Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic
1. Ecological and Environmental Drivers
2. Climatic Regime Alterations
3. Anthropogenic and Socioeconomic Factors
4. Microbial Evolution and Viral Adaptation
5. Future Projections to 2050 and Beyond
6. Strategies for a Safer Future
Conflicts of Interest
References
- Hassell, J.M.; Muloi, D.M.; VanderWaal, K.L.; Ward, M.J.; Bettridge, J.; Gitahi, N.; Ouko, T.; Imboma, T.; Akoko, J.; Karani, M.; et al. Epidemiological connectivity between humans and animals across an urban landscape. Proc. Natl. Acad. Sci. USA 2023, 120, e2218860120. [Google Scholar] [CrossRef] [PubMed]
- Warmuth, V.M.; Metzler, D.; Zamora-Gutierrez, V. Human disturbance increases coronavirus prevalence in bats. Sci. Adv. 2023, 9, eadd0688. [Google Scholar] [CrossRef] [PubMed]
- Faust, C.L.; McCallum, H.I.; Bloomfield, L.S.P.; Gottdenker, N.L.; Gillespie, T.R.; Torney, C.J.; Dobson, A.P.; Plowright, R.K.; Ostfeld, R. Pathogen spillover during land conversion. Ecol. Lett. 2018, 21, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Borremans, B.; Faust, C.; Manlove, K.R.; Sokolow, S.H.; Lloyd-Smith, J.O. Cross-species pathogen spillover across ecosystem boundaries: Mechanisms and theory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180344. [Google Scholar] [CrossRef]
- Despommier, D.; Ellis, B.R.; Wilcox, B.A. The Role of Ecotones in Emerging Infectious Diseases. EcoHealth 2006, 3, 281–289. [Google Scholar] [CrossRef]
- Despommier, D.; Ellis, B.R.; Wilcox, B.A. Zoonotic Spillover in an Era of Rapid Deforestation of Tropical Areas and Unprecedented Wildlife Trafficking: Into the Wild. Challenges 2022, 13, 41. [Google Scholar] [CrossRef]
- Branda, F.; Ceccarelli, G.; Giovanetti, M.; Albanese, M.; Binetti, E.; Ciccozzi, M.; Scarpa, F. Nipah Virus: A Zoonotic Threat Re-Emerging in the Wake of Global Public Health Challenges. Microorganisms 2025, 13, 124. [Google Scholar] [CrossRef]
- Ostfeld, R.S. Biodiversity loss and the rise of zoonotic pathogens. Clin. Microbiol. Infect. 2009, 15, 40–43. [Google Scholar] [CrossRef]
- Sánchez, C.A.; Venkatachalam-Vaz, J.; Drake, J.M. Spillover of zoonotic pathogens: A review of reviews. Zoonoses Public Health 2021, 68, 563–577. [Google Scholar] [CrossRef]
- Hayek, M.N. The infectious disease trap of animal agriculture. Sci. Adv. 2022, 8, eadd6681. [Google Scholar] [CrossRef]
- Jones, B.A.; Grace, D.; Kock, R.; Alonso, S.; Rushton, J.; Said, M.Y.; McKeever, D.; Mutua, F.; Young, J.; McDermott, J.; et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc. Natl. Acad. Sci. USA 2013, 110, 8399–8404. [Google Scholar] [CrossRef] [PubMed]
- Blasdell, K.R.; Morand, S.; Laurance, S.G.W.; Doggett, S.L.; Hahs, A.; Trinh, K.; Perera, D.; Firth, C. Rats and the city: Implications of urbanization on zoonotic disease risk in Southeast Asia. Proc. Natl. Acad. Sci. USA 2022, 119, e2112341119. [Google Scholar] [CrossRef] [PubMed]
- Uusitalo, R.J.; Jackson, R.T.; Lunn, T.J.; Korhonen, E.M.; Ogola, J.G.; Webala, P.W.; Sironen, T.A.; Forbes, K.M. Current and future environmental suitability for bats hosting potential zoonotic pathogens in rural Kenya. Ecol. Evol. 2024, 14, e11572. [Google Scholar] [CrossRef]
