Physical Function Tests Are Potential Tools to Identify Low Physical Resilience in Women after Breast Cancer Treatment
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods
4.1. Design
4.2. Participants
4.3. Level of Physical Activity
4.4. Anthropometric Measurements
4.4.1. Grip Strength
4.4.2. Physical Performance
4.5. Meter Walk Test (4-MWT)
4.6. Five-Times-Sit-To-Stand Test (FTSST)
4.7. Timed up and Go Test (TUG)
4.8. Short Physical Performance Battery (SPPB)
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- (INCA) BNCI. Estimativa 2020: Incidência de Câncer no Brasil; Instituto Nacional de Cáncer: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- American Cancer Society. Cancer Facts & Figures 2022; American Cancer Society: Atlanta, GA, USA, 2022. [Google Scholar]
- Hewitt, M.; Rowland, J.H.; Yancik, R. Cancer survivors in the United States: Age, health, and disability. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2003, 58, 82–91. [Google Scholar]
- Brown, J.; Harhay, M.; Harhay, M. Physical function as a prognostic biomarker among cancer survivors. Br. J. Cancer 2015, 112, 194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehta, R.R.; Beattie, C.W.; Gupta, T.K.D. Endocrine profile in breast cancer patients receiving chemotherapy. Breast Cancer Res. Treat. 1991, 20, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Dieli-Conwright, C.; Wong, L.; Waliany, S.; Bernstein, L.; Salehian, B.; Mortimer, J. An observational study to examine changes in metabolic syndrome components in patients with breast cancer receiving neoadjuvant or adjuvant chemotherapy. Cancer 2016, 122, 2646–2653. [Google Scholar] [PubMed]
- Taillibert, S.; Le Rhun, E.; Chamberlain, M.C. Chemotherapy-related neurotoxicity. Curr. Neurol. Neurosci. Rep. 2016, 16, 81. [Google Scholar] [CrossRef]
- Lacourt, T.E.; Heijnen, C.J. Mechanisms of neurotoxic symptoms as a result of breast cancer and its treatment: Considerations on the contribution of stress, inflammation, and cellular bioenergetics. Curr. Breast Cancer Rep. 2017, 9, 70–81. [Google Scholar] [CrossRef] [Green Version]
- Ferrucci, L.; Cooper, R.; Shardell, M.; Simonsick, E.; Schrack, J.; Kuh, D. Age-Related Change in Mobility: Perspectives From Life Course Epidemiology and Geroscience. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 1184–1194. [Google Scholar] [CrossRef] [Green Version]
- Whitson, H.E.; Duan-Porter, W.; Schmader, K.E.; Morey, M.C.; Cohen, H.J.; Colón-Emeric, C.S. Physical resilience in older adults: Systematic review and development of an emerging construct. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 71, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Hadley, E.C.; Kuchel, G.A.; Newman, A.B. Report: NIA workshop on measures of physiologic resiliencies in human aging. J. Gerontol. Ser. A 2017, 72, 980–990. [Google Scholar] [CrossRef] [Green Version]
- LeBrasseur, N.K. Physical resilience: Opportunities and challenges in translation. J. Gerontol. Ser. A 2017, 72, 978–979. [Google Scholar]
- Chhetri, J.K.; Xue, Q.-L.; Ma, L.; Chan, P.; Varadhan, R. Intrinsic capacity as a determinant of physical resilience in older adults. J. Nutr. Health Aging 2021, 25, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Varadhan, R.; Walston, J.D.; Bandeen-Roche, K. Can physical resilience and frailty in older adults be linked by the study of dynamical systems? J. Am. Geriatr. Soc. 2018, 66, 1455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ristevska-Dimitrovska, G.; Filov, I.; Rajchanovska, D.; Stefanovski, P.; Dejanova, B. Resilience and quality of life in breast cancer patients. Open Access Maced. J. Med. Sci. 2015, 3, 727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duan-Porter, W.; Cohen, H.J.; Demark-Wahnefried, W.; Sloane, R.; Pendergast, J.F.; Snyder, D.C.; Morey, M.C. Physical resilience of older cancer survivors: An emerging concept. J. Geriatr. Oncol. 