Molecular Anatomy of Prostate Cancer and Its Implications in Active Surveillance and Early Intervention Strategies
Abstract
:1. Introduction
2. Molecular Anatomy of the Prostate
2.1. Gene Expression According to Cell Types
2.2. Impact of Genetic Susceptibility in Prostate Cancer
2.3. Gene Expression According to Prostate Cancer Histopathological Features
2.4. Gene Expression Associated with Prostate Cancer Outcomes
2.5. Gene Expression According to Key Prostate Cancer Signalling Pathways
3. Active Surveillance and Early Intervention
Reversibility of Low-Risk Prostate Cancer and Super-Active Surveillance
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Agency for Research Cancer. Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 22 June 2023).
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, B.; He, M.; Wang, Y.; Wang, Z.; Du, L. Prostate Cancer Incidence and Mortality: Global Status and Temporal Trends in 89 Countries from 2000 to 2019. Front Public Health 2022, 10, 811044. [Google Scholar] [CrossRef] [PubMed]
- Jahn, J.L.; Giovannucci, E.L.; Stampfer, M.J. The High Prevalence of Undiagnosed Prostate Cancer at Autopsy: Implications for Epidemiology and Treatment of Prostate Cancer in the Prostate-Specific Antigen-Era. Int. J. Cancer 2015, 137, 2795–2802. [Google Scholar] [CrossRef]
- Azzouzi, A.-R.; Cochand-Priollet, B.; Mangin, P.; Fournier, G.; Berthon, P.; Latil, A.; Cussenot, O. Impact of Constitutional Genetic Variation in Androgen/Oestrogen-Regulating Genes on Age-Related Changes in Human Prostate. Eur. J. Endocrinol. 2002, 147, 479–484. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Metcalfe, C.; Davis, M.; Turner, E.L.; Martin, R.M.; Young, G.J.; Walsh, E.I.; Bryant, R.J.; et al. Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N. Engl. J. Med. 2023, 388, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Bill-Axelson, A.; Holmberg, L.; Garmo, H.; Taari, K.; Busch, C.; Nordling, S.; Häggman, M.; Andersson, S.-O.; Andrén, O.; Steineck, G.; et al. Radical Prostatectomy or Watchful Waiting in Prostate Cancer—29-Year Follow-Up. N. Engl. J. Med. 2018, 379, 2319–2329. [Google Scholar] [CrossRef]
- Wilt, T.J.; Jones, K.M.; Barry, M.J.; Andriole, G.L.; Culkin, D.; Wheeler, T.; Aronson, W.J.; Brawer, M.K. Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N. Engl. J. Med. 2017, 377, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L. Active Surveillance: An Individualized Approach to Early Prostate Cancer. BJU Int. 2003, 92, 657. [Google Scholar] [CrossRef]
- Klotz, L.; Vesprini, D.; Sethukavalan, P.; Jethava, V.; Zhang, L.; Jain, S.; Yamamoto, T.; Mamedov, A.; Loblaw, A. Long-Term Follow-Up of a Large Active Surveillance Cohort of Patients with Prostate Cancer. JCO 2015, 33, 272–277. [Google Scholar] [CrossRef]
- Lejeune, C.; Bourredjem, A.; Binquet, C.; Cussenot, O.; Boudrant, G.; Papillon, F.; Bruyère, F.; Haillot, O.; Koutlidis, N.; Bassard, S.; et al. Eliciting Men’s Preferences for Decision-Making Relative to Treatments of Localized Prostate Cancer with a Good or Moderate Prognosis. World J. Urol. 2023, 41, 1541–1549. [Google Scholar] [CrossRef]
- Goldstein, A.S.; Huang, J.; Guo, C.; Garraway, I.P.; Witte, O.N. Identification of a Cell of Origin for Human Prostate Cancer. Science 2010, 329, 568–571. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, A.S.; Stoyanova, T.; Witte, O.N. Primitive Origins of Prostate Cancer: In Vivo Evidence for Prostate-Regenerating Cells and Prostate Cancer-Initiating Cells. Mol. Oncol. 2010, 4, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Lawson, D.A.; Zong, Y.; Memarzadeh, S.; Xin, L.; Huang, J.; Witte, O.N. Basal Epithelial Stem Cells Are Efficient Targets for Prostate Cancer Initiation. Proc. Natl. Acad. Sci. USA 2010, 107, 2610–2615. [Google Scholar] [CrossRef]
- Graham, M.K.; Chikarmane, R.; Wang, R.; Vaghasia, A.; Gupta, A.; Zheng, Q.; Wodu, B.; Pan, X.; Castagna, N.; Liu, J.; et al. Single-Cell Atlas of Epithelial and Stromal Cell Heterogeneity by Lobe and Strain in the Mouse Prostate. Prostate 2023, 83, 286–303. [Google Scholar] [CrossRef]
- Cooper, C.S.; Eeles, R.; Wedge, D.C.; Van Loo, P.; Gundem, G.; Alexandrov, L.B.; Kremeyer, B.; Butler, A.; Lynch, A.G.; Camacho, N.; et al. Analysis of the Genetic Phylogeny of Multifocal Prostate Cancer Identifies Multiple Independent Clonal Expansions in Neoplastic and Morphologically Normal Prostate Tissue. Nat. Genet. 2015, 47, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Erickson, A.; He, M.; Berglund, E.; Marklund, M.; Mirzazadeh, R.; Schultz, N.; Kvastad, L.; Andersson, A.; Bergenstråhle, L.; Bergenstråhle, J.; et al. Spatially Resolved Clonal Copy Number Alterations in Benign and Malignant Tissue. Nature 2022, 608, 360–367. [Google Scholar] [CrossRef]
- Shore, N.D.; Cooperberg, M.R.; Tomlins, S.A. Antiandrogen Treatment vs Active Surveillance for Patients with Prostate Cancer-Reply. JAMA Oncol. 2023, 9, 150–151. [Google Scholar] [CrossRef]
- Fleshner, N.E.; Lucia, M.S.; Egerdie, B.; Aaron, L.; Eure, G.; Nandy, I.; Black, L.; Rittmaster, R.S. Dutasteride in Localised Prostate Cancer Management: The REDEEM Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2012, 379, 1103–1111. [Google Scholar] [CrossRef]
- Cussenot, O.; Comperat, E.; Bitker, M.-O.; Rouprêt, M. From Active Surveillance to the Concept of Secondary Prevention. Eur. Urol. 2011, 59, 568–571. [Google Scholar] [CrossRef]
- Cussenot, O.; Cornu, J.-N.; Drouin, S.J.; Mozer, P.; Egrot, C.; Vaessen, C.; Haab, F.; Bitker, M.-O.; Rouprêt, M. Secondary Chemoprevention of Localized Prostate Cancer by Short-Term Androgen Deprivation to Select Indolent Tumors Suitable for Active Surveillance: A Prospective Pilot Phase II Study. World J. Urol. 2014, 32, 545–550. [Google Scholar] [CrossRef]
- Shore, N.D.; Renzulli, J.; Fleshner, N.E.; Hollowell, C.M.P.; Vourganti, S.; Silberstein, J.; Siddiqui, R.; Hairston, J.; Elsouda, D.; Russell, D.; et al. Enzalutamide Monotherapy vs Active Surveillance in Patients with Low-Risk or Intermediate-Risk Localized Prostate Cancer: The ENACT Randomized Clinical Trial. JAMA Oncol. 2022, 8, 1128–1136. [Google Scholar] [CrossRef]