- Jackson, R.T.; Webala, P.W.; Ogola, J.G.; Lunn, T.J.; Forbes, K.M. Roost selection by synanthropic bats in rural Kenya: Implications for human–wildlife conflict and zoonotic pathogen spillover. R. Soc. Open Sci. 2023, 10, 230578. [Google Scholar] [CrossRef] [PubMed]
- Rulli, M.C.; Santini, M.; Hayman, D.T.S.; D’oDorico, P. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci. Rep. 2017, 7, 41613. [Google Scholar] [CrossRef]
- Filion, A.; Sundaram, M.; Schmidt, J.P.; Drake, J.M.; Stephens, P.R. Evidence of repeated zoonotic pathogen spillover events at ecological boundaries. Front. Public Health 2024, 12, 1435233. [Google Scholar] [CrossRef]
- Patz, J.A.; Daszak, P.; Tabor, G.M.; Aguirre, A.A.; Pearl, M.; Epstein, J.; Wolfe, N.D.; Kilpatrick, A.M.; Foufopoulos, J.; Molyneux, D.; et al. Unhealthy Landscapes: Policy Recommendations on Land Use Change and Infectious Disease Emergence. Environ. Health Perspect. 2004, 112, 1092–1098. [Google Scholar] [CrossRef]
- Filho, W.L.; Nagy, G.J.; Gbaguidi, G.J.; Paz, S.; Dinis, M.A.P.; Luetz, J.M.; Sharifi, A. The role of climatic changes in the emergence and re-emergence of infectious diseases: Bibliometric analysis and literature-supported studies on zoonoses. One Health Outlook 2025, 7, 12. [Google Scholar] [CrossRef]
- Wang, Z.; Pei, S.; Cui, H.; Zhang, J.; Jia, Z. Zoonotic spillover and extreme weather events drive the global outbreaks of airborne viral emerging infectious diseases. J. Med. Virol. 2024, 96, e29737. [Google Scholar] [CrossRef]
- Gage, K.L.; Burkot, T.R.; Eisen, R.J.; Hayes, E.B. Climate and Vectorborne Diseases. Am. J. Prev. Med. 2008, 35, 436–450. [Google Scholar] [CrossRef]
- Borham, A.; Motaal, K.A.; ElSersawy, N.; Ahmed, Y.F.; Mahmoud, S.; Musaibah, A.S.; Abdelnaser, A. Climate Change and Zoonotic Disease Outbreaks: Emerging Evidence from Epidemiology and Toxicology. Int. J. Environ. Res. Public Health 2025, 22, 883. [Google Scholar] [CrossRef] [PubMed]
- Beyer, R.M.; Manica, A.; Mora, C. Shifts in global bat diversity suggest a possible role of climate change in the emergence of SARS-CoV-1 and SARS-CoV-2. Sci. Total Environ. 2021, 767, 145413. [Google Scholar] [CrossRef] [PubMed]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, 244. [Google Scholar] [CrossRef] [PubMed]
- Mertens, J.E. The Influence of Climate Change on Vector-Borne Diseases in a Wilderness Medicine Context. Wilderness Environ. Med. 2025, 36, 44–60. [Google Scholar] [CrossRef]
- Eby, P.; Peel, A.J.; Hoegh, A.; Madden, W.; Giles, J.R.; Hudson, P.J.; Plowright, R.K. Pathogen spillover driven by rapid changes in bat ecology. Nature 2023, 613, 340–344. [Google Scholar] [CrossRef]
- Seltmann, A.; Corman, V.M.; Rasche, A.; Drosten, C.; Czirják, G.Á.; Bernard, H.; Struebig, M.J.; Voigt, C.C. Seasonal Fluctuations of Astrovirus, But Not Coronavirus Shedding in Bats Inhabiting Human-Modified Tropical Forests. Ecohealth 2017, 14, 272–284. [Google Scholar] [CrossRef]
- Baranowski, K.; Bharti, N. Habitat loss for black flying foxes and implications for Hendra virus. Landsc. Ecol. 2023, 38, 1605–1618. [Google Scholar] [CrossRef]
