PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism?
Abstract
1. Introduction
2. Case Presentation
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACMG | American College of Medical Genetics and Genomics |
ALS | Amyotrophic lateral sclerosis |
AMP | 5′adenosine monophosphate |
AMPK | AMP-activated protein kinase |
APBD | Adult polyglucosan body disease |
MND | Motor neuron disease |
MRI | Magnetic resonance imaging |
mTOR | Mammalian target of rapamycin |
NGS | Next-generation sequencing |
PGC1alpha | PPAR coactivator-1 alpha |
PPAR | Peroxisome proliferator-activated receptor |
PRKAG2 | Protein kinase, AMP-activated, noncatalytic, subunit gamma 2 |
SQSTM1 | Sequestosome 1 |
TDP-43 | Transactive response DNA-binding protein 43 |
WES | Whole-exome sequencing |
WPWS | Wolff–Parkinson–White syndrome |
References
- Korb, M.K.; Kimonis, V.E.; Mozaffar, T. Multisystem proteinopathy: Where myopathy and motor neuron disease converge. Muscle. Nerve 2021, 63, 442–454. [Google Scholar] [CrossRef]
- Sgobbi de Souza, P.V.; Badia, B.M.L.; Gonçalves, E.A.; Farias, I.B.; Pinto, W.B.V.R.; Oliveira, A.S.B. Hereditary Inclusion body myopathy: A clinical and genetic review. Rev. Neurocienc. 2020, 28, 1–23. [Google Scholar] [CrossRef]
- Cheung, P.C.; Salt, I.P.; Davies, S.P.; Hardie, D.G.; Carling, D. Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem. J. 2000, 346, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Yavari, A.; Sarma, D.; Sternick, E.B. Human gamma2-AMPK mutation. Methods Mol. Biol. 2018, 1732, 581–619. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Yu, P.; Wu, T.; He, Y.; Zhou, K.; Hua, Y.; Lin, S.; Wang, T.; Huang, H.; Li, Y. Controversial molecular functions of CBS versus non-CBS domain variants of PRKAG2 in arrhythmia and cardiomyopathy: A case report and literature review. Mol. Genet. Genom. Med. 2022, 10, e1962. [Google Scholar] [CrossRef]
- Banankhah, P.; Fishbein, G.A.; Dota, A.; Ardehali, R. Cardiac manifestations of PRKAG2 mutation. BMC. Med. Genet. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Porto, A.G.; Brun, F.; Severini, G.M.; Losurdo, P.; Fabris, E.; Taylor, M.R.G.; Mestroni, L.; Sinagra, G. Clinical spectrum of PRKAG2 syndrome. Circ. Arrhythmia Electrophysiol. 2016, 9, e003121. [Google Scholar] [CrossRef]
- Shen, C.; Liu, L.; Jiang, Z.; Zheng, X.; Meng, L.; Yin, X.; Gao, J.; Sheng, Y.; Gao, J.; Li, Y.; et al. Four genetic variants interact to confer susceptibility to atopic dermatitis in Chinese Han population. Mol. Genet. Genom. 2015, 290, 1493–1498. [Google Scholar] [CrossRef]
- Kim, E.; Lee, S.H.; Lee, K.S.; Cheong, H.K.; Namkoong, K.; Hong, C.H.; Oh, B.H. AMPK gamma2 subunit gene PRKAG2 polymorphism associated with cognitive impairment as well as diabetes in old age. Psychoneuroendocrinology 2012, 37, 358–365. [Google Scholar] [CrossRef]
- Giudici, M.C.; Ahmad, F.; Holanda, D.G. Patient with a PRKAG2 mutation who developed Immunoglobulin A nephropathy: A case report. Eur. Heart. J. Case Rep. 2019, 3, ytz038. [Google Scholar] [CrossRef]
- Beyzaei, Z.; Ezgu, F.; Geramizadeh, B.; Alborzi, A.; Shojazadeh, A. Novel PRKAG2 variant presenting as liver cirrhosis: Report of a family with 2 cases and review of literature. BMC. Med. Genom. 2021, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Vandoorne, T.; Steyaert, J.; Staats, K.A.; Van den Bosch, L. The multifaceted role of kinases in amyotrophic lateral sclerosis: Genetic, pathological and therapeutic implications. Brain 2020, 143, 1651–1673. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Hedberg-Oldfors, C.; Oldfors, A. Polyglucosan storage myopathies. Mol. Asp. Med. 2015, 46, 85–100. [Google Scholar] [CrossRef]
