga, A., Ed.; Academic Press: London, UK, 2015; pp. 345–349. [Google Scholar]
- Amunts, K.; Kedo, O.; Kindler, M.; Pieperhoff, P.; Mohlberg, H.; Shah, N.; Habel, U.; Schneider, F.; Zilles, K. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: Intersubject variability and probability maps. Anat. Embryol. 2005, 210, 343–352. [Google Scholar] [CrossRef]
- Amunts, K.; Mohlberg, H.; Bludau, S.; Caspers, S.; Brandstetter, A.; Eickhoff, S.B.; Pieperhoff, P.; Dickscheid, T. Julich-Brain Atlas-Whole-Brain Collections of Cytoarchitectonic Probabilistic Maps (v2.9). Ebrains 2021. [Google Scholar] [CrossRef]
- Kurth, F.; Gaser, C.; Luders, E. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM). Nat. Protoc. 2015, 10, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Kurth, F.; Thompson, P.M.; Luders, E. Investigating the differential contributions of sex and brain size to gray matter asymmetry. Cortex 2018, 99, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Brown, J.W.; Jaffe, J. Hypothesis on cerebral dominance. Neuropsychologia 1975, 13, 107–110. [Google Scholar] [CrossRef] [PubMed]
Variable | Statistics |
---|---|
N | 725 |
Sex (F/M) | 406/319 |
Age (Mean ± SD [range]) | 60.36 ± 15.73 [36–100] |
Handedness (L/R) | 76/649 |
Handedness Score (Mean ± SD (range)) | 66.92 ± 48.76 [−100–100] |
TIV (Mean ± SD (range)) | 1.453 ± 152 [1.021–1.959] liters |
N by Site (MGH, UCLA, UMinn, WashU) | 163, 148, 205, 209 |
Region | Change in Asymmetry | Cohen’s d | T|df | p, Corrected |
---|---|---|---|---|
CA1 | rightward | 1.14 | 30.5|720 | <0.001 |
CA2 | rightward | 1.39 | 37.4|720 | <0.001 |
CA3 | rightward | 0.30 | 7.9|720 | <0.001 |
DG | leftward | −0.22 | −5.9|720 | <0.001 |
Subiculum | rightward | 1.45 | 38.9|720 | <0.001 |
Entorhinal | leftward | −0.17 | −4.4|720 | <0.001 |
Hippo | rightward | 0.68 | 18.2|720 | <0.001 |
Region | Change in Magnitude | Correlation Coefficient (r) | T|df | p, Corrected |
---|---|---|---|---|
CA1 | increase | 0.09 | 2.5|720 | 0.013 |
CA2 | increase | 0.11 | 2.9|720 | 0.006 |
CA3 | increase | 0.15 | 4.2|720 | <0.001 |
DG | not significant | 0.07 | 1.8|720 | 0.073 |
Subiculum | increase | 0.22 | 6.2|720 | <0.001 |
Entorhinal | increase | 0.12 | 3.1|720 | 0.003 |
Hippo | increase | 0.18 | 4.8|720 | <0.001 |
Region | Change in Asymmetry|Change in Magnitude | Correlation Coefficient (r) | T|df | p, Corrected |
---|---|---|---|---|
CA1 | not significant | 0.07 | 1.9|720 | 0.067 |
CA2 | rightward|increase | 0.09 | 2.5|720 | 0.028 |
CA3 | rightward|increase | 0.06 | 2.3|720 | 0.034 |
DG | leftward|decrease | 0.17 | 4.5|720 | <0.001 |
Subiculum | rightward|increase | 0.22 | 6.2|720 | <0.001 |
Entorhinal | not significant | −0.02 | 0.5|720 | 0.645 |
Hippo | rightward|increase | 0.08 | 2.3|720 | 0.034 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurth, F.; Luders, E. Hippocampal Asymmetry Increases with Age. Anatomia 2023, 2, 328-335. https://doi.org/10.3390/anatomia2040029
Kurth F, Luders E. Hippocampal Asymmetry Increases with Age. Anatomia. 2023; 2(4):328-335. https://doi.org/10.3390/anatomia2040029
Chicago/Turabian StyleKurth, Florian, and Eileen Luders. 2023. "Hippocampal Asymmetry Increases with Age" Anatomia 2, no. 4: 328-335. https://doi.org/10.3390/anatomia2040029
APA StyleKurth, F., & Luders, E. (2023). Hippocampal Asymmetry Increases with Age. Anatomia, 2(4), 328-335. https://doi.org/10.3390/anatomia2040029