Drivers and Consequences of Viral Zoonoses: Public Health and Economic Perspectives
Simple Summary
Abstract
1. Introduction
2. Key Factors Driving Zoonotic Disease Emergence
2.1. Land Use Change and Habitat Encroachment
2.2. Agricultural Intensification and Livestock Production
2.3. Biodiversity Loss
2.4. Climate Change
2.5. Wildlife Trade and Bushmeat Consumption
2.6. Human Demographics, Behavior, and Globalization
3. Impact on Public Health
3.1. Direct Burden of Disease
3.2. Socioeconomic and Demographic Inequities
3.3. Surveillance and Health System Challenges
3.4. Indirect Health and Social Impacts
4. Impact on the Economy
4.1. Direct and Indirect Economic Losses
4.2. Trade, Travel, and Global Instability
4.3. Long-Term Systemic Impacts
5. Mitigation Strategies: Synergy Between Awareness and Scientific Advancement
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host Range and Emerging and Reemerging Pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.H.; Latham, S.M.; Woolhouse, M.E.J. Risk Factors for Human Disease Emergence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001, 356, 983–989. [Google Scholar] [CrossRef]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global Hotspots and Correlates of Emerging Zoonotic Diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022, 14, 435. [Google Scholar] [CrossRef]
- Jelinek, H.F.; Mousa, M.; Alefishat, E.; Osman, W.; Spence, I.; Bu, D.; Feng, S.F.; Byrd, J.; Magni, P.A.; Sahibzada, S.; et al. Evolution, Ecology, and Zoonotic Transmission of Betacoronaviruses: A Review. Front. Vet. Sci. 2021, 8, 644414. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious Disease in an Era of Global Change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Pulliam, J.R.C.; Epstein, J.H.; Dushoff, J.; Rahman, S.A.; Bunning, M.; Jamaluddin, A.A.; Hyatt, A.D.; Field, H.E.; Dobson, A.P.; Daszak, P. Agricultural Intensification, Priming for Persistence and the Emergence of Nipah Virus: A Lethal Bat-Borne Zoonosis. J. R. Soc. Interface 2012, 9, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Paliwal, S.; Shinu, S.; Saha, R. An Emerging Zoonotic Disease to Be Concerned about—A Review of the Nipah Virus. J. Health Popul. Nutr. 2024, 43, 171. [Google Scholar] [CrossRef]
- Rulli, M.C.; Santini, M.; Hayman, D.T.S.; D’Odorico, P. The Nexus between Forest Fragmentation in Africa and Ebola Virus Disease Outbreaks. Sci. Rep. 2017, 7, 41613. [Google Scholar] [CrossRef] [PubMed]
- Short, K.R.; Richard, M.; Verhagen, J.H.; van Riel, D.; Schrauwen, E.J.A.; van den Brand, J.M.A.; Mänz, B.; Bodewes, R.; Herfst, S. One Health, Multiple Challenges: The Inter-Species Transmission of Influenza A Virus. One Health 2015, 1, 1–13. [Google Scholar] [CrossRef]
- Gilbert, M.; Golding, N.; Zhou, H.; Wint, G.R.W.; Robinson, T.P.; Tatem, A.J.; Lai, S.; Zhou, S.; Jiang, H.; Guo, D.; et al. Predicting the Risk of Avian Influenza A H7N9 Infection in Live-Poultry Markets across Asia. Nat. Commun. 2014, 5, 4116. [Google Scholar] [CrossRef]
- Carlson, C.J.; Albery, G.F.; Merow, C.; Trisos, C.H.; Zipfel, C.M.; Eskew, E.A.; Olival, K.J.; Ross, N.; Bansal, S. Climate Change Increases Cross-Species Viral Transmission Risk. Nature 2022, 607, 555–562. [Google Scholar] [CrossRef]
- Rohr, J.R.; Barrett, C.B.; Civitello, D.J.; Craft, M.E.; Delius, B.; DeLeo, G.A.; Hudson, P.J.; Jouanard, N.; Nguyen, K.H.; Ostfeld, R.S.; et al. Emerging Human Infectious Diseases and the Links to Global Food Production. Nat. Sustain. 2019, 2, 445–456. [Google Scholar] [CrossRef]
- Choo, J.; Nghiem, L.T.P.; Chng, S.; Carrasco, L.R.; Benítez-López, A. Hotspots of Zoonotic Disease Risk from Wildlife Hunting and Trade in the Tropics. Integr. Conserv. 2023, 2, 165–175. [Google Scholar] [CrossRef]