- Tewari, A.K.; Cheung, A.T.M.; Crowdis, J.; Conway, J.R.; Camp, S.Y.; Wankowicz, S.A.; Livitz, D.G.; Park, J.; Lis, R.T.; Bosma-Moody, A.; et al. Molecular Features of Exceptional Response to Neoadjuvant Anti-Androgen Therapy in High-Risk Localized Prostate Cancer. Cell Rep. 2021, 36, 109665. [Google Scholar] [CrossRef] [PubMed]
- McNeal, J.E. Regional Morphology and Pathology of the Prostate. Am. J. Clin. Pathol. 1968, 49, 347–357. [Google Scholar] [CrossRef] [PubMed]
- McNeal, J.E. The Zonal Anatomy of the Prostate. Prostate 1981, 2, 35–49. [Google Scholar] [CrossRef]
- Gil-Vernet, J. Prostate Cancer: Anatomical and Surgical Considerations. Br. J. Urol. 1996, 78, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Laschkar, S.; Montagne, S.; De Kerviler, E.; Roupret, M.; Lucidarme, O.; Cussenot, O.; Renard Penna, R. Zonal Anatomy of the Prostate Using Magnetic Resonance Imaging, Morphometrics, and Radiomic Features: Impact of Age-Related Changes. Br. J. Radiol. 2022, 95, 20210156. [Google Scholar] [CrossRef]
- Benoit, G.; Jardin, A.; Gillot, C. Reflections and Suggestions on the Nomenclature of the Prostate. Surg. Radiol. Anat. 1993, 15, 325–332. [Google Scholar] [CrossRef]
- Allen, K.S.; Kressel, H.Y.; Arger, P.H.; Pollack, H.M. Age-Related Changes of the Prostate: Evaluation by MR Imaging. AJR Am. J. Roentgenol. 1989, 152, 77–81. [Google Scholar] [CrossRef]
- Toivanen, R.; Shen, M.M. Prostate Organogenesis: Tissue Induction, Hormonal Regulation and Cell Type Specification. Development 2017, 144, 1382–1398. [Google Scholar] [CrossRef]
- Rybak, A.P.; Bristow, R.G.; Kapoor, A. Prostate Cancer Stem Cells: Deciphering the Origins and Pathways Involved in Prostate Tumorigenesis and Aggression. Oncotarget 2015, 6, 1900–1919. [Google Scholar] [CrossRef]
- Jaworska, D.; Król, W.; Szliszka, E. Prostate Cancer Stem Cells: Research Advances. Int. J. Mol. Sci. 2015, 16, 27433–27449. [Google Scholar] [CrossRef]
- Prajapati, A.; Gupta, S.; Mistry, B.; Gupta, S. Prostate Stem Cells in the Development of Benign Prostate Hyperplasia and Prostate Cancer: Emerging Role and Concepts. Biomed. Res. Int. 2013, 2013, 107954. [Google Scholar] [CrossRef] [PubMed]
- Cussenot, O.; Berthon, P.; Cochand-Priollet, B.; Maitland, N.J.; Le Duc, A. Immunocytochemical Comparison of Cultured Normal Epithelial Prostatic Cells with Prostatic Tissue Sections. Exp. Cell Res. 1994, 214, 83–92. [Google Scholar] [CrossRef]
- Murant, S.; Handley, J.; Stower, M.; Reid, N.; Cussenot, O.; Maitland, N. Co-Ordinated Changes in Expression of Cell Adhesion Molecules in Prostate Cancer. Eur. J. Cancer 1997, 33, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Cabodi, S.; del Pilar Camacho-Leal, M.; Di Stefano, P.; Defilippi, P. Integrin Signalling Adaptors: Not Only Figurants in the Cancer Story. Nat. Rev. Cancer 2010, 10, 858–870. [Google Scholar] [CrossRef]
- Fromont, G.; Cussenot, O. The Integrin Signalling Adaptor P130CAS Is Also a Key Player in Prostate Cancer. Nat. Rev. Cancer 2011, 11, 227. [Google Scholar] [CrossRef] [PubMed]
- Latil, A.; Bièche, I.; Pesche, S.; Valéri, A.; Fournier, G.; Cussenot, O.; Lidereau, R. VEGF Overexpression in Clinically Localized Prostate Tumors and Neuropilin-1 Overexpression in Metastatic Forms. Int. J. Cancer 2000, 89, 167–171. [Google Scholar] [CrossRef]
- Cussenot, O.; Villette, J.M.; Cochand-Priollet, B.; Berthon, P. Evaluation and Clinical Value of Neuroendocrine Differentiation in Human Prostatic Tumors. Prostate Suppl. 1998, 8, 43–51. [Google Scholar] [CrossRef]
- Lamb, A.D.; Warren, A.Y.; Neal, D.E. Pre-Malignant Disease in the Prostate. In Pre-Invasive Disease: Pathogenesis and Clinical Management; Fitzgerald, R.C., Ed.; Springer: New York, NY, USA, 2011; pp. 467–491. ISBN 978-1-4419-6694-0. [Google Scholar]
- De Marzo, A.M.; Nelson, W.G.; Meeker, A.K.; Coffey, D.S. Stem Cell Features of Benign and Malignant Prostate Epithelial Cells. J. Urol. 1998, 160, 2381–2392. [Google Scholar] [CrossRef]
- Strand, D.W.; Goldstein, A.S. The Many Ways to Make a Luminal Cell and a Prostate Cancer Cell. Endocr. Relat. Cancer 2015, 22, T187–T197. [Google Scholar] [CrossRef]
- Bakht, M.K.; Yamada, Y.; Ku, S.-Y.; Venkadakrishnan, V.B.; Korsen, J.A.; Kalidindi, T.M.; Mizuno, K.; Ahn, S.H.; Seo, J.-H.; Garcia, M.M.; et al. Landscape of Prostate-Specific Membrane Antigen Heterogeneity and Regulation in AR-Positive and AR-Negative Metastatic Prostate Cancer. Nat. Cancer 2023, 4, 699–715. [Google Scholar] [CrossRef] [PubMed]
- Joseph, D.B.; Turco, A.E.; Vezina, C.M.; Strand, D.W. Progenitors in Prostate Development and Disease. Dev. Biol. 2021, 473, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Henry, G.H.; Malewska, A.; Joseph, D.B.; Malladi, V.S.; Lee, J.; Torrealba, J.; Mauck, R.J.; Gahan, J.C.; Raj, G.V.; Roehrborn, C.G.; et al. A Cellular Anatomy of the Normal Adult Human Prostate and Prostatic Urethra. Cell Rep. 2018, 25, 3530–3542.e5. [Google Scholar] [CrossRef]
- Joseph, D.B.; Henry, G.H.; Malewska, A.; Reese, J.C.; Mauck, R.J.; Gahan, J.C.; Hutchinson, R.C.; Mohler, J.L.; Roehrborn, C.G.; Strand, D.W. 5-Alpha Reductase Inhibitors Induce a Prostate Luminal to Club Cell Transition in Human Benign Prostatic Hyperplasia. J. Pathol. 2022, 256, 427–441. [Google Scholar] [CrossRef] [PubMed]
- Letellier, G.; Perez, M.; Yacoub, M.; Levillain, P.; Cussenot, O.; Fromont, G. Epithelial Phenotypes in the Developing Human Prostate. J. Histochem. Cytochem. 2007, 55, 885–890. [Google Scholar] [CrossRef]
- Roy, S.; Kaur, M.; Agarwal, C.; Tecklenburg, M.; Sclafani, R.A.; Agarwal, R. P21 and P27 Induction by Silibinin Is Essential for Its Cell Cycle Arrest Effect in Prostate Carcinoma Cells. Mol. Cancer Ther. 2007, 6, 2696–2707. [Google Scholar] [CrossRef]
- Tsihlias, J.; Kapusta, L.R.; DeBoer, G.; Morava-Protzner, I.; Zbieranowski, I.; Bhattacharya, N.; Catzavelos, G.C.; Klotz, L.H.; Slingerland, J.M. Loss of Cyclin-Dependent Kinase Inhibitor P27Kip1 Is a Novel Prognostic Factor in Localized Human Prostate Adenocarcinoma. Cancer Res. 1998, 58, 542–548. [Google Scholar]
- De Marzo, A.; Meeker, A.; Zha, S.; Luo, J.; Nakayama, M.; Platz, E.; Isaacs, W.; Nelson, W. Human Prostate Cancer Precursors and Pathobiology. Urology 2003, 62, 55–62. [Google Scholar] [CrossRef]