2016, 7, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurria, A.; Soto-Perez-de-Celis, E.; Allred, J.B.; Cohen, H.J.; Arsenyan, A.; Ballman, K.; Le-Rademacher, J.; Jatoi, A.; Filo, J.; Mandelblatt, J.; et al. Functional decline and resilience in older women receiving adjuvant chemotherapy for breast cancer. J. Am. Geriatr. Soc. 2019, 67, 920–927. [Google Scholar] [CrossRef] [Green Version]
- Reuben, D.B.; Valle, L.A.; Hays, R.D.; Siu, A.L. Measuring physical function in community-dwelling older persons: A comparison of self-administered, interviewer-administered, and performance-based measures. J. Am. Geriatr. Soc. 1995, 43, 17–23. [Google Scholar] [CrossRef]
- Seymour, D.G.; Ball, A.E.; Russell, E.M.; Primrose, W.R.; Garratt, A.M.; Crawford, J.R. Problems in using health survey questionnaires in older patients with physical disabilities. The reliability and validity of the SF-36 and the effect of cognitive impairment. J. Eval. Clin. Pract. 2001, 7, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Jones, T.L.; Baxter, M.A.; Khanduja, V. A quick guide to survey research. Ann. R. Coll. Surg. Engl. 2013, 95, 5–7. [Google Scholar] [CrossRef]
- Schrack, J.A.; Simonsick, E.M.; Ferrucci, L. The relationship of the energetic cost of slow walking and peak energy expenditure to gait speed in mid-to-late life. Am. J. Phys. Med. Rehabil. 2013, 92, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Soares, W.; Lima, C.; Ferrioli, E.; Dias, R.C.; Perracini, M.R. The relationship between gait speed, functional reserve and frailty in community dwelling older adults. Physiotherapy 2015, 101, e1416. [Google Scholar] [CrossRef] [Green Version]
- Belsky, D.W.; Caspi, A.; Houts, R.; Cohen, H.J.; Corcoran, D.L.; Danese, A.; Harrington, H.; Israel, S.; Levine, M.E.; Schaefer, J.D.; et al. Quantification of biological aging in young adults. Proc. Natl. Acad. Sci. USA 2015, 112, E4104–E4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verweij, N.M.; Schiphorst, A.H.W.; Pronk, A.; van den Bos, F.; Hamaker, M.E. Physical performance measures for predicting outcome in cancer patients: A systematic review. Acta Oncol. 2016, 55, 1386–1391. [Google Scholar] [CrossRef] [PubMed]
- Sehl, M.; Lu, X.; Silliman, R.; Ganz, P.A. Decline in physical functioning in first 2 years after breast cancer diagnosis predicts 10-year survival in older women. J. Cancer Surviv. Res. Pract. 2013, 7, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaudart, C.; Rolland, Y.; Cruz-Jentoft, A.J.; Bauer, J.M.; Sieber, C.; Cooper, C.; Al-Daghri, N.; de Carvalho, I.A.; Bautmans, I.; Bernabei, R.; et al. Assessment of muscle function and physical performance in daily clinical practice: A position paper endorsed by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Calcif. Tissue Int. 2019, 105, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Studenski, S.; Perera, S.; Wallace, D.; Chandler, J.M.; Duncan, P.W.; Rooney, E.; Fox, M.; Guralnik, J.M. Physical performance measures in the clinical setting. J. Am. Geriatr. Soc. 2003, 51, 314–322. [Google Scholar] [CrossRef] [Green Version]
- Forte, R.; Macaluso, A. Relationship between performance-based and laboratory tests for lower-limb muscle strength and power assessment in healthy older women. J. Sport. Sci. 2008, 26, 1431–1436. [Google Scholar] [CrossRef]
- Steffen, T.M.; Hacker, T.A.; Mollinger, L. Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Phys. Ther. 2002, 82, 128–137. [Google Scholar]