- Lv, C.; Chen, Y.; Cheng, Z.; Zhu, Y.; Chen, W.; Zhou, N.; Chen, Y.; Li, Y.; Deng, W.; Guo, X.; et al. Global Burden of Zoonotic Infectious Diseases of Poverty, 1990–2021. Infect. Dis. Poverty 2024, 13, 82. [Google Scholar] [CrossRef]
- Bernstein, A.S.; Ando, A.W.; Loch-Temzelides, T.; Vale, M.M.; Li, B.V.; Li, H.; Busch, J.; Chapman, C.A.; Kinnaird, M.; Nowak, K.; et al. The Costs and Benefits of Primary Prevention of Zoonotic Pandemics. Sci. Adv. 2022, 8, eabl4183. [Google Scholar] [CrossRef] [PubMed]
- Gass, J.D. Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic. Zoonotic Dis. 2025, 5, 18. [Google Scholar] [CrossRef]
- Graham, B.S.; Mascola, J.R.; Fauci, A.S. Novel Vaccine Technologies. JAMA 2018, 319, 1431. [Google Scholar] [CrossRef] [PubMed]
- Sannigrahi, S.; Pilla, F.; Zhang, Q.; Chakraborti, S.; Wang, Y.; Basu, B.; Basu, A.S.; Joshi, P.K.; Keesstra, S.; Roy, P.S.; et al. Examining the Effects of Green Revolution Led Agricultural Expansion on Net Ecosystem Service Values in India Using Multiple Valuation Approaches. J. Environ. Manag. 2021, 277, 111381. [Google Scholar] [CrossRef] [PubMed]
- Horefti, E. The Importance of the One Health Concept in Combating Zoonoses. Pathogens 2023, 12, 977. [Google Scholar] [CrossRef]
- Sun, Z.-S.; Wan, E.-Y.; Agbana, Y.L.; Zhao, H.-Q.; Yin, J.-X.; Jiang, T.-G.; Li, Q.; Fei, S.-W.; Wu, L.B.; Li, X.-C.; et al. Global One Health Index for Zoonoses: A Performance Assessment in 160 Countries and Territories. iScience 2024, 27, 109297. [Google Scholar] [CrossRef]
- Pendrill, F.; Gardner, T.A.; Meyfroidt, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Bastos Lima, M.G.; Baumann, M.; Curtis, P.G.; De Sy, V.; et al. Disentangling the Numbers behind Agriculture-Driven Tropical Deforestation. Science 2022, 377, eabm9267. [Google Scholar] [CrossRef]
- Laurance, W.F.; Clements, G.R.; Sloan, S.; O’Connell, C.S.; Mueller, N.D.; Goosem, M.; Venter, O.; Edwards, D.P.; Phalan, B.; Balmford, A.; et al. A Global Strategy for Road Building. Nature 2014, 513, 229–232. [Google Scholar] [CrossRef]
- Daszak, P.; das Neves, C.; Amuasi, J.; Haymen, D.; Kuiken, T.; Roche, B.; Zambrana-Torrelio, C.; Buss, P.; Dundarova, H.; Feferholtz, Y.; et al. Workshop Report on Biodiversity and Pandemics of the Intergovernmental Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2020. [Google Scholar] [CrossRef]
- Plowright, R.K.; Reaser, J.K.; Locke, H.; Woodley, S.J.; Patz, J.A.; Becker, D.J.; Oppler, G.; Hudson, P.J.; Tabor, G.M. Land Use-Induced Spillover: A Call to Action to Safeguard Environmental, Animal, and Human Health. Lancet Planet. Health 2021, 5, e237–e245. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, L.; Fearnside, P.M. The Amazon’s Road to Deforestation. Science 2020, 369, 634. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Pinto, A.V.; Hansson, B.; Patramanis, I.; Morales, H.E.; van Oosterhout, C. The Impact of Habitat Loss and Population Fragmentation on Genomic Erosion. Conserv. Genet. 2024, 25, 49–57. [Google Scholar] [CrossRef]
- Schell, C.J.; Stanton, L.A.; Young, J.K.; Angeloni, L.M.; Lambert, J.E.; Breck, S.W.; Murray, M.H. The Evolutionary Consequences of Human–Wildlife Conflict in Cities. Evol. Appl. 2021, 14, 178–197. [Google Scholar] [CrossRef]
- Hayek, M.N. The Infectious Disease Trap of Animal Agriculture. Sci. Adv. 2022, 8, eadd6681. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Olivero, J.; Fa, J.E.; Real, R.; Márquez, A.L.; Farfán, M.A.; Vargas, J.M.; Gaveau, D.; Salim, M.A.; Park, D.; Suter, J.; et al. Recent Loss of Closed Forests Is Associated with Ebola Virus Disease Outbreaks. Sci. Rep. 2017, 7, 14291. [Google Scholar] [CrossRef]
- FAO; UNEP. The State of the World’s Forests 2020. Forests, Biodiversity and People; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014; Available online: https://iris.who.int/handle/10665/112642 (accessed on 3 October 2025).