- Man, Y.; Mannion, C.; Jewett, A.; Hsiao, Y.-H.; Liu, A.; Semczuk, A.; Zarogoulidis, P.; Gapeev, A.B.; Cimadamore, A.; Lee, P.; et al. The Most Effective but Largely Ignored Target for Prostate Cancer Early Detection and Intervention. J. Cancer 2022, 13, 3463–3475. [Google Scholar] [CrossRef]
- Tyekucheva, S.; Bowden, M.; Bango, C.; Giunchi, F.; Huang, Y.; Zhou, C.; Bondi, A.; Lis, R.; Van Hemelrijck, M.; Andrén, O.; et al. Stromal and Epithelial Transcriptional Map of Initiation Progression and Metastatic Potential of Human Prostate Cancer. Nat. Commun. 2017, 8, 420. [Google Scholar] [CrossRef]
- Krušlin, B.; Ulamec, M.; Tomas, D. Prostate Cancer Stroma: An Important Factor in Cancer Growth and Progression. Bosn. J. Basic Med. Sci. 2015, 15, 1. [Google Scholar] [CrossRef]
- Bahmad, H.F.; Jalloul, M.; Azar, J.; Moubarak, M.M.; Samad, T.A.; Mukherji, D.; Al-Sayegh, M.; Abou-Kheir, W. Tumor Microenvironment in Prostate Cancer: Toward Identification of Novel Molecular Biomarkers for Diagnosis, Prognosis, and Therapy Development. Front. Genet. 2021, 12, 652747. [Google Scholar] [CrossRef]
- Yu, X.; Liu, R.; Gao, W.; Wang, X.; Zhang, Y. Single-Cell Omics Traces the Heterogeneity of Prostate Cancer Cells and the Tumor Microenvironment. Cell Mol. Biol. Lett. 2023, 28, 38. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. The Biology and Function of Fibroblasts in Cancer. Nat. Rev. Cancer 2016, 16, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.S.; Clayton, A.; Pearson, H.B. Cancer-Associated Fibroblast Heterogeneity, Activation and Function: Implications for Prostate Cancer. Biomolecules 2022, 13, 67. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.K. Regulation of Differentiation of Vascular Smooth Muscle Cells. Physiol. Rev. 1995, 75, 487–517. [Google Scholar] [CrossRef]
- Ayala, G.; Tuxhorn, J.A.; Wheeler, T.M.; Frolov, A.; Scardino, P.T.; Ohori, M.; Wheeler, M.; Spitler, J.; Rowley, D.R. Reactive Stroma as a Predictor of Biochemical-Free Recurrence in Prostate Cancer. Clin. Cancer Res. 2003, 9, 4792–4801. [Google Scholar]
- Tuxhorn, J.A.; Ayala, G.E.; Smith, M.J.; Smith, V.C.; Dang, T.D.; Rowley, D.R. Reactive Stroma in Human Prostate Cancer: Induction of Myofibroblast Phenotype and Extracellular Matrix Remodeling. Clin. Cancer Res. 2002, 8, 2912–2923. [Google Scholar]
- Pederzoli, F.; Raffo, M.; Pakula, H.; Ravera, F.; Nuzzo, P.V.; Loda, M. “Stromal Cells in Prostate Cancer Pathobiology: Friends or Foes?”. Br. J. Cancer 2023, 128, 930–939. [Google Scholar] [CrossRef]
- Goncharov, N.V.; Popova, P.I.; Avdonin, P.P.; Kudryavtsev, I.V.; Serebryakova, M.K.; Korf, E.A.; Avdonin, P.V. Markers of Endothelial Cells in Normal and Pathological Conditions. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2020, 14, 167–183. [Google Scholar] [CrossRef]
- Heidegger, I.; Fotakis, G.; Offermann, A.; Goveia, J.; Daum, S.; Salcher, S.; Noureen, A.; Timmer-Bosscha, H.; Schäfer, G.; Walenkamp, A.; et al. Comprehensive Characterization of the Prostate Tumor Microenvironment Identifies CXCR4/CXCL12 Crosstalk as a Novel Antiangiogenic Therapeutic Target in Prostate Cancer. Mol. Cancer 2022, 21, 132. [Google Scholar] [CrossRef]
- Messex, J.K.; Liou, G.-Y. Impact of Immune Cells in the Tumor Microenvironment of Prostate Cancer Metastasis. Life 2023, 13, 333. [Google Scholar] [CrossRef]
- Feng, D.; Xiong, Q.; Wei, Q.; Yang, L. Cellular Landscape of Tumour Microenvironment in Prostate Cancer. Immunology 2023, 168, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.W.K.; Hsieh, C.-L.; Law, A.; Sung, S.-Y.; Gardner, T.A.; Egawa, M.; Matsubara, S.; Zhau, H.E. New Targets for Therapy in Prostate Cancer: Modulation of Stromal–Epithelial Interactions. Urology 2003, 62, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.C.; Wang, Y.Z. Growth Factors and Epithelial-Stromal Interactions in Prostate Cancer Development. In International Review of Cytology; Academic Press: Cambridge, MA, USA, 2000; Volume 199, pp. 65–116. [Google Scholar]
- Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers 2022, 14, 3906. [Google Scholar] [CrossRef]
- Bonollo, F.; Thalmann, G.N.; Kruithof-de Julio, M.; Karkampouna, S. The Role of Cancer-Associated Fibroblasts in Prostate Cancer Tumorigenesis. Cancers 2020, 12, 1887. [Google Scholar] [CrossRef]
- Yan, G.; Fukabori, Y.; Nikolaropoulos, S.; Wang, F.; McKeehan, W.L. Heparin-Binding Keratinocyte Growth Factor Is a Candidate Stromal-to-Epithelial-Cell Andromedin. Mol. Endocrinol. 1992, 6, 2123–2128. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Fukabori, Y.; Itoh, N.; Lu, W.; Kan, M.; McKeehan, W.L.; Yamanaka, H. Androgen-Stimulated Human Prostate Epithelial Growth Mediated by Stromal-Derived Fibroblast Growth Factor-10. Endocr. J. 1999, 46, 405–413. [Google Scholar] [CrossRef]
- Memarzadeh, S.; Xin, L.; Mulholland, D.J.; Mansukhani, A.; Wu, H.; Teitell, M.A.; Witte, O.N. Enhanced Paracrine FGF10 Expression Promotes Formation of Multifocal Prostate Adenocarcinoma and an Increase in Epithelial Androgen Receptor. Cancer Cell 2007, 12, 572–585. [Google Scholar] [CrossRef]
- Thomson, A.A. Role of Androgens and Fibroblast Growth Factors in Prostatic Development. Reproduction 2001, 121, 187–195. [Google Scholar] [CrossRef]
- Cunha, G.R.; Hayward, S.W.; Wang, Y.z.; Ricke, W.A. Role of the Stromal Microenvironment in Carcinogenesis of the Prostate. Int. J. Cancer 2003, 107, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ropiquet, F.; Berthon, P.; Villette, J.M.; Le Brun, G.; Maitland, N.J.; Cussenot, O.; Fiet, J. Constitutive Expression of FGF2/BFGF in Non-Tumorigenic Human Prostatic Epithelial Cells Results in the Acquisition of a Partial Neoplastic Phenotype. Int. J. Cancer 1997, 72, 543–547. [Google Scholar] [CrossRef]
- Mirzaei, S.; Paskeh, M.D.A.; Saghari, Y.; Zarrabi, A.; Hamblin, M.R.; Entezari, M.; Hashemi, M.; Aref, A.R.; Hushmandi, K.; Kumar, A.P.; et al. Transforming Growth Factor-Beta (TGF-β) in Prostate Cancer: A Dual Function Mediator? Int. J. Biol. Macromol. 2022, 206, 435–452. [Google Scholar] [CrossRef]