- Bohannon, R.W.; Shove, M.E.; Barreca, S.; Masters, L.M.; Sigouin, C. Five-repetition sit-to-stand test performance by community-dwelling adults: A preliminary investigation of times, determinants, and relationship with self-reported physical performance. Isokinet. Exerc. Sci. 2007, 15, 77–81. [Google Scholar] [CrossRef]
- Kim, H.-J.; Park, I.; Lee, H.J.; Lee, O. The reliability and validity of gait speed with different walking pace and distances against general health, physical function, and chronic disease in aged adults. J. Exerc. Nutr. Biochem. 2016, 20, 46. [Google Scholar] [CrossRef]
- Schurr, K.; Sherrington, C.; Wallbank, G.; Pamphlett, P.; Olivetti, L. The minimum sit-to-stand height test: Reliability, responsiveness and relationship to leg muscle strength. Clin. Rehabil. 2012, 26, 656–663. [Google Scholar] [CrossRef]
- Fiser, W.M.; Hays, N.P.; Rogers, S.C.; Kajkenova, O.; Williams, A.E.; Evans, C.M.; Evans, W.J. Energetics of walking in elderly people: Factors related to gait speed. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2010, 65, 1332–1337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [PubMed]
- Trommelen, R.D.; Buttone, L.F.; Dicharry, D.Z.; Jacobs, R.M.; Karpinski, A. The use of five repetition sit to stand test (FRSTST) to assess fall risk in the assisted living population. Phys. Occup. Ther. Geriatr. 2015, 33, 152–162. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar]
- Guralnik, J.M.; Simonsick, E.M.; Ferrucci, L.; Glynn, R.J.; Berkman, L.F.; Blazer, D.G.; Scherr, P.A.; Wallace, R.B. A short physical performance battery assessing lower extremity function: Association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 1994, 49, M85–M94. [Google Scholar] [CrossRef]
- Whitney, S.L.; Wrisley, D.M.; Marchetti, G.F.; Gee, M.A.; Redfern, M.S.; Furman, J.M. Clinical measurement of sit-to-stand performance in people with balance disorders: Validity of data for the Five-Times-Sit-to-Stand Test. Phys. Ther. 2005, 85, 1034–1045. [Google Scholar] [CrossRef] [Green Version]
- Sullard, C.B. An Assessment of Body Composition, Balance, and Muscular Strength and Endurance in Breast Cancer Survivors. Bachelor’s Thesis, Wichita State University, Wichita, KS, USA, 2011. [Google Scholar]
- Santagnello, S.B.; Martins, F.M.; de Oliveira, G.N., Jr.; de Sousa, J.d.F.R.; Nomelini, R.S.; Murta, E.F.C.; Orsatti, F.L. Resistance Training–Induced Gains in Muscle Strength and Power Mediate the Improvement in Walking Speed in Middle-Aged Women Who Are Breast Cancer Survivors. J. Strength Cond. Res. 2021. Available online: https://journals.lww.com/nsca-jscr/Abstract/9000/Resistance_Training_Induced_Gains_in_Muscle.94023.aspx (accessed on 27 November 2022). [CrossRef]
- González, P.M.; Cofré, R.M.; Cabello, M.E. Functional reserve in functionally independent elderly persons: A calculation of gait speed and physiological cost. Rev. Bras. Geriatr. Gerontol. 2016, 19, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, A.L.; Buchanan, C.K.; Nahin, R.L.; Dekosky, S.T.; Atkinson, H.H.; Carlson, M.C.; Williamson, J.D.; Ginkgo Evaluation of Memory (GEM) Study Investigators. Associations of gait speed and other measures of physical function with cognition in a healthy cohort of elderly persons. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2007, 62, 1244–1251. [Google Scholar] [CrossRef] [Green Version]
- Owusu, C.; Margevicius, S.; Schluchter, M.; Koroukian, S.M.; Berger, N.A. Short Physical Performance Battery, usual gait speed, grip strength and Vulnerable Elders Survey each predict functional decline among older women with breast cancer. J. Geriatr. Oncol. 2017, 8, 356–362. [Google Scholar] [CrossRef]