- Stel, M.; Eggers, J.; Alonso, W.J. Mitigating Zoonotic Risks in Intensive Farming: Solutions for a Sustainable Change. Ecohealth 2022, 19, 324–328. [Google Scholar] [CrossRef]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of Biodiversity on the Emergence and Transmission of Infectious Diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef]
- Shabtay, A. Combined Approaches to Reduce Stress and Improve Livestock Well-Being: A Review. Cell Stress Chaperones 2025, 30, 100091. [Google Scholar] [CrossRef]
- Wu, X.; Nawaz, S.; Li, Y.; Zhang, H. Environmental Health Hazards of Untreated Livestock Wastewater: Potential Risks and Future Perspectives. Environ. Sci. Pollut. Res. 2024, 31, 24745–24767. [Google Scholar] [CrossRef]
- Klous, G.; Huss, A.; Heederik, D.J.J.; Coutinho, R.A. Human–Livestock Contacts and Their Relationship to Transmission of Zoonotic Pathogens, a Systematic Review of Literature. One Health 2016, 2, 65–76. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis Emergence Linked to Agricultural Intensification and Environmental Change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global Trends in Emerging Infectious Diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Wood, C.L.; McInturff, A.; Young, H.S.; Kim, D.; Lafferty, K.D. Human Infectious Disease Burdens Decrease with Urbanization but Not with Biodiversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160122. [Google Scholar] [CrossRef] [PubMed]
- Ostfeld, R.S.; Keesing, F. Is Biodiversity Bad for Your Health? Ecosphere 2017, 8, e01676. [Google Scholar] [CrossRef]
- Civitello, D.J.; Cohen, J.; Fatima, H.; Halstead, N.T.; Liriano, J.; McMahon, T.A.; Ortega, C.N.; Sauer, E.L.; Sehgal, T.; Young, S.; et al. Biodiversity Inhibits Parasites: Broad Evidence for the Dilution Effect. Proc. Natl. Acad. Sci. USA 2015, 112, 8667–8671. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, A.B.; Davies, T.J. Cross-Species Pathogen Transmission and Disease Emergence in Primates. EcoHealth 2009, 6, 496–508. [Google Scholar] [CrossRef]
- Keesing, F.; Ostfeld, R.S. Impacts of Biodiversity and Biodiversity Loss on Zoonotic Diseases. Proc. Natl. Acad. Sci. USA 2021, 118, e2023540118. [Google Scholar] [CrossRef]
- Dobson, A.P. What Links Bats to Emerging Infectious Diseases? Science 2005, 310, 628–629. [Google Scholar] [CrossRef]
- Calisher, C.H.; Childs, J.E.; Field, H.E.; Holmes, K.V.; Schountz, T. Bats: Important Reservoir Hosts of Emerging Viruses. Clin. Microbiol. Rev. 2006, 19, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.K.; Hitchens, P.L.; Pandit, P.S.; Rushmore, J.; Evans, T.S.; Young, C.C.; Doyle, M.M. Global Shifts in Mammalian Population Trends Reveal Key Predictors of Virus Spillover Risk. Proc. Biol. Sci. 2020, 287, 20192736. [Google Scholar] [CrossRef] [PubMed]
- Han, B.A.; Kramer, A.M.; Drake, J.M. Global Patterns of Zoonotic Disease in Mammals. Trends Parasitol. 2016, 32, 565–577. [Google Scholar] [CrossRef]
- Gibb, R.; Redding, D.W.; Chin, K.Q.; Donnelly, C.A.; Blackburn, T.M.; Newbold, T.; Jones, K.E. Zoonotic Host Diversity Increases in Human-Dominated Ecosystems. Nature 2020, 584, 398–402. [Google Scholar] [CrossRef]
- Young, H.S.; Wood, C.L.; Kilpatrick, A.M.; Lafferty, K.D.; Nunn, C.L.; Vincent, J.R. Conservation, Biodiversity and Infectious Disease: Scientific Evidence and Policy Implications. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160124. [Google Scholar] [CrossRef]
- Afelt, A.; Frutos, R.; Devaux, C. Bats, Coronaviruses, and Deforestation: Toward the Emergence of Novel Infectious Diseases? Front. Microbiol. 2018, 9, 702. [Google Scholar] [CrossRef]
- Eby, P.; Peel, A.J.; Hoegh, A.; Madden, W.; Giles, J.R.; Hudson, P.J.; Plowright, R.K. Pathogen Spillover Driven by Rapid Changes in Bat Ecology. Nature 2023, 613, 340–344. [Google Scholar] [CrossRef]