- Arad, M.; Benson, D.W.; Perez-Atayde, A.R.; McKenna, W.J.; Sparks, E.A.; Kanter, R.J.; McGarry, K.; Seidman, J.; Seidman, C.E. Constitutively active AMP kinase mutations cause glycogen storage disease mimicking hypertrophic cardiomyopathy. J. Clin. Investig. 2002, 109, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Arad, M.; Maron, B.J.; Gorham, J.M.; Johnson, W.H., Jr.; Saul, J.P.; Perez-Atayde, A.R.; Spirito, P.; Wright, G.B.; Kanter, R.J.; Seidman, C.E.; et al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N. Engl. J. Med. 2005, 352, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Arad, M.; Moskowitz, I.P.; Patel, V.V.; Ahmad, F.; Perez-Atayde, A.R.; Sawyer, D.B.; Walter, M.; Li, G.H.; Burgon, P.G.; Maguire, C.T.; et al. Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy. Circulation 2003, 107, 2850–2856. [Google Scholar] [CrossRef] [PubMed]
- Laforêt, P.; Oldfors, A.; Malfatti, E.; Vissing, J.; ENMC 251st Workshop Study Group. 251st ENMC international workshop: Polyglucosan storage myopathies 13–15 December 2019, Hoofddorp, the Netherlands. Neuromuscul. Disord. 2021, 31, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, P.; Martins, R.N. PRKAG2 gene expression is elevated and its protein levels are associated with increased amyloid-beta accumulation in the Alzheimer’s disease brain. J. Alzheimers Dis. 2020, 74, 441–448. [Google Scholar] [CrossRef]
- Liu, Y.J.; Ju, T.C.; Chen, H.M.; Jan, Y.S.; Lee, L.M.; Lai, H.L.; Tai, H.-C.; Fang, J.-M.; Lin, Y.-L.; Tu, P.-H.; et al. Activation of AMP-activated protein kinase a1 mediates mislocalization of TDP-43 in amyotrophic lateral sclerosis. Hum. Mol. Genet. 2015, 24, 787–801. [Google Scholar] [CrossRef]
- Perera, N.D.; Sheean, R.K.; Scott, J.W.; Kemp, B.E.; Horne, M.K.; Turner, B.J. Mutant TDP43 deregulates AMPK activation by PP2A in ALS models. PLoS ONE 2014, 9, e95549. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Kuo, S.W.; Chen, L.; Heckman, C.J.; Jiang, M.C. The essential and downstream common proteins of amyotrophic lateral sclerosis: A protein-protein interaction network analysis. PLoS ONE 2017, 12, e0172246. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, M.; Zhang, C.; Méar, L.; Zhong, W.; Digre, A.; Katona, B.; Sjöstedt, E.; Butler, L.; Odeberg, J.; Dusart, P.; et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 2021, 7, eabh2169. [Google Scholar] [CrossRef] [PubMed]
- Rosso, P.; Fioramonti, M.; Fracassi, A.; Marangoni, M.; Taglietti, V.; Siteni, S.; Segatto, M. AMPK in the central nervous system: Physiological roles and pathological implications. Res. Rep. Biol. 2016, 7, 1–13. [Google Scholar] [CrossRef]