- Afilalo, J. Frailty in patients with cardiovascular disease: Why, when, and how to measure. Curr. Cardiovasc. Risk Rep. 2011, 5, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waite, L.M.; Grayson, D.A.; Piguet, O.; Creasey, H.; Bennett, H.P.; Broe, G.A. Gait slowing as a predictor of incident dementia: 6-year longitudinal data from the Sydney Older Persons Study. J. Neurol. Sci. 2005, 229, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.N.; Wu, D.S.; Sauaia, A.; Dunn, C.L.; Stevens-Lapsley, J.E.; Moss, M.; Stiegmann, G.V.; Gajdos, C.; Cleveland, J.C., Jr.; Inouye, S.K. Slower walking speed forecasts increased postoperative morbidity and one-year mortality across surgical specialties. Ann. Surg. 2013, 258, 582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veronese, N.; Stubbs, B.; Volpato, S.; Zuliani, G.; Maggi, S.; Cesari, M.; Lipnicki, D.M.; Smith, L.; Schofield, P.; Firth, J.; et al. Association between gait speed with mortality, cardiovascular disease and cancer: A systematic review and meta-analysis of prospective cohort studies. J. Am. Med. Dir. Assoc. 2018, 19, 981–988.e7. [Google Scholar] [CrossRef] [PubMed]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Gijzel, S.M.W.; Whitson, H.E.; van de Leemput, I.A.; Scheffer, M.; van Asselt, D.; Rector, J.L.; Rikkert, M.G.M.O.; Melis, R.J.F. Resilience in clinical care: Getting a grip on the recovery potential of older adults. J. Am. Geriatr. Soc. 2019, 67, 2650–2657. [Google Scholar] [CrossRef] [Green Version]
- Pamoukdjian, F.; Lévy, V.; Sebbane, G.; Boubaya, M.; Landre, T.; Bloch-Queyrat, C.; Paillaud, E.; Zelek, L. Slow gait speed is an independent predictor of early death in older cancer outpatients: Results from a prospective cohort study. J. Nutr. Health Aging 2017, 21, 202–206. [Google Scholar] [CrossRef]
- Deuster, P.A.; Silverman, M.N. Physical fitness: A pathway to health and resilience. US Army Med. Dep. J. 2013. Available online: https://pubmed.ncbi.nlm.nih.gov/24146240/ (accessed on 27 November 2022).
- MacLeod, S.; Musich, S.; Hawkins, K.; Alsgaard, K.; Wicker, E.R. The impact of resilience among older adults. Geriatr. Nurs. 2016, 37, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Vandervoort, A.A.; McComas, A.J. Contractile changes in opposing muscles of the human ankle joint with aging. J. Appl. Physiol. (Bethesda Md. 1985) 1986, 61, 361–367. [Google Scholar] [CrossRef]
- Clark, B.C.; Taylor, J.L. Age-related changes in motor cortical properties and voluntary activation of skeletal muscle. Curr. Aging Sci. 2011, 4, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Rier, H.N.; Jager, A.; Sleijfer, S.; van Rosmalen, J.; Kock, M.C.J.M.; Levin, M.-D. Changes in body composition and muscle attenuation during taxane-based chemotherapy in patients with metastatic breast cancer. Breast Cancer Res. Treat. 2018, 168, 95–105. [Google Scholar] [CrossRef]
- Freire, A.N.; Guerra, R.O.; Alvarado, B.; Guralnik, J.M.; Zunzunegui, M.V. Validity and reliability of the short physical performance battery in two diverse older adult populations in Quebec and Brazil. J. Aging Health 2012, 24, 863–878. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.; Chavis, M.; Watkins, J.; Wilson, T. The five-times-sit-to-stand test: Validity, reliability and detectable change in older females. Aging Clin. Exp. Res. 2012, 24, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, D.E.; Bull, F.C.; Marshall, A.L.; Sallis, J.F.; Bauman, A.E. Assessment of sedentary behavior with the International Physical Activity Questionnaire. J. Phys. Act. Health 2008, 5, S30–S44. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.-M.; Nieman, D.C.; Swain, D.P.; American College of Sports Medicine. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sport. Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000.