- Figiel, S.; Vasseur, C.; Bruyere, F.; Rozet, F.; Maheo, K.; Fromont, G. Clinical Significance of Epithelial-Mesenchymal Transition Markers in Prostate Cancer. Hum. Pathol. 2017, 61, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Guido, C.; Whitaker-Menezes, D.; Capparelli, C.; Balliet, R.; Lin, Z.; Pestell, R.G.; Howell, A.; Aquila, S.; Andò, S.; Martinez-Outschoorn, U.; et al. Metabolic Reprogramming of Cancer-Associated Fibroblasts by TGF-β Drives Tumor Growth: Connecting TGF-β Signaling with “Warburg-like” Cancer Metabolism and L-Lactate Production. Cell Cycle 2012, 11, 3019–3035. [Google Scholar] [CrossRef]
- Costanza, B.; Umelo, I.A.; Bellier, J.; Castronovo, V.; Turtoi, A. Stromal Modulators of TGF-β in Cancer. J. Clin. Med. 2017, 6, 7. [Google Scholar] [CrossRef]
- Cai, C.; Balk, S.P. Intratumoral Androgen Biosynthesis in Prostate Cancer Pathogenesis and Response to Therapy. Endocr.-Relat. Cancer 2011, 18, R175–R182. [Google Scholar] [CrossRef]
- Armandari, I.; Hamid, A.R.; Verhaegh, G.; Schalken, J. Intratumoral Steroidogenesis in Castration-Resistant Prostate Cancer: A Target for Therapy. Prostate Int. 2014, 2, 105–113. [Google Scholar] [CrossRef]
- Figiel, S.; Pinault, M.; Domingo, I.; Guimaraes, C.; Guibon, R.; Besson, P.; Tavernier, E.; Blanchet, P.; Multigner, L.; Bruyère, F.; et al. Fatty Acid Profile in Peri-Prostatic Adipose Tissue and Prostate Cancer Aggressiveness in African-Caribbean and Caucasian Patients. Eur. J. Cancer 2018, 91, 107–115. [Google Scholar] [CrossRef]
- Figiel, S.; Bery, F.; Chantôme, A.; Fontaine, D.; Pasqualin, C.; Maupoil, V.; Domingo, I.; Guibon, R.; Bruyère, F.; Potier-Cartereau, M.; et al. A Novel Calcium-Mediated EMT Pathway Controlled by Lipids: An Opportunity for Prostate Cancer Adjuvant Therapy. Cancers 2019, 11, 1814. [Google Scholar] [CrossRef]
- Wu, X.; Daniels, G.; Lee, P.; Monaco, M.E. Lipid Metabolism in Prostate Cancer. Am. J. Clin. Exp. Urol. 2014, 2, 111–120. [Google Scholar] [PubMed]
- Compérat, E.; Wasinger, G.; Oszwald, A.; Kain, R.; Cancel-Tassin, G.; Cussenot, O. The Genetic Complexity of Prostate Cancer. Genes 2020, 11, 1396. [Google Scholar] [CrossRef]
- Cornu, J.-N.; Cancel-Tassin, G.; Cox, D.G.; Roupret, M.; Koutlidis, N.; Bigot, P.; Valeri, A.; Ondet, V.; Gaffory, C.; Fournier, G.; et al. Impact of Body Mass Index, Age, Prostate Volume, and Genetic Polymorphisms on Prostate-Specific Antigen Levels in a Control Population. Eur. Urol. 2016, 70, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, H.C.; Kote-Jarai, Z.; Ross-Adams, H.; Warren, A.Y.; Burge, J.; George, A.; Bancroft, E.; Jhavar, S.; Leongamornlert, D.; Tymrakiewicz, M.; et al. The Rs10993994 Risk Allele for Prostate Cancer Results in Clinically Relevant Changes in Microseminoprotein-Beta Expression in Tissue and Urine. PLoS ONE 2010, 5, e13363. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.; Yeager, M.; Li, H.; Bosquet, J.G.; Hayes, R.B.; Orr, N.; Yu, K.; Hutchinson, A.; Jacobs, K.B.; Kraft, P.; et al. Fine Mapping and Functional Analysis of a Common Variant in MSMB on Chromosome 10q11.2 Associated with Prostate Cancer Susceptibility. Proc. Natl. Acad. Sci. USA 2009, 106, 7933–7938. [Google Scholar] [CrossRef]
- Xiao, F.; Zhang, P.; Wang, Y.; Tian, Y.; James, M.; Huang, C.-C.; Wang, L.; Wang, L. Single-Nucleotide Polymorphism Rs13426236 Contributes to an Increased Prostate Cancer Risk via Regulating MLPH Splicing Variant 4. Mol. Carcinog. 2020, 59, 45–55. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part I: Introduction, Risk Assessment, Staging, and Risk-Based Management. J. Urol. 2022, 208, 10–18. [Google Scholar] [CrossRef]
- Overview|Prostate Cancer: Diagnosis and Management|Guidance|NICE. Available online: https://www.nice.org.uk/guidance/ng131 (accessed on 15 December 2021).
- Gleason, D.F. Classification of Prostatic Carcinomas. Cancer Chemother. Rep. 1966, 50, 125–128. [Google Scholar]
- Epstein, J.I.; Egevad, L.; Amin, M.B.; Delahunt, B.; Srigley, J.R.; Humphrey, P.A.; Grading Committee The 2014 International Society of Urological Pathology (ISUP). Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am. J. Surg. Pathol. 2016, 40, 244–252. [Google Scholar] [CrossRef]
- Marra, G.; van Leenders, G.J.L.H.; Zattoni, F.; Kesch, C.; Rajwa, P.; Cornford, P.; van der Kwast, T.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; et al. Impact of Epithelial Histological Types, Subtypes, and Growth Patterns on Oncological Outcomes for Patients with Nonmetastatic Prostate Cancer Treated with Curative Intent: A Systematic Review. Eur. Urol. 2023, 84, 65–85. [Google Scholar] [CrossRef]
- Cussenot, O.; Cancel-Tassin, G.; Comperat, E.; Benbouzid, S.; Lamb, A. Total Pelvic Exenteration Surgery for Loco-Regionally Advanced Prostate Cancer, Is It Justifiable? BJU Int. 2022, 130, 582–585. [Google Scholar] [CrossRef]
- Ranasinha, N.; Omer, A.; Philippou, Y.; Harriss, E.; Davies, L.; Chow, K.; Chetta, P.M.; Erickson, A.; Rajakumar, T.; Mills, I.G.; et al. Ductal Adenocarcinoma of the Prostate: A Systematic Review and Meta-Analysis of Incidence, Presentation, Prognosis, and Management. BJUI Compass 2021, 2, 13–23. [Google Scholar] [CrossRef]
- Rathod, S.G.; Jaiswal, D.G.; Bindu, R.S. Diagnostic Utility of Triple Antibody (AMACR, HMWCK and P63) Stain in Prostate Neoplasm. J. Fam. Med. Prim. Care 2019, 8, 2651–2655. [Google Scholar] [CrossRef]
- Mytsyk, Y.; Nakonechnyi, Y.; Dosenko, V.; Kowal, P.; Pietrus, M.; Gazdikova, K.; Labudova, M.; Caprnda, M.; Prosecky, R.; Dragasek, J.; et al. The Performance and Limitations of PCA3, TMPRSS2:ERG, HOXC6 and DLX1 Urinary Markers Combined in the Improvement of Prostate Cancer Diagnostics. Clin. Biochem. 2023, 116, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Rouprêt, M.; Hupertan, V.; Yates, D.R.; Catto, J.W.F.; Rehman, I.; Meuth, M.; Ricci, S.; Lacave, R.; Cancel-Tassin, G.; de la Taille, A.; et al. Molecular Detection of Localized Prostate Cancer Using Quantitative Methylation-Specific PCR on Urinary Cells Obtained Following Prostate Massage. Clin. Cancer Res. 2007, 13, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Thuret, R.; Chantrel-Groussard, K.; Azzouzi, A.-R.; Villette, J.-M.; Guimard, S.; Teillac, P.; Berthon, P.; Houlgatte, A.; Latil, A.; Cussenot, O. Clinical Relevance of Genetic Instability in Prostatic Cells Obtained by Prostatic Massage in Early Prostate Cancer. Br. J. Cancer 2005, 92, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Cornu, J.-N.; Cancel-Tassin, G.; Egrot, C.; Gaffory, C.; Haab, F.; Cussenot, O. Urine TMPRSS2:ERG Fusion Transcript Integrated with PCA3 Score, Genotyping, and Biological Features Are Correlated to the Results of Prostatic Biopsies in Men at Risk of Prostate Cancer. Prostate 2013, 73, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Haffner, M.C.; Zwart, W.; Roudier, M.P.; True, L.D.; Nelson, W.G.; Epstein, J.I.; De Marzo, A.M.; Nelson, P.S.; Yegnasubramanian, S. Genomic and Phenotypic Heterogeneity in Prostate Cancer. Nat. Rev. Urol. 2021, 18, 79–92. [Google Scholar] [CrossRef]