- Levi, T.; Kilpatrick, A.M.; Mangel, M.; Wilmers, C.C. Deer, Predators, and the Emergence of Lyme Disease. Proc. Natl. Acad. Sci. USA 2012, 109, 10942–10947. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.M.; Sauer, E.L.; Santiago, O.; Spencer, S.; Rohr, J.R. Divergent Impacts of Warming Weather on Wildlife Disease Risk across Climates. Science 2020, 370, eabb1702. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global Expansion and Redistribution of Aedes-Borne Virus Transmission Risk with Climate Change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [PubMed]
- Rocklöv, J.; Dubrow, R. Climate Change: An Enduring Challenge for Vector-Borne Disease Prevention and Control. Nat. Immunol. 2020, 21, 479–483. [Google Scholar] [CrossRef]
- Mora, C.; McKenzie, T.; Gaw, I.M.; Dean, J.M.; von Hammerstein, H.; Knudson, T.A.; Setter, R.O.; Smith, C.Z.; Webster, K.M.; Patz, J.A.; et al. Over Half of Known Human Pathogenic Diseases Can Be Aggravated by Climate Change. Nat. Clim. Chang. 2022, 12, 869–875. [Google Scholar] [CrossRef]
- Plowright, R.K.; Eby, P.; Hudson, P.J.; Smith, I.L.; Westcott, D.; Bryden, W.L.; Middleton, D.; Reid, P.A.; McFarlane, R.A.; Martin, G.; et al. Ecological Dynamics of Emerging Bat Virus Spillover. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142124. [Google Scholar] [CrossRef]
- Holyoak, M.; Heath, S.K. The Integration of Climate Change, Spatial Dynamics, and Habitat Fragmentation: A Conceptual Overview. Integr. Zool. 2016, 11, 40–59. [Google Scholar] [CrossRef]
- Mordecai, E.A.; Ryan, S.J.; Caldwell, J.M.; Shah, M.M.; LaBeaud, A.D. Climate Change Could Shift Disease Burden from Malaria to Arboviruses in Africa. Lancet Planet. Health 2020, 4, e416–e423. [Google Scholar] [CrossRef]
- Rupasinghe, R.; Chomel, B.B.; Martínez-López, B. Climate Change and Zoonoses: A Review of the Current Status, Knowledge Gaps, and Future Trends. Acta Trop. 2022, 226, 106225. [Google Scholar] [CrossRef]
- Redding, D.W.; Moses, L.M.; Cunningham, A.A.; Wood, J.; Jones, K.E. Environmental-Mechanistic Modelling of the Impact of Global Change on Human Zoonotic Disease Emergence: A Case Study of Lassa Fever. Methods Ecol. Evol. 2016, 7, 646–655. [Google Scholar] [CrossRef]
- Chen, C.; He, Z.; Zhao, J.; Zhu, X.; Li, J.; Wu, X.; Chen, Z.; Chen, H.; Jia, G. Zoonotic Outbreak Risk Prediction with Long Short-Term Memory Models: A Case Study with Schistosomiasis, Echinococcosis, and Leptospirosis. BMC Infect. Dis. 2024, 24, 1062. [Google Scholar] [CrossRef]
- Chen, H.; Lin, M.-X.; Wang, L.-P.; Huang, Y.-X.; Feng, Y.; Fang, L.-Q.; Wang, L.; Song, H.-B.; Wang, L.-G. Driving Role of Climatic and Socioenvironmental Factors on Human Brucellosis in China: Machine-Learning-Based Predictive Analyses. Infect. Dis. Poverty 2023, 12, 87–100. [Google Scholar] [CrossRef]
- Sheikh, P.A. Wildlife Trade, COVID-19, and Other Zoonotic Diseases. 2021. Available online: https://www.congress.gov/crs-product/IF11494 (accessed on 14 October 2025).
- Young, J. How Should Wet Market Practices Be Regulated to Curb Zoonotic Disease Transmission? AMA J. Ethics 2024, 26, E116–E121. [Google Scholar] [CrossRef]
- Nawtaisong, P.; Robinson, M.T.; Khammavong, K.; Milavong, P.; Rachlin, A.; Dittrich, S.; Dubot-Pérès, A.; Vongsouvath, M.; Horwood, P.F.; Dussart, P.; et al. Zoonotic Pathogens in Wildlife Traded in Markets for Human Consumption, Laos. Emerg. Infect. Dis. 2022, 28, 860–864. [Google Scholar] [CrossRef]
- Harvard University. The Import of Zoonotic Diseases; Harvard University: Cambridge, MA, USA, 2025; Volume 138. [Google Scholar]
- Milbank, C.; Vira, B. Wildmeat Consumption and Zoonotic Spillover: Contextualising Disease Emergence and Policy Responses. Lancet Planet. Health 2022, 6, e439–e448. [Google Scholar] [CrossRef]
- Keatts, L. Urban Bushmeat and Zoonotic Disease. Available online: https://oneworldonehealth.wcs.org/news/ID/14300.aspx (accessed on 14 October 2025).