- De Almeida Marques, R.; de Souza, V.F.; Rosario, T.C.; da Silva Garcia, M.R.P.; Pereira, T.S.S.; Marques-Rocha, J.L.; Guandalini, V.R. Agreement between maximum and mean handgrip strength measurements in cancer patients. PLoS ONE 2022, 17, e0270631. [Google Scholar] [CrossRef]
- Kon, S.S.C.; Patel, M.S.; Canavan, J.L.; Clark, A.L.; Jones, S.E.; Nolan, C.M.; Cullinan, P.; Polkey, M.I.; Man, W.D.-C. Reliability and validity of 4-metre gait speed in COPD. Eur. Respir. J. 2013, 42, 333–340. [Google Scholar] [CrossRef]
- Muñoz-Bermejo, L.; Adsuar, J.C.; Mendoza-Muñoz, M.; Barrios-Fernández, S.; Garcia-Gordillo, M.A.; Pérez-Gómez, J.; Carlos-Vivas, J. Test-retest reliability of five times sit to stand test (FTSST) in adults: A systematic review and meta-analysis. Biology 2021, 10, 510. [Google Scholar] [CrossRef]
CT (n = 69) | <1 YAT (n = 60) | 1–3.9 YAT (n = 45) | ≥4 YAT (n = 41) | p | |
---|---|---|---|---|---|
General characteristics | |||||
Age (years) | 58.5 (56.6; 60.4) | 57.1 (54.9; 59.3) | 55.9 (53.2; 58.6) | 59.4 (56.9; 61.9) | 0.216 |
BMI (kg/m2) | 27.9 (26.6; 29.2) | 28.5 (27.2; 29.9) | 26.9 (24.9; 29.0) | 27.2 (26.1; 28.3) | 0.406 |
Menopause (%) | 94.2 (n = 65) | 83.3 (n = 50) | 86.6 (n = 39) | 100.0 (n = 41) | 0.302 |
Smoker (%) | 13.0 (n = 9) | 11.6 (n = 7) | 17.7 (n = 8) | 2.4 (n = 1) | 0.263 |
Marital status | |||||
Single (%) | 17.3 (n = 12) | 18.3 (n = 11) | 17.7 (n = 13) | 9.7 (n = 4) | 0.933 |
Married (%) | 42.0 (n = 29) | 48.3 (n = 29) | 44.4 (n = 20) | 53.6 (n = 22) | 0.321 |
Divorced (%) | 15.9 (n = 11) | 20.0 (n = 12) | 11.1 (n = 5) | 17.0 (n = 7) | 0.977 |
Widow (%) | 24.6 (n = 17) | 13.3 (n = 8) | 15.5 (n = 7) | 19.5 (n = 8) | 0.373 |
Education attainment | |||||
Complete elementary school (%) | 53.6 (n = 37) | 51.6 (n = 31) | 53.3 (n = 24) | 60.9 (n = 25) | 0.751 |
Complete high school (%) | 34.7 (n = 24) | 25.0 (n = 15) | 28.8 (n = 13) | 19.5 (n = 8) | 0.337 |
College graduated (%) | 11.5 (n = 8) | 23.3 (n = 14) | 17.7 (n = 8) | 19.5 (n = 8) | 0.329 |
Physical activity status | |||||
Physical activity level (min/Week) | 808.8 (609.4; 1008.2) | 699.1 (504.6; 893.6) | 649.5 (487.8; 811.8) | 663.4 (467.6; 859.2) | 0.648 |
Active (%) | 69.5 (n = 48) | 66.6 (n = 40) | 68.8 (n = 31) | 65.8 (n = 27) | 0.155 |
Walking (min/Week) | 43.9 (17.4; 37.0) | 27.2 (17.4; 37.0) | 32.5 (19.8; 45.1) | 43.9 (29.2; 58.6) | 0.266 |
Walking (%) | 75.3 (n = 52) | 65.0 (n = 39) | 71.1 (n = 32) | 73.1 (n = 30) | 0.862 |