- Falvo, C.A.; Crowley, D.E.; Benson, E.; Hall, M.N.; Schwarz, B.; Bohrnsen, E.; Ruiz-Aravena, M.; Hebner, M.; Ma, W.; Schountz, T.; et al. Diet-induced changes in metabolism influence immune response and viral shedding in Jamaican fruit bats. Proc. Biol. Sci. 2025, 292, 20242482. [Google Scholar] [CrossRef]
- Subudhi, S.; Rapin, N.; Misra, V. Immune System Modulation and Viral Persistence in Bats: Understanding Viral Spillover. Viruses 2019, 11, 192. [Google Scholar] [CrossRef]
- Rodríguez-Lázaro, D.; Cook, N.; Ruggeri, F.M.; Sellwood, J.; Nasser, A.; Nascimento, M.S.; D’Agostino, M.; Santos, R.; Saiz, J.C.; Rzeżutka, A.; et al. Virus hazards from food, water and other contaminated environments. FEMS Microbiol. Rev. 2012, 36, 786–814. [Google Scholar] [CrossRef]
- Godoy, M.G.; Kibenge, M.J.; Kibenge, F.S. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. Aquaculture 2021, 536, 736460. [Google Scholar] [CrossRef] [PubMed]
- Lessani, M.N.; Li, Z.; Jing, F.; Qiao, S.; Zhang, J.; Olatosi, B.; Li, X. Human mobility and the infectious disease transmission: A systematic review. Geo-Spat. Inf. Sci. 2024, 27, 1824–1851. [Google Scholar] [CrossRef] [PubMed]
- Findlater, A.; Bogoch, I.I. Human Mobility and the Global Spread of Infectious Diseases: A Focus on Air Travel. Trends Parasitol. 2018, 34, 772–783. [Google Scholar] [CrossRef] [PubMed]
- Grout, A.; Howard, N.; Coker, R.; Speakman, E.M. Guidelines, law, and governance: Disconnects in the global control of airline-associated infectious diseases. Lancet Infect. Dis. 2017, 17, e118–e122. [Google Scholar] [CrossRef]
- Tatem, A.J.; Rogers, D.J.; Hay, S.I. Global Transport Networks and Infectious Disease Spread. In Advances in Parasitology; Hay, S.I., Graham, A., Rogers, D.J., Eds.; Academic Press: Cambridge, MA, USA, 2006; pp. 293–343. [Google Scholar]
- Brockmann, D.; Helbing, D. The Hidden Geometry of Complex, Network-Driven Contagion Phenomena. Science 2013, 342, 1337–1342. [Google Scholar] [CrossRef]
- Shoman, H.; Karafillakis, E.; Rawaf, S. The link between the West African Ebola outbreak and health systems in Guinea, Liberia and Sierra Leone: A systematic review. Glob. Health 2017, 13, 1–22. [Google Scholar] [CrossRef]
- WHO Ebola Response Team; Aylward, B.; Barboza, P.; Bawo, L.; Bertherat, E.; Bilivogui, P.; Blake, I.; Brennan, R.; Briand, S.; Chakauya, J.M.; et al. Ebola Virus Disease in West Africa—The First 9 Months of the Epidemic and Forward Projections. N. Engl. J. Med. 2014, 371, 1481–1495. [Google Scholar] [CrossRef]
- Ba, K.C.; Kaewkungwal, J.; Pacheun, O.; To, U.N.T.; Lawpoolsri, S. Health Literacy Toward Zoonotic Diseases Among Livestock Farmers in Vietnam. Environ. Health Insights 2020, 14, 1178630220932540. [Google Scholar]
- Ellwanger, J.H.; Chies, J.A.B. Chies, Pathogen Pollution: Viral Diseases Associated with Poor Sanitation in Brazil. Hygiene 2023, 3, 441–449. [Google Scholar] [CrossRef]
- Contreras, J.D.; Islam, M.; Mertens, A.; Pickering, A.J.; Kwong, L.H.; Arnold, B.F.; Benjamin-Chung, J.; Hubbard, A.E.; Alam, M.; Sen, D.; et al. Influence of community-level sanitation coverage and population density on environmental fecal contamination and child health in a longitudinal cohort in rural Bangladesh. Int. J. Hyg. Environ. Health 2022, 245, 114031. [Google Scholar] [CrossRef]