- Erickson, A.; Hayes, A.; Rajakumar, T.; Verrill, C.; Bryant, R.J.; Hamdy, F.C.; Wedge, D.C.; Woodcock, D.J.; Mills, I.G.; Lamb, A.D. A Systematic Review of Prostate Cancer Heterogeneity: Understanding the Clonal Ancestry of Multifocal Disease. Eur. Urol. Oncol. 2021, 4, 358–369. [Google Scholar] [CrossRef]
- Berthon, P.; Dimitrov, T.; Stower, M.; Cussenot, O.; Maitland, N.J. A Microdissection Approach to Detect Molecular Markers during Progression of Prostate Cancer. Br. J. Cancer 1995, 72, 946–951. [Google Scholar] [CrossRef]
- Bronkema, C.; Arora, S.; Sood, A.; Dalela, D.; Keeley, J.; Borchert, A.; Baumgarten, L.; Rogers, C.G.; Peabody, J.O.; Menon, M.; et al. Rare Histological Variants of Prostate Adenocarcinoma: A National Cancer Database Analysis. J. Urol. 2020, 204, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Grignon, D.J. Unusual Subtypes of Prostate Cancer. Mod. Pathol. 2004, 17, 316–327. [Google Scholar] [CrossRef]
- Baraban, E.; Epstein, J. Prostate Cancer: Update on Grading and Reporting. Surg. Pathol. Clin. 2022, 15, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Rebello, R.J.; Oing, C.; Knudsen, K.E.; Loeb, S.; Johnson, D.C.; Reiter, R.E.; Gillessen, S.; Van der Kwast, T.; Bristow, R.G. Prostate Cancer. Nat. Rev. Dis. Primers 2021, 7, 1–27. [Google Scholar] [CrossRef]
- Testa, U.; Castelli, G.; Pelosi, E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. Medicines 2019, 6, 82. [Google Scholar] [CrossRef]
- Schoenborn, J.R.; Nelson, P.; Fang, M. Genomic Profiling Defines Subtypes of Prostate Cancer with the Potential for Therapeutic Stratification. Clin. Cancer Res. 2013, 19, 4058–4066. [Google Scholar] [CrossRef]
- Shin, H.J.; Hua, J.T.; Li, H. Recent Advances in Understanding DNA Methylation of Prostate Cancer. Front. Oncol. 2023, 13, 1182727. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.-W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; et al. Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. Science 2005, 310, 644–648. [Google Scholar] [CrossRef]
- Rubin, M.A.; Maher, C.A.; Chinnaiyan, A.M. Common Gene Rearrangements in Prostate Cancer. J. Clin. Oncol. 2011, 29, 3659–3668. [Google Scholar] [CrossRef]
- St. John, J.; Powell, K.; Conley-LaComb, M.K.; Chinni, S.R. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression. J. Cancer Sci. Ther. 2012, 4, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Iljin, K.; Wolf, M.; Edgren, H.; Gupta, S.; Kilpinen, S.; Skotheim, R.I.; Peltola, M.; Smit, F.; Verhaegh, G.; Schalken, J.; et al. TMPRSS2 Fusions with Oncogenic ETS Factors in Prostate Cancer Involve Unbalanced Genomic Rearrangements and Are Associated with HDAC1 and Epigenetic Reprogramming. Cancer Res. 2006, 66, 10242–10246. [Google Scholar] [CrossRef] [PubMed]
- Burdelski, C.; Kleinhans, S.; Kluth, M.; Hube-Magg, C.; Minner, S.; Koop, C.; Graefen, M.; Heinzer, H.; Tsourlakis, M.C.; Wilczak, W.; et al. Reduced AZGP1 Expression Is an Independent Predictor of Early PSA Recurrence and Associated with ERG-Fusion Positive and PTEN Deleted Prostate Cancers. Int. J. Cancer 2016, 138, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Massoner, P.; Kugler, K.G.; Unterberger, K.; Kuner, R.; Mueller, L.A.J.; Fälth, M.; Schäfer, G.; Seifarth, C.; Ecker, S.; Verdorfer, I.; et al. Characterization of Transcriptional Changes in ERG Rearrangement-Positive Prostate Cancer Identifies the Regulation of Metabolic Sensors Such as Neuropeptide Y. PLoS ONE 2013, 8, e55207. [Google Scholar] [CrossRef]
- Alhamar, M.; Tudor Vladislav, I.; Smith, S.C.; Gao, Y.; Cheng, L.; Favazza, L.A.; Alani, A.M.; Ittmann, M.M.; Riddle, N.D.; Whiteley, L.J.; et al. Gene Fusion Characterisation of Rare Aggressive Prostate Cancer Variants—Adenosquamous Carcinoma, Pleomorphic Giant-Cell Carcinoma, and Sarcomatoid Carcinoma: An Analysis of 19 Cases. Histopathology 2020, 77, 890–899. [Google Scholar] [CrossRef]
- Kamoun, A.; Cancel-Tassin, G.; Fromont, G.; Elarouci, N.; Armenoult, L.; Ayadi, M.; Irani, J.; Leroy, X.; Villers, A.; Fournier, G.; et al. Comprehensive Molecular Classification of Localized Prostate Adenocarcinoma Reveals a Tumour Subtype Predictive of Non-Aggressive Disease. Ann. Oncol. 2018, 29, 1814–1821. [Google Scholar] [CrossRef]
- Léon, P.; Cancel-Tassin, G.; Drouin, S.; Audouin, M.; Varinot, J.; Comperat, E.; Cathelineau, X.; Rozet, F.; Vaessens, C.; Stone, S.; et al. Comparison of Cell Cycle Progression Score with Two Immunohistochemical Markers (PTEN and Ki-67) for Predicting Outcome in Prostate Cancer after Radical Prostatectomy. World J. Urol. 2018, 36, 1495–1500. [Google Scholar] [CrossRef]
- Pesche, S.; Latil, A.; Muzeau, F.; Cussenot, O.; Fournier, G.; Longy, M.; Eng, C.; Lidereau, R. PTEN/MMAC1/TEP1 Involvement in Primary Prostate Cancers. Oncogene 1998, 16, 2879–2883. [Google Scholar] [CrossRef]
- Wise, H.M.; Hermida, M.A.; Leslie, N.R. Prostate Cancer, PI3K, PTEN and Prognosis. Clin. Sci. 2017, 131, 197–210. [Google Scholar] [CrossRef]
- Ceder, Y.; Bjartell, A.; Culig, Z.; Rubin, M.A.; Tomlins, S.; Visakorpi, T. The Molecular Evolution of Castration-Resistant Prostate Cancer. Eur. Urol. Focus 2016, 2, 506–513. [Google Scholar] [CrossRef]
- Sprenger, C.C.T.; Plymate, S.R. The Link between Androgen Receptor Splice Variants and Castration Resistant Prostate Cancer. Horm. Cancer 2014, 5, 207–217. [Google Scholar] [CrossRef]