- Fukushima, C.S.; Tricorache, P.; Toomes, A.; Stringham, O.C.; Rivera-Téllez, E.; Ripple, W.J.; Peters, G.; Orenstein, R.I.; Morcatty, T.Q.; Longhorn, S.J.; et al. Challenges and Perspectives on Tackling Illegal or Unsustainable Wildlife Trade. Biol. Conserv. 2021, 263, 109342. [Google Scholar] [CrossRef]
- Wambua, L.; Villinger, J.; Otiende, M.Y.; Jeneby, M.; Kilewo, M.; Schindel, D.; Scott, M. End of the Road for Illegal Bushmeat Trade in East Africa: Transboundary Surveillance by High Resolution Melting Analysis of Vertebrate Molecular Barcodes. In Proceedings of the TDWG 2015 Annual Conference, Nairobi, Kenya, 28 September–1 October 2015. [Google Scholar]
- Zisadza, J.; Mrewa, A.T.; Khosa, A.; Mutematemi, S.A.; Muvengwi, J. Illegal Hunting and Bushmeat Trade around Save Valley Conservancy. Environ. Manag. 2025, 1–14. [Google Scholar] [CrossRef]
- Marie, V.; Gordon, M.L. The (Re-)Emergence and Spread of Viral Zoonotic Disease: A Perfect Storm of Human Ingenuity and Stupidity. Viruses 2023, 15, 1638. [Google Scholar] [CrossRef] [PubMed]
- García-Moreno, J. Zoonoses in a Changing World. Bioscience 2023, 73, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Rohr, J.; Cui, R.; Xin, Y.; Han, L.; Yang, X.; Gu, S.; Du, Y.; Liang, J.; Wang, X.; et al. Biological Invasions Facilitate Zoonotic Disease Emergences. Nat. Commun. 2022, 13, 1762. [Google Scholar] [CrossRef] [PubMed]
- Zubair, A.; Mukhtar, R.; Ahmed, H.; Ali, M. Emergencies of Zoonotic Diseases, Drivers, and the Role of Artificial Intelligence in Tracking the Epidemic and Pandemics. Decod. Infect. Transm. 2024, 2, 100032. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019. [Google Scholar]
- Weaver, S.C.; Reisen, W.K. Present and Future Arboviral Threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Neiderud, C.J. How Urbanization Affects the Epidemiology of Emerging Infectious Diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Friant, S. Human Behaviors Driving Disease Emergence. Evol. Anthropol. Issues News Rev. 2024, 33, e22015. [Google Scholar] [CrossRef]
- Loh, E.H.; Zambrana-Torrelio, C.; Olival, K.J.; Bogich, T.L.; Johnson, C.K.; Mazet, J.A.K.; Karesh, W.; Daszak, P. Targeting Transmission Pathways for Emerging Zoonotic Disease Surveillance and Control. Vector-Borne Zoonotic Dis. 2015, 15, 432–437. [Google Scholar] [CrossRef]
- Deb, T. Zoonotic Diseases Statistics 2025 by Health, Treatment, and Prevention. 2025. Available online: https://media.market.us/zoonotic-diseases-statistics/ (accessed on 14 October 2025).
- Lee, K. The Global Governance of Emerging Zoonotic Diseases: Challenges and Proposed Reforms Introduction: The Increasing Threat from Zoonotic Diseases; Council on Foreign Relations Global Health Program: New York, NY, USA, 2023. [Google Scholar]
- Zhang, N.; Jiang, S.; Du, L. Current Advancements and Potential Strategies in the Development of MERS-CoV Vaccines. Expert Rev. Vaccines 2014, 13, 761–774. [Google Scholar] [CrossRef]
- World Health Organization (WHO) Regional Committee for the Eastern Mediterranean. Zoonotic Disease: Emerging Public Health Threats in the Region. Sixty-First Session of the WHO Regional Committee for the Eastern Mediterranean. 2014. Available online: https://www.emro.who.int/about-who/rc61/zoonotic-diseases.html (accessed on 14 October 2025).
- Basu, S.; Ashok, G.; Debroy, R.; Ramaiah, S.; Livingstone, P.; Anbarasu, A. Impact of the COVID-19 Pandemic on Routine Vaccine Landscape: A Global Perspective. Hum. Vaccines Immunother. 2023, 19, 2199656. [Google Scholar] [CrossRef]
- Chandy, S.; Kumar, H.; Pearl, S.; Basu, S.; M, G.; Sankar, J.; Manoharan, A.; Ramaiah, S.; Anbarasu, A. Whole Genome Analysis Reveals Unique Traits of SARS-CoV-2 in Pediatric Patients. Gene 2024, 919, 148508. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Emerging Zoonotic Coronaviruses in Animals: Situation Update. 2025. Available online: https://www.fao.org/animal-health/situation-updates/emerging-zoonotic-coronaviruses-in-animals/en (accessed on 14 October 2025).