Moderate physical activity (min/Week) | 104.8 (77.4; 132.2) | 84.2 (60.9; 107.5) | 122.2 (74.5; 149.8) | 91.2 (64.5; 117.9) | 0.533 |
Moderate physical activity (%) | 78.2 (n = 54) | 76.6 (n = 46) | 82.2 (n = 37) | 85.3 (n = 35) | 0.310 |
Vigorous physical activity (%) | 17.3 (n = 12) | 15.0 (n = 9) | 13.3 (n = 6) | 17.0 (n = 7) | 0.843 |
Treatment of cancer ¥ | |||||
Surgery (%) | ****** | 100.0 (n = 60) | 100.0 (n = 45) | 100.0 (n = 41) | 1.000 |
Quadrantectomy surgical (%) | ****** | 50.0 (n = 30) | 62.2 (n = 28) | 48.7 (n = 20) | 0.440 |
Mastectomy surgical (%) | ****** | 1.6 (n = 1) | 0.0 (n = 0) | 2.4 (n = 1) | 0.822 |
Quadrantectomy and axillary dissection (%) | ****** | 8.3 (n = 5) | 8.8 (n = 4) | 7.3 (n = 3) | 0.914 |
Mastectomy and axillary dissection (%) | ****** | 3.3 (n = 2) | 2.2 (n = 1) | 4.8 (n = 2) | 0.247 |
Chemotherapy (session) | ****** | 31.4 (30.3; 32.6) | 31.8 (29.2; 34.4) | 29.6 (27.3; 32.0) | 0.434 |
Radiotherapy (session) | ****** | 8.8 (7.5; 10.0) | 8.3 (7.2; 9.3) | 7.6 (6.3; 8.9) | 0.348 |
Chemotherapy (n) | ****** | 10.0 (n = 6) | 4.4 (n = 2) | 19.5 (n = 8) | 0.193 |
Radiotherapy (n) | ****** | 28.3 (n = 17) | 35.5 (n = 16) | 34.1 (n = 14) | 0.502 |
Radiotherapy and Chemotherapy (n) | ****** | 61.6 (n = 37) | 60.0 (n = 27) | 46.3 (n = 19) | 0.145 |
End-of-treatment (years) | ****** | 0.7 (0.6; 0.9) | 2.75 (2.5; 2.9) # | 7.02 (6.1; 7.8) # † | <0.001 |
Medical treatment | |||||
Depression drug (%) | 17.3 (n = 12) | 28.3 (n = 17) | 26.6 (n = 12) | 29.2 (n = 12) | 0.166 |
Hypertension drug (%) | 33.3 (n = 23) | 35.0 (n = 21) | 33.3 (n = 15) | 39.0 (n = 16) | 0.626 |
Diabetes drug (%) | 8.6 (n = 6) | 6.6 (n = 4) | 15.5 (n = 7) | 7.3 (n = 3) | 0.773 |
Thyroid drug (%) | 11.5 (n = 8) | 8.3 (n = 5) | 6.6 (n = 3) | 12.1 (n = 5) | 0.890 |
Hypercholesterolemia drug (%) | 21.7 (n = 15) | 21.6(n = 13) | 15.5 (n = 7) | 26.8 (n = 11) | 0.643 |
Tamoxifen drug ¥ (%) | ****** | 41.6 (n = 25) | 51.1 (n = 23) | 60.9 (n = 25) | 0.057 |
Anastrazole drug ¥ (%) | ****** | 16.6 (n = 10) | 26.6 (n = 12) | 17.0 (n = 7) | 0.394 |
Number of medications (n) | 1.8 (1.3; 2.2) | 1.8 (1.3; 2.3) | 1.9 (1.3; 2.4) | 2.0 (1.5; 2.6) | 0.845 |
CT (n = 69) | <1 YAT (n = 60) | 1–3.9 YAT (n = 45) | ≥4 YAT (n = 41) | p | η2p | OP | |
---|---|---|---|---|---|---|---|
Unadjusted Values | |||||||
4-MWT (m.s) | 1.2 (1.1; 1.3) | 1.1 (1.0; 1.1) * | 1.1 (1.0; 1.1) * | 1.0 (1.0; 1.1) * | 0.001 | 0.08 | 0.96 |
FTSST (s) | 8.7 (7.9; 9.5) | 12.1 (11.4; 12.9) * | 11.4 (10.5; 12.4) * | 11.2 (10.3; 12.0) * | <0.001 | 0.17 | 1.00 |