- Souza, P.V.S.; Badia, B.M.L.; Farias, I.B.; Pinto, W.B.V.R.; Oliveira, A.S.B.; Akman, H.O.; DiMauro, S. GBE1-related disorders: Adult polyglucosan body disease and its neuromuscular phenotypes. J. Inherit. Metab. Dis. 2021, 44, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Canosa, A.; Grassano, M.; Moglia, C.; Iazzolino, B.; Peotta, L.; Gallone, S.; Brunetti, M.; Barberis, M.; Sbaiz, L.; Palumbo, F.; et al. GBA variants influence cognitive status in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2022, 93, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Vacchiano, V.; Bartoletti-Stella, A.; Rizzo, G.; Avoni, P.; Parchi, P.; Salvi, F.; Liguori, R.; Capellari, S. Frequency of Parkinson’s disease genes and role of PARK2 in Amyotrophic Lateral Sclerosis: An NGS study. Genes 2022, 13, 1306. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Schapira, A.H.V. GBA variants and Parkinson disease: Mechanisms and treatments. Cells 2022, 11, 1261. [Google Scholar] [CrossRef]
- Behl, T.; Kaur, G.; Fratila, O.; Buhas, C.; Judea-Pusta, C.T.; Negrut, N.; Bustea, C.; Bungau, S. Cross-talks among GBA mutations, glucocerebrosidase, and alpha-synuclein in GBA-associated Parkinson’s disease and their targeted therapeutic approaches: A comprehensive review. Transl. Neurodegener. 2021, 10, 4. [Google Scholar] [CrossRef]
- Souza, P.V.S.; Bortholin, T.; Naylor, F.G.M.; Chieia, M.A.T.; Pinto, W.B.V.R.; Oliveira, A.S.B. Motor neuron disease in Inherited neurometabolic disorders. Rev. Neurol. 2018, 174, 115–124. [Google Scholar] [CrossRef]
- Sun, A.G.; Wang, J.; Shan, Y.Z.; Yu, W.J.; Li, X.; Cong, C.H.; Wang, X. Identifying distinct candidate genes for early Parkinson’s disease by analysis of gene expression in whole blood. Neuro Endocrinol. Lett. 2014, 35, 398–404. [Google Scholar] [PubMed]
Main Phenotypes Associated with PRKAG2 Variants | Pattern of Inheritance | Age at Onset | Clinical Presentation |
---|---|---|---|
Familial hypertrophic cardiomyopathy type 6 (MIM #600858) | Autosomal dominant | Variable; generally juvenile or adult onset | Hypertrophic cardiomyopathy; atrial fibrillation, ventricular preexcitation syndrome; atrioventricular block; skeletal myopathy (rare) |
Wolff–Parkinson–White syndrome (MIM #194200) | Autosomal dominant | Variable; childhood or early adulthood onset | Ventricular preexcitation syndrome; typical delta wave; short PR interval; widened QRS complex; supraventricular tachycardia, atrial fibrillation; palpitation; sudden cardiac death |
Lethal congenital glycogen storage disease of the heart (MIM #261740) | Autosomal dominant | Neonatal onset | Hypertrophic cardiomyopathy; vacuolar cardiomyopathy, congestive heart failure; association with preexcitation syndrome/Wolff–Parkinson–White syndrome; skeletal myopathy; severe presentation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsini, M.; Pinto, W.B.V.d.R.; Sgobbi, P.; Oliveira, A.S.B. PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism? Muscles 2024, 3, 235-241. https://doi.org/10.3390/muscles3030021
Orsini M, Pinto WBVdR, Sgobbi P, Oliveira ASB. PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism? Muscles. 2024; 3(3):235-241. https://doi.org/10.3390/muscles3030021
Chicago/Turabian StyleOrsini, Marco, Wladimir Bocca Vieira de Rezende Pinto, Paulo Sgobbi, and Acary Souza Bulle Oliveira. 2024. "PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism?" Muscles 3, no. 3: 235-241. https://doi.org/10.3390/muscles3030021
APA StyleOrsini, M., Pinto, W. B. V. d. R., Sgobbi, P., & Oliveira, A. S. B. (2024). PRKAG2 Variant, Motor Neuron Disease, and Parkinsonism: Fortuitous Association or a Potentially Underestimated Pathophysiological Mechanism? Muscles, 3(3), 235-241. https://doi.org/10.3390/muscles3030021