- Gray, G.C.; Pulscher, L.A.; Hisham; Alsharif, O. Five Things Clinicians Need to Know About Zoonotic Viral Spillover and Spillback. AMA J. Ethics 2024, 26, E122–E131. [Google Scholar] [CrossRef]
- Bardhan, M.; Ray, I.; Roy, S.; Bhatt, P.; Patel, S.; Asri, S.; Shariff, S.; Shree, A.; Mitra, S.; Roy, P.; et al. Emerging Zoonotic Diseases and COVID-19 Pandemic: Global Perspective and Indian Scenario. Ann. Med. Surg. 2023, 85, 3997–4004. [Google Scholar] [CrossRef]
- Fatima, M.; An, T.; Park, P.-G.; Hong, K.-J. Advancements and Challenges in Addressing Zoonotic Viral Infections with Epidemic and Pandemic Threats. Viruses 2025, 17, 352. [Google Scholar] [CrossRef]
- Baize, S.; Pannetier, D.; Oestereich, L.; Rieger, T.; Koivogui, L.; Magassouba, N.; Soropogui, B.; Sow, M.S.; Keïta, S.; De Clerck, H.; et al. Emergence of Zaire Ebola Virus Disease in Guinea. N. Engl. J. Med. 2014, 371, 1418–1425. [Google Scholar] [CrossRef]
- Azhar, E.I.; El-Kafrawy, S.A.; Farraj, S.A.; Hassan, A.M.; Al-Saeed, M.S.; Hashem, A.M.; Madani, T.A. Evidence for Camel-to-Human Transmission of MERS Coronavirus. N Engl. J. Med. 2014, 370, 2499–2505. [Google Scholar] [CrossRef] [PubMed]
- The WHO MERS-CoV Research Group; Buchholz, U.; Kühne, A.; Blümel, B. State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS Curr. 2013, 5, ecurrents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8. [Google Scholar]
- Geeraedts, F.; Goutagny, N.; Hornung, V.; Severa, M.; de Haan, A.; Pool, J.; Wilschut, J.; Fitzgerald, K.A.; Huckriede, A. Superior Immunogenicity of Inactivated Whole Virus H5N1 Influenza Vaccine Is Primarily Controlled by Toll-like Receptor Signalling. PLoS Pathog. 2008, 4, e1000138. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). Areas at Risk for Chikungunya. 2025. Available online: https://www.cdc.gov/chikungunya/data-maps/index.html (accessed on 14 October 2025).
- Bunge, E.M.; Hoet, B.; Chen, L.; Lienert, F.; Weidenthaler, H.; Baer, L.R.; Steffen, R. The Changing Epidemiology of Human Monkeypox—A Potential Threat? A Systematic Review. PLoS Negl. Trop. Dis. 2022, 16, e0010141. [Google Scholar] [CrossRef]
- Kan, B.; Wang, M.; Jing, H.; Xu, H.; Jiang, X.; Yan, M.; Liang, W.; Zheng, H.; Wan, K.; Liu, Q.; et al. Molecular Evolution Analysis and Geographic Investigation of Severe Acute Respiratory Syndrome Coronavirus-Like Virus in Palm Civets at an Animal Market and on Farms. J. Virol. 2005, 79, 11892–11900. [Google Scholar] [CrossRef]
- Muyembe-Tamfum, J.J.; Mulangu, S.; Masumu, J.; Kayembe, J.M.; Kemp, A.; Paweska, J.T. Ebola Virus Outbreaks in Africa: Past and Present. Onderstepoort J. Vet. Res. 2012, 79, 1–8. [Google Scholar] [CrossRef]
- Basu, S.; Ramaiah, S.; Anbarasu, A. In-Silico Strategies to Combat COVID-19: A Comprehensive Review. Biotechnol. Genet. Eng. Rev. 2021, 37, 64–81. [Google Scholar] [CrossRef] [PubMed]
- Stufano, A.; Schino, V.; Plantone, D.; Lucchese, G. Occupational Zoonoses, Neurological Diseases, and Public Health: A One Health Approach. Infect. Med. 2025, 4, 100184. [Google Scholar] [CrossRef]
- Tazerji, S.S.; Duarte, P.M.; Gharieb, R.; Szarpak, L.; Pruc, M.; Rahman, T.; Rodriguez-Morales, A.J.; Ilyas, M.F.; Ferreira, M.d.N.S.; Malik, Y.S.; et al. Migratory Wave Due to Conflicts: Risk of Increased Infection from Zoonotic Diseases. Transbound. Emerg. Dis. 2025, 2025, 5571316. [Google Scholar] [CrossRef] [PubMed]
- Bogoch, I.I.; Watts, A.; Thomas-Bachli, A.; Huber, C.; Kraemer, M.U.G.; Khan, K. Pneumonia of Unknown Aetiology in Wuhan, China: Potential for International Spread via Commercial Air Travel. J. Travel. Med. 2020, 27, taaa008. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). One Health: About Zoonotic Diseases. 2025. Available online: https://www.cdc.gov/one-health/about/about-zoonotic-diseases.html (accessed on 14 October 2025).