- Fujita, K.; Nonomura, N. Role of Androgen Receptor in Prostate Cancer: A Review. World J. Mens. Health 2019, 37, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Kubota, Y.; Shuin, T.; Uemura, H.; Fujinami, K.; Miyamoto, H.; Torigoe, S.; Dobashi, Y.; Kitamura, H.; Iwasaki, Y.; Danenberg, K. Tumor Suppressor Gene P53 Mutations in Human Prostate Cancer. Prostate 1995, 27, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Kir, G.; Cecikoglu, G.E.; Olgun, Z.C.; Kazan, H.O.; Yildirim, A. PTEN Loss and PD-L1 Expression of Different Histological Patterns of Prostate Cancer. Pathol. Res. Pract. 2022, 229, 153738. [Google Scholar] [CrossRef] [PubMed]
- Merkens, L.; Sailer, V.; Lessel, D.; Janzen, E.; Greimeier, S.; Kirfel, J.; Perner, S.; Pantel, K.; Werner, S.; von Amsberg, G. Aggressive Variants of Prostate Cancer: Underlying Mechanisms of Neuroendocrine Transdifferentiation. J. Exp. Clin. Cancer Res. 2022, 41, 46. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Liu, X.; Li, W.; Wen, Z.; Ji, X.; Zhou, R.; Tuo, X.; Chen, Y.; Gong, X.; Liu, G.; et al. A Rare Multiple Primary Sarcomatoid Carcinoma (SCA) of Small Intestine Harboring Driver Gene Mutations: A Case Report and a Literature Review. Transl. Cancer Res. 2021, 10, 1150–1161. [Google Scholar] [CrossRef]
- Hesterberg, A.B.; Gordetsky, J.B.; Hurley, P.J. Cribriform Prostate Cancer: Clinical Pathologic and Molecular Considerations. Urology 2021, 155, 47–54. [Google Scholar] [CrossRef]
- Baraban, E.; Erak, E.; Fatima, A.; Akbari, A.; Zhao, J.; Fletcher, S.A.; Bhanji, Y.; de la Calle, C.M.; Mamawala, M.; Landis, P.; et al. Identifying Men Who Can Remain on Active Surveillance Despite Biopsy Reclassification to Grade Group 2 Prostate Cancer. J. Urol. 2023, 210, 99–107. [Google Scholar] [CrossRef]
- Kweldam, C.F.; Wildhagen, M.F.; Steyerberg, E.W.; Bangma, C.H.; van der Kwast, T.H.; van Leenders, G.J.L.H. Cribriform Growth Is Highly Predictive for Postoperative Metastasis and Disease-Specific Death in Gleason Score 7 Prostate Cancer. Mod. Pathol. 2015, 28, 457–464. [Google Scholar] [CrossRef]
- Downes, M.R.; Xu, B.; van der Kwast, T.H. Gleason Grade Patterns in Nodal Metastasis and Corresponding Prostatectomy Specimens: Impact on Patient Outcome. Histopathology 2019, 75, 715–722. [Google Scholar] [CrossRef]
- Greenland, N.Y.; Cooperberg, M.R.; Wong, A.C.; Chan, E.; Carroll, P.R.; Simko, J.P.; Stohr, B.A. Molecular Risk Classifier Score and Biochemical Recurrence Risk Are Associated with Cribriform Pattern Type in Gleason 3+4=7 Prostate Cancer. Investig. Clin. Urol. 2022, 63, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Halstuch, D.; Ber, Y.; Margel, D. Screening, Active Surveillance, and Treatment of Localized Prostate Cancer Among Carriers of Germline BRCA Mutations. Eur. Urol. Focus 2020, 6, 212–214. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Xin, L.; Goldstein, A.S.; Lawson, D.A.; Teitell, M.A.; Witte, O.N. ETS Family Transcription Factors Collaborate with Alternative Signaling Pathways to Induce Carcinoma from Adult Murine Prostate Cells. Proc. Natl. Acad. Sci. USA 2009, 106, 12465–12470. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Cyrta, J.; Heller, G.; Prandi, D.; Armenia, J.; Coleman, I.; Cieslik, M.; Benelli, M.; Robinson, D.; Van Allen, E.M.; et al. Genomic Correlates of Clinical Outcome in Advanced Prostate Cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 11428–11436. [Google Scholar] [CrossRef] [PubMed]
- Cucchiara, V.; Cooperberg, M.R.; Dall’Era, M.; Lin, D.W.; Montorsi, F.; Schalken, J.A.; Evans, C.P. Genomic Markers in Prostate Cancer Decision Making. Eur. Urol. 2018, 73, 572–582. [Google Scholar] [CrossRef]
- Kretschmer, A.; Tilki, D. Biomarkers in Prostate Cancer—Current Clinical Utility and Future Perspectives. Crit. Rev. Oncol. Hematol. 2017, 120, 180–193. [Google Scholar] [CrossRef]
- Renard-Penna, R.; Cancel-Tassin, G.; Comperat, E.; Roupret, M.; Mozer, P.; Cussenot, O. Functional Magnetic Resonance Imaging and Molecular Pathology at the Crossroad of the Management of Early Prostate Cancer. World J. Urol. 2015, 33, 929–936. [Google Scholar] [CrossRef]
- Cuzick, J.; Berney, D.M.; Fisher, G.; Mesher, D.; Møller, H.; Reid, J.E.; Perry, M.; Park, J.; Younus, A.; Gutin, A.; et al. Prognostic Value of a Cell Cycle Progression Signature for Prostate Cancer Death in a Conservatively Managed Needle Biopsy Cohort. Br. J. Cancer 2012, 106, 1095–1099. [Google Scholar] [CrossRef]
- Kuhl, V.; Clegg, W.; Meek, S.; Lenz, L.; Flake, D.D.; Ronan, T.; Kornilov, M.; Horsch, D.; Scheer, M.; Farber, D.; et al. Development and Validation of a Cell Cycle Progression Signature for Decentralized Testing of Men with Prostate Cancer. Biomark. Med. 2022, 16, 449–459. [Google Scholar] [CrossRef]
- Klein, E.A.; Cooperberg, M.R.; Magi-Galluzzi, C.; Simko, J.P.; Falzarano, S.M.; Maddala, T.; Chan, J.M.; Li, J.; Cowan, J.E.; Tsiatis, A.C.; et al. A 17-Gene Assay to Predict Prostate Cancer Aggressiveness in the Context of Gleason Grade Heterogeneity, Tumor Multifocality, and Biopsy Undersampling. Eur. Urol. 2014, 66, 550–560. [Google Scholar] [CrossRef]
- Cullen, J.; Rosner, I.L.; Brand, T.C.; Zhang, N.; Tsiatis, A.C.; Moncur, J.; Ali, A.; Chen, Y.; Knezevic, D.; Maddala, T.; et al. A Biopsy-Based 17-Gene Genomic Prostate Score Predicts Recurrence After Radical Prostatectomy and Adverse Surgical Pathology in a Racially Diverse Population of Men with Clinically Low- and Intermediate-Risk Prostate Cancer. Eur. Urol. 2015, 68, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, C.A.; Chang, C. Androgen Receptor in Prostate Cancer. Endocr. Rev. 2004, 25, 276–308. [Google Scholar] [CrossRef] [PubMed]
- Aurilio, G.; Cimadamore, A.; Mazzucchelli, R.; Lopez-Beltran, A.; Verri, E.; Scarpelli, M.; Massari, F.; Cheng, L.; Santoni, M.; Montironi, R. Androgen Receptor Signaling Pathway in Prostate Cancer: From Genetics to Clinical Applications. Cells 2020, 9, 2653. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.-L.; Kyprianou, N. Role of Androgens and the Androgen Receptor in Epithelial-Mesenchymal Transition and Invasion of Prostate Cancer Cells. FASEB J. 2010, 24, 769–777. [Google Scholar] [CrossRef]
- Lamb, A.D.; Massie, C.E.; Neal, D.E. The Transcriptional Programme of the Androgen Receptor (AR) in Prostate Cancer. BJU Int. 2014, 113, 358–366. [Google Scholar] [CrossRef]