SPPB (score) | 11.4 (11.2; 11.7) | 10.9 (10.5; 11.2) * | 11.1 (10.8; 11.4) | 10.7 (10.2; 11.2) * | 0.023 | 0.04 | 0.75 |
TUG (s) | 6.9 (6.5; 7.4) | 8.6 (8.2; 9.1) * | 8.4 (7.9; 9.0) * | 8.2 (7.6; 8.8) * | <0.001 | 0.13 | 0.99 |
MS (kg) | 25.5 (24.1; 26.9) | 24.1 (22.6; 25.6) | 22.7 (21.1; 24.4) * | 25.8 (24.0; 27.5) | 0.035 | 0.03 | 0.67 |
Adjusted Values | |||||||
4-MWT (m.s) | 1.2 (1.2; 1.3) | 1.1 (1.0; 1.2) * | 1.1 (1.0; 1.2) * | 1.0 (0.9; 1.1) * | <0.001 | 0.13 | 0.99 |
FTSST (s) | 8.6 (7.9; 9.3) | 11.9 (11.1; 12.7) * | 11.1 (10.2; 12.0) * | 11.8 (10.8; 12.7) * | <0.001 | 0.21 | 1.00 |
SPPB (score) | 11.5 (11.2; 11.8) | 10.9 (10.6; 11.2) * | 11.2 (10.8; 11.5) | 10.8 (10.5; 11.2) * | 0.005 | 0.07 | 0.87 |
TUG (s) | 6.9 (6.6; 7.3) | 8.4 (8.0; 8.9) * | 8.2 (7.7; 8.7) * | 8.3 (7.8; 8.8) * | <0.001 | 0.16 | 0.99 |
MS (kg) | 25.8 (24. 4; 27.1) | 23.7 (22.2; 25.2) | 22.6 (20.9; 24.3) * | 26.7 (25.0; 28.5) † | 0.003 | 0.07 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.M.; de Oliveira, A.A.; Oliveira-Júnior, G.; Carneiro, M.A.S.; de Souza, L.R.M.F.; Lara, V.C.; Nomelini, R.S.; Assumpção, C.O.; Souza, M.V.C.; Orsatti, F.L. Physical Function Tests Are Potential Tools to Identify Low Physical Resilience in Women after Breast Cancer Treatment. Muscles 2023, 2, 97-108. https://doi.org/10.3390/muscles2010009
Martins FM, de Oliveira AA, Oliveira-Júnior G, Carneiro MAS, de Souza LRMF, Lara VC, Nomelini RS, Assumpção CO, Souza MVC, Orsatti FL. Physical Function Tests Are Potential Tools to Identify Low Physical Resilience in Women after Breast Cancer Treatment. Muscles. 2023; 2(1):97-108. https://doi.org/10.3390/muscles2010009
Chicago/Turabian StyleMartins, Fernanda Maria, Anselmo Alves de Oliveira, Gersiel Oliveira-Júnior, Marcelo A. S. Carneiro, Luís Ronan Marquez Ferreira de Souza, Vitor Carvalho Lara, Rosekeila Simões Nomelini, Cláudio Oliveira Assumpção, Markus Vinícius Campos Souza, and Fábio Lera Orsatti. 2023. "Physical Function Tests Are Potential Tools to Identify Low Physical Resilience in Women after Breast Cancer Treatment" Muscles 2, no. 1: 97-108. https://doi.org/10.3390/muscles2010009
APA StyleMartins, F. M., de Oliveira, A. A., Oliveira-Júnior, G., Carneiro, M. A. S., de Souza, L. R. M. F., Lara, V. C., Nomelini, R. S., Assumpção, C. O., Souza, M. V. C., & Orsatti, F. L. (2023). Physical Function Tests Are Potential Tools to Identify Low Physical Resilience in Women after Breast Cancer Treatment. Muscles, 2(1), 97-108. https://doi.org/10.3390/muscles2010009