- Ghai, R.R.; Wallace, R.M.; Kile, J.C.; Shoemaker, T.R.; Vieira, A.R.; Negron, M.E.; Shadomy, S.V.; Sinclair, J.R.; Goryoka, G.W.; Salyer, S.J.; et al. A Generalizable One Health Framework for the Control of Zoonotic Diseases. Sci. Rep. 2022, 12, 8588. [Google Scholar] [CrossRef]
- Kelly, T.R.; Machalaba, C.; Karesh, W.B.; Crook, P.Z.; Gilardi, K.; Nziza, J.; Uhart, M.M.; Robles, E.A.; Saylors, K.; Joly, D.O.; et al. Implementing One Health Approaches to Confront Emerging and Re-Emerging Zoonotic Disease Threats: Lessons from PREDICT. One Health Outlook 2020, 2, 1. [Google Scholar] [CrossRef]
- Anthony, S.J.; Gilardi, K.; Menachery, V.D.; Goldstein, T.; Ssebide, B.; Mbabazi, R.; Navarrete-Macias, I.; Liang, E.; Wells, H.; Hicks, A.; et al. Further Evidence for Bats as the Evolutionary Source of Middle East Respiratory Syndrome Coronavirus. mBio 2017, 8, e00373-17. [Google Scholar] [CrossRef]
- Chang, W.-S.; Harvey, E.; Mahar, J.E.; Firth, C.; Shi, M.; Simon-Loriere, E.; Geoghegan, J.L.; Wille, M. Improving the Reporting of Metagenomic Virome-Scale Data. Commun. Biol. 2024, 7, 1687. [Google Scholar] [CrossRef]
- Branda, F.; Scarpa, F.; Petrosillo, N.; Ciccozzi, M. A One Health Platform for Future Epidemic Preparedness. Infect. Dis. Rep. 2024, 16, 281–288. [Google Scholar] [CrossRef]
- Belay, E.D.; Kile, J.C.; Hall, A.J.; Barton-Behravesh, C.; Parsons, M.B.; Salyer, S.; Walke, H. Zoonotic Disease Programs for Enhancing Global Health Security. Emerg. Infect. Dis. 2017, 23, S65–S70. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, W.; Zhang, X. Application of Metagenomic Next-Generation Sequencing in the Diagnosis of Infectious Diseases. Front. Cell Infect. Microbiol. 2024, 14, 1458316. [Google Scholar] [CrossRef] [PubMed]
- Graham, B.S.; Corbett, K.S. Prototype Pathogen Approach for Pandemic Preparedness: World on Fire. J. Clin. Investig. 2020, 130, 3348–3349. [Google Scholar] [CrossRef]
- Carroll, D.; Daszak, P.; Wolfe, N.D.; Gao, G.F.; Morel, C.M.; Morzaria, S.; Pablos-Méndez, A.; Tomori, O.; Mazet, J.A.K. The Global Virome Project. Science 2018, 359, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Salyer, S.J.; Silver, R.; Simone, K.; Barton Behravesh, C. Prioritizing Zoonoses for Global Health Capacity Building—Themes from One Health Zoonotic Disease Workshops in 7 Countries, 2014–2016. Emerg. Infect. Dis. 2017, 23, S55–S64. [Google Scholar] [CrossRef] [PubMed]


| Virus (Disease) | Source (Animal) | Key Features of Virus | Total Cases | Fatality | Year of Major Outbreaks | References |
|---|---|---|---|---|---|---|
| SARS-CoV-2 (COVID-19) | Likely bats, possibly pangolins | Highly transmissible coronavirus; respiratory illness | ~778.5 million | ~7.1 million confirmed; estimated 19–36 million excess deaths globally (as of Sept 2025) | 2019 | [92,93] |
| Nipah Virus | Fruit bats, pigs | Paramyxovirus; severe encephalitis/respiratory symptoms | ~700 cases (major outbreaks) | 300–400 deaths (case fatality rate 40–70%) | Major spillovers ongoing, e.g., 2018–2023 | [94,95] |
| Ebola Virus | Fruit bats, primates | Filovirus; hemorrhagic fever, person-to-person transmission | ~34,000 cases (2014–2016) | ~11,300 deaths (case fatality up to 90%) | 2014 (West Africa), 2018–2020 (RDC) | [95,96] |
| MERS-CoV | Dromedary camels | Coronavirus; severe respiratory illness | ~2600 cases | ~900 deaths (case fatality ~34%) | 2012 | [92,93,97,98] |
| H1N1 Influenza (Swine Flu) | Swine | Influenza A virus, high transmissibility, often mild symptoms | >1.4 billion estimated (2009) | ~284,500 deaths globally (estimated) | 2009 | [94,95] |