- Bonkhoff, H.; Remberger, K. Widespread Distribution of Nuclear Androgen Receptors in the Basal Cell Layer of the Normal and Hyperplastic Human Prostate. Vichows Arch. A Pathol. Anat. 1993, 422, 35–38. [Google Scholar] [CrossRef]
- Berthon, P.; Waller, A.S.; Villette, J.M.; Loridon, L.; Cussenot, O.; Maitland, N.J. Androgens Are Not a Direct Requirement for the Proliferation of Human Prostatic Epithelium in Vitro. Int. J. Cancer 1997, 73, 910–916. [Google Scholar] [CrossRef]
- Roy, A.K.; Tyagi, R.K.; Song, C.S.; Lavrovsky, Y.; Ahn, S.C.; Oh, T.S.; Chatterjee, B. Androgen Receptor: Structural Domains and Functional Dynamics after Ligand-Receptor Interaction. Ann. N. Y. Acad. Sci. 2001, 949, 44–57. [Google Scholar] [CrossRef]
- Chung, C.; Abboud, K. Targeting the Androgen Receptor Signaling Pathway in Advanced Prostate Cancer. Am. J. Health-Syst. Pharm. 2022, 79, 1224–1235. [Google Scholar] [CrossRef]
- Jin, H.-J.; Kim, J.; Yu, J. Androgen Receptor Genomic Regulation. Transl. Androl. Urol. 2013, 2, 158–177. [Google Scholar] [CrossRef]
- Norris, J.D.; Chang, C.-Y.; Wittmann, B.M.; Kunder, R.S.; Cui, H.; Fan, D.; Joseph, J.D.; McDonnell, D.P. The Homeodomain Protein HOXB13 Regulates the Cellular Response to Androgens. Mol. Cell 2009, 36, 405–416. [Google Scholar] [CrossRef]
- Tan, P.Y.; Chang, C.W.; Chng, K.R.; Wansa, K.D.S.A.; Sung, W.-K.; Cheung, E. Integration of Regulatory Networks by NKX3-1 Promotes Androgen-Dependent Prostate Cancer Survival. Mol. Cell Biol. 2012, 32, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Perez-Stable, C.M.; Pozas, A.; Roos, B.A. A Role for GATA Transcription Factors in the Androgen Regulation of the Prostate-Specific Antigen Gene Enhancer. Mol. Cell Endocrinol. 2000, 167, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, W.; Liu, X.S.; Carroll, J.S.; Jänne, O.A.; Keeton, E.K.; Chinnaiyan, A.M.; Pienta, K.J.; Brown, M. A Hierarchical Network of Transcription Factors Governs Androgen Receptor-Dependent Prostate Cancer Growth. Mol. Cell 2007, 27, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; et al. The Androgen Receptor Fuels Prostate Cancer by Regulating Central Metabolism and Biosynthesis. EMBO J. 2011, 30, 2719–2733. [Google Scholar] [CrossRef]
- Takayama, K.; Inoue, S. Transcriptional Network of Androgen Receptor in Prostate Cancer Progression. Int. J. Urol. 2013, 20, 756–768. [Google Scholar] [CrossRef]
- Ramos-Montoya, A.; Lamb, A.D.; Russell, R.; Carroll, T.; Jurmeister, S.; Galeano-Dalmau, N.; Massie, C.E.; Boren, J.; Bon, H.; Theodorou, V.; et al. HES6 Drives a Critical AR Transcriptional Programme to Induce Castration-Resistant Prostate Cancer through Activation of an E2F1-Mediated Cell Cycle Network. EMBO Mol. Med. 2014, 6, 651–661. [Google Scholar] [CrossRef]
- Wu, L.; Runkle, C.; Jin, H.-J.; Yu, J.; Li, J.; Yang, X.; Kuzel, T.; Lee, C.; Yu, J. CCN3/NOV Gene Expression in Human Prostate Cancer Is Directly Suppressed by the Androgen Receptor. Oncogene 2014, 33, 504–513. [Google Scholar] [CrossRef]
- Murillo-Garzón, V.; Kypta, R. WNT Signalling in Prostate Cancer. Nat. Rev. Urol. 2017, 14, 683–696. [Google Scholar] [CrossRef]
- Wang, C.; Chen, Q.; Xu, H. Wnt/β-Catenin Signal Transduction Pathway in Prostate Cancer and Associated Drug Resistance. Discov. Oncol. 2021, 12, 40. [Google Scholar] [CrossRef]
- Chen, G.; Shukeir, N.; Potti, A.; Sircar, K.; Aprikian, A.; Goltzman, D.; Rabbani, S.A. Up-Regulation of Wnt-1 and Beta-Catenin Production in Patients with Advanced Metastatic Prostate Carcinoma: Potential Pathogenetic and Prognostic Implications. Cancer 2004, 101, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.S.; Wu, Y.-M.; Robinson, D.R.; Cao, X.; Dhanasekaran, S.M.; Khan, A.P.; Quist, M.J.; Jing, X.; Lonigro, R.J.; Brenner, J.C.; et al. The Mutational Landscape of Lethal Castration-Resistant Prostate Cancer. Nature 2012, 487, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Robinson, D.; Van Allen, E.M.; Wu, Y.-M.; Schultz, N.; Lonigro, R.J.; Mosquera, J.-M.; Montgomery, B.; Taplin, M.-E.; Pritchard, C.C.; Attard, G.; et al. Integrative Clinical Genomics of Advanced Prostate Cancer. Cell 2015, 161, 1215–1228. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Placencio, V.; Iturregui, J.M.; Uwamariya, C.; Sharif-Afshar, A.-R.; Koyama, T.; Hayward, S.W.; Bhowmick, N.A. Prostate Tumor Progression Is Mediated by a Paracrine TGF-Beta/Wnt3a Signaling Axis. Oncogene 2008, 27, 7118–7130. [Google Scholar] [CrossRef] [PubMed]
- Zong, Y.; Huang, J.; Sankarasharma, D.; Morikawa, T.; Fukayama, M.; Epstein, J.I.; Chada, K.K.; Witte, O.N. Stromal Epigenetic Dysregulation Is Sufficient to Initiate Mouse Prostate Cancer via Paracrine Wnt Signaling. Proc. Natl. Acad. Sci. USA 2012, 109, E3395–E3404. [Google Scholar] [CrossRef] [PubMed]
- Dakhova, O.; Ozen, M.; Creighton, C.J.; Li, R.; Ayala, G.; Rowley, D.; Ittmann, M. Global Gene Expression Analysis of Reactive Stroma in Prostate Cancer. Clin. Cancer Res. 2009, 15, 3979–3989. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; DeGraff, D.J.; Wills, M.L.; Matusik, R.J. Wnt/β-Catenin Activation Promotes Prostate Tumor Progression in a Mouse Model. Oncogene 2011, 30, 1868–1879. [Google Scholar] [CrossRef]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-MTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef]
- Taylor, B.S.; Schultz, N.; Hieronymus, H.; Gopalan, A.; Xiao, Y.; Carver, B.S.; Arora, V.K.; Kaushik, P.; Cerami, E.; Reva, B.; et al. Integrative Genomic Profiling of Human Prostate Cancer. Cancer Cell 2010, 18, 11–22. [Google Scholar] [CrossRef]
- Armenia, J.; Wankowicz, S.A.M.; Liu, D.; Gao, J.; Kundra, R.; Reznik, E.; Chatila, W.K.; Chakravarty, D.; Han, G.C.; Coleman, I.; et al. The Long Tail of Oncogenic Drivers in Prostate Cancer. Nat. Genet. 2018, 50, 645–651. [Google Scholar] [CrossRef]
- He, Y.; Xu, W.; Xiao, Y.-T.; Huang, H.; Gu, D.; Ren, S. Targeting Signaling Pathways in Prostate Cancer: Mechanisms and Clinical Trials. Signal Transduct. Target. Ther. 2022, 7, 198. [Google Scholar] [CrossRef]
- Rodríguez-Berriguete, G.; Fraile, B.; Martínez-Onsurbe, P.; Olmedilla, G.; Paniagua, R.; Royuela, M. MAP Kinases and Prostate Cancer. J. Signal Transduct. 2012, 2012, 169170. [Google Scholar] [CrossRef]