| Avian Influenza (H5N1/H7N9) | Poultry/wild birds | Influenza A; respiratory symptoms, occasional human-to-human | ~900 human cases | ~455 deaths (case fatality for H5N1 up to 60%) | H5N1: 2003; H7N9: 2013 | [95,99] |
| Chikungunya | Non-human primates, mosquitoes | Alphavirus; fever, joint pain, transmitted by Aedes mosquitoes | >1 million cases (global) | <1% mortality (low) | 2005–2006 (Indian Ocean), 2013–2014 (Americas) | [95,100] |
| Mpox | Rodents, primates | Orthopoxvirus; rash, fever | ~87,000 cases (2022 outbreak) | ~890 deaths globally (case fatality varies by clade) | 2022 (globally) | [94,95,101] |
| Rift Valley Fever | Livestock (cattle, sheep, goats, camels) | Phlebovirus; fever, hemorrhagic symptoms, mosquito-borne | ~20,000 cases | ~500 deaths (case fatality around 1–10%) | 2007 (Sudan, Kenya), 2010 (South Africa) | [89,95] |
| Crimean-Congo Hemorrhagic Fever | Livestock, ticks | Nairovirus; hemorrhagic fever, tick-borne | ~1000 cases (varies) | 100–400 deaths (case fatality rate 10–40%) | Ongoing, notable outbreaks: 2015 (India), 2016–2018 (Pakistan) | [95] |
| SARS-CoV | Himalayan palm civets, raccoon dogs | Flu-like symptoms with high fever, myalgia, dry non-productive dyspnea, and lymphopaenia | ~8000 cases (2002–2003) | ~774 deaths (case fatality ~10%) | 2002 | [102] |
| West Nile Virus | Wild birds, mosquitoes | Flavivirus; fever, neurological symptoms, mosquito-borne | ~3 million infections estimated (U.S.) | ~2100 deaths (mostly neuroinvasive cases) | 1999 (The United States of America), ongoing | [93,95] |
| Name | Unique Features | Governing Body | Link |
|---|---|---|---|
| CEPI (Coalition for Epidemic Preparedness) | Major global initiative for rapid vaccine R&D and response; focuses on viral threats including Disease X, COVID-19 *, Ebola, Lassa, and Nipah | CEPI Board, global health partners | https://cepi.net/priority-pathogens (31 August 2025) |
| MOOD * Epidemic Intelligence Platform | Integrates cross-sector epidemic data (animal and human viruses); spatial modeling and early warning for viral outbreaks in Europe | Horizon 2020 EU * project, public health/animal health agencies | https://mood-h2020.eu/mood-platform/ (31 August 2025) |
| Infectious Diseases Clinical Research Consortium (IDCRC) | United States-based, conducts rapid clinical trials (especially for viral pathogens); supports vaccine, antiviral, and trial development | National Institute of Allergy and Infectious Disease (NIAID) | https://idcrc.org (31 August 2025) |
| One Health Epidemic Preparedness Platform | Integrates human, animal, and environmental health data for viral epidemic warning and response; “One Health” approach | Cross-sector scientific consortium | https://sorveglianza-98a22.web.app/ (31 August 2025) [113] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banik, A.; Basu, S. Drivers and Consequences of Viral Zoonoses: Public Health and Economic Perspectives. Zoonotic Dis. 2025, 5, 32. https://doi.org/10.3390/zoonoticdis5040032
Banik A, Basu S. Drivers and Consequences of Viral Zoonoses: Public Health and Economic Perspectives. Zoonotic Diseases. 2025; 5(4):32. https://doi.org/10.3390/zoonoticdis5040032
Chicago/Turabian StyleBanik, Anirban, and Soumya Basu. 2025. "Drivers and Consequences of Viral Zoonoses: Public Health and Economic Perspectives" Zoonotic Diseases 5, no. 4: 32. https://doi.org/10.3390/zoonoticdis5040032
APA StyleBanik, A., & Basu, S. (2025). Drivers and Consequences of Viral Zoonoses: Public Health and Economic Perspectives. Zoonotic Diseases, 5(4), 32. https://doi.org/10.3390/zoonoticdis5040032