- Crumbaker, M.; Khoja, L.; Joshua, A.M. AR Signaling and the PI3K Pathway in Prostate Cancer. Cancers 2017, 9, 34. [Google Scholar] [CrossRef]
- Bastian, P.J.; Carter, B.H.; Bjartell, A.; Seitz, M.; Stanislaus, P.; Montorsi, F.; Stief, C.G.; Schröder, F. Insignificant Prostate Cancer and Active Surveillance: From Definition to Clinical Implications. Eur. Urol. 2009, 55, 1321–1332. [Google Scholar] [CrossRef]
- van der Poel, H.; Klotz, L.; Andriole, G.; Azzouzi, A.-R.; Bjartell, A.; Cussenot, O.; Hamdy, F.; Graefen, M.; Palma, P.; Rivera, A.R.; et al. Role of Active Surveillance and Focal Therapy in Low- and Intermediate-Risk Prostate Cancers. World J. Urol. 2015, 33, 907–916. [Google Scholar] [CrossRef]
- Bul, M.; Zhu, X.; Valdagni, R.; Pickles, T.; Kakehi, Y.; Rannikko, A.; Bjartell, A.; van der Schoot, D.K.; Cornel, E.B.; Conti, G.N.; et al. Active Surveillance for Low-Risk Prostate Cancer Worldwide: The PRIAS Study. Eur. Urol. 2013, 63, 597–603. [Google Scholar] [CrossRef]
- Sharma, A.D.; Lopez, J.F.; Leiblich, A.; Leslie, T.A.; Lamb, A.D. Re: Fifteen-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. Eur. Urol. 2023, 84, 245–246. [Google Scholar] [CrossRef]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S.; et al. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Loblaw, A.; Zhang, L.; Lam, A.; Nam, R.; Mamedov, A.; Vesprini, D.; Klotz, L. Comparing Prostate Specific Antigen Triggers for Intervention in Men with Stable Prostate Cancer on Active Surveillance. J. Urol. 2010, 184, 1942–1946. [Google Scholar] [CrossRef]
- David, M.K.; Leslie, S.W. Prostate Specific Antigen. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Alarcón-Zendejas, A.P.; Scavuzzo, A.; Jiménez-Ríos, M.A.; Álvarez-Gómez, R.M.; Montiel-Manríquez, R.; Castro-Hernández, C.; Jiménez-Dávila, M.A.; Pérez-Montiel, D.; González-Barrios, R.; Jiménez-Trejo, F.; et al. The Promising Role of New Molecular Biomarkers in Prostate Cancer: From Coding and Non-Coding Genes to Artificial Intelligence Approaches. Prostate Cancer Prostatic Dis. 2022, 25, 431–443. [Google Scholar] [CrossRef]
- Jakobsen, N.A.; Hamdy, F.C.; Bryant, R.J. Novel Biomarkers for the Detection of Prostate Cancer. J. Clin. Urol. 2016, 9, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Alahdal, M.; Perera, R.A.; Moschovas, M.C.; Patel, V.; Perera, R.J. Current Advances of Liquid Biopsies in Prostate Cancer: Molecular Biomarkers. Mol. Ther. Oncolytics 2023, 30, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Huggins, C.; Hodges, C.V. Studies on Prostatic Cancer. I. The Effect of Castration, of Estrogen and Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. CA Cancer J. Clin. 1972, 22, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Asamoto, M.; Hokaiwado, N.; Cho, Y.M.; Takahashi, S.; Ikeda, Y.; Imaida, K.; Shirai, T. Prostate Carcinomas Developing in Transgenic Rats with SV40 T Antigen Expression under Probasin Promoter Control Are Strictly Androgen Dependent. Cancer Res. 2001, 61, 4693–4700. [Google Scholar]
- Said, M.M.; Hokaiwado, N.; Tang, M.; Ogawa, K.; Suzuki, S.; Ghanem, H.M.; Esmat, A.Y.; Asamoto, M.; Refaie, F.M.; Shirai, T. Inhibition of Prostate Carcinogenesis in Probasin/SV40 T Antigen Transgenic Rats by Leuprorelin, a Luteinizing Hormone-Releasing Hormone Agonist. Cancer Sci. 2006, 97, 459–467. [Google Scholar] [CrossRef]
- Andriole, G.L.; Bostwick, D.G.; Brawley, O.W.; Gomella, L.G.; Marberger, M.; Montorsi, F.; Pettaway, C.A.; Tammela, T.L.; Teloken, C.; Tindall, D.J.; et al. Effect of Dutasteride on the Risk of Prostate Cancer. N. Engl. J. Med. 2010, 362, 1192–1202. [Google Scholar] [CrossRef]
- Feigl, P.; Blumenstein, B.; Thompson, I.; Crowley, J.; Wolf, M.; Kramer, B.S.; Coltman, C.A.; Brawley, O.W.; Ford, L.G. Design of the Prostate Cancer Prevention Trial (PCPT). Control. Clin. Trials 1995, 16, 150–163. [Google Scholar] [CrossRef]
- Goodman, P.J.; Tangen, C.M.; Crowley, J.J.; Carlin, S.M.; Ryan, A.; Coltman, C.A.; Ford, L.G.; Thompson, I.M. Implementation of the Prostate Cancer Prevention Trial (PCPT). Control. Clin. Trials 2004, 25, 203–222. [Google Scholar] [CrossRef]
- Thompson, I.M.; Goodman, P.J.; Tangen, C.M.; Parnes, H.L.; Minasian, L.M.; Godley, P.A.; Lucia, M.S.; Ford, L.G. Long-Term Survival of Participants in the Prostate Cancer Prevention Trial. N. Engl. J. Med. 2013, 369, 603–610. [Google Scholar] [CrossRef]
- Köllermann, J.; Hopfenmüller, W.; Caprano, J.; Budde, A.; Weidenfeld, H.; Weidenfeld, M.; Helpap, B. Prognosis of Stage PT0 after Prolonged Neoadjuvant Endocrine Therapy of Prostate Cancer: A Matched-Pair Analysis. Eur. Urol. 2004, 45, 42–45. [Google Scholar] [CrossRef]
- Wilt, T.J.; MacDonald, R.; Hagerty, K.; Schellhammer, P.; Kramer, B.S. Five-Alpha-Reductase Inhibitors for Prostate Cancer Prevention. Cochrane Database Syst. Rev. 2008, 2, CD007091. [Google Scholar] [CrossRef]
- Nakazawa, M.; Fang, M.; H Marshall, C.; Lotan, T.L.; Isaacsson Velho, P.; Antonarakis, E.S. Clinical and Genomic Features of SPOP-Mutant Prostate Cancer. Prostate 2022, 82, 260–268. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figiel, S.; Cancel-Tassin, G.; Mills, I.G.; Lamb, A.D.; Fromont, G.; Cussenot, O. Molecular Anatomy of Prostate Cancer and Its Implications in Active Surveillance and Early Intervention Strategies. Anatomia 2023, 2, 300-319. https://doi.org/10.3390/anatomia2040027
Figiel S, Cancel-Tassin G, Mills IG, Lamb AD, Fromont G, Cussenot O. Molecular Anatomy of Prostate Cancer and Its Implications in Active Surveillance and Early Intervention Strategies. Anatomia. 2023; 2(4):300-319. https://doi.org/10.3390/anatomia2040027
Chicago/Turabian StyleFigiel, Sandy, Géraldine Cancel-Tassin, Ian G. Mills, Alastair D. Lamb, Gaelle Fromont, and Olivier Cussenot. 2023. "Molecular Anatomy of Prostate Cancer and Its Implications in Active Surveillance and Early Intervention Strategies" Anatomia 2, no. 4: 300-319. https://doi.org/10.3390/anatomia2040027
APA StyleFigiel, S., Cancel-Tassin, G., Mills, I. G., Lamb, A. D., Fromont, G., & Cussenot, O. (2023). Molecular Anatomy of Prostate Cancer and Its Implications in Active Surveillance and Early Intervention Strategies. Anatomia, 2(4), 300-319. https://doi.org/10.3390/anatomia2040027