- Martin, M.J.; Thottathil, S.E.; Newman, T.B. Antibiotics Overuse in Animal Agriculture: A Call to Action for Health Care Providers. Am. J. Public Health 2015, 105, 2409–2410. [Google Scholar] [CrossRef] [PubMed]
- Parker, E.M.; Ballash, G.A.; Mollenkopf, D.F.; Wittum, T.E. A complex cyclical One Health pathway drives the emergence and dissemination of antimicrobial resistance. Am. J. Vet. Res. 2024, 85, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cantlay, J.C.; Ingram, D.J.; Meredith, A.L. A Review of Zoonotic Infection Risks Associated with the Wild Meat Trade in Malaysia. EcoHealth 2017, 14, 361–388. [Google Scholar] [CrossRef] [PubMed]
- Choo, J.; Nghiem, L.T.P.; Chng, S.; Carrasco, L.R.; Benítez-López, A. Hotspots of zoonotic disease risk from wildlife hunting and trade in the tropics. Integr. Conserv. 2023, 2, 165–175. [Google Scholar] [CrossRef]
- Mossoun, A.; Calvignac-Spencer, S.; Anoh, A.E.; Pauly, M.S.; Driscoll, D.A.; Michel, A.O.; Nazaire, L.G.; Pfister, S.; Sabwe, P.; Thiesen, U.; et al. Bushmeat Hunting and Zoonotic Transmission of Simian T-Lymphotropic Virus 1 in Tropical West and Central Africa. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Lin, B.; Dietrich, M.L.; A Senior, R.; Wilcove, D.S. A better classification of wet markets is key to safeguarding human health and biodiversity. Lancet Planet. Health 2021, 5, e386–e394. [Google Scholar] [CrossRef]
- Worobey, M.; Levy, J.I.; Serrano, L.M.; Crits-Christoph, A.; Pekar, J.E.; Goldstein, S.A.; Rasmussen, A.L.; Kraemer, M.U.G.; Newman, C.; Koopmans, M.P.G.; et al. The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 2022, 377, 951–959. [Google Scholar] [CrossRef]
- Courtier-Orgogozo, V.; de Ribera, F.A. SARS-CoV-2 infection at the Huanan seafood market. Environ. Res. 2022, 214, 113702. [Google Scholar] [CrossRef]
- Bloom, J.D. Association between SARS-CoV-2 and metagenomic content of samples from the Huanan Seafood Market. Virus Evol. 2023, 9, vead050. [Google Scholar] [CrossRef]
- Booth, H.; Clark, M.; Milner-Gulland, E.; Amponsah-Mensah, K.; Antunes, A.P.; Brittain, S.; Castilho, L.C.; Campos-Silva, J.V.; Constantino, P.d.A.L.; Li, Y.; et al. Investigating the risks of removing wild meat from global food systems. Curr. Biol. 2021, 31, 1788–1797.e3. [Google Scholar] [CrossRef]
- Ingram, D.J. Wild Meat in Changing Times. J. Ethnobiol. 2020, 40, 117–130. [Google Scholar] [CrossRef]
- Carabelli, A.M.; Peacock, T.P.; Thorne, L.G.; Harvey, W.T.; Hughes, J.; COVID-19 Genomics UK Consortium; Peacock, S.J.; Barclay, W.S.; de Silva, T.I.; Towers, G.J.; et al. SARS-CoV-2 variant biology: Immune escape, transmission and fitness. Nat. Rev. Microbiol. 2023, 21, 162–177. [Google Scholar] [CrossRef]
- Kistler, K.E.; Bedford, T. An atlas of continuous adaptive evolution in endemic human viruses. Cell Host Microbe 2023, 31, 1898–1909.e3. [Google Scholar] [CrossRef]
- Woolhouse, M.E.J.; Gowtage-Sequeria, S. Host range and emerging and reemerging pathogens. Emerg. Infect. Dis. 2005, 11, 1842–1847. [Google Scholar] [CrossRef]
- Tian, J.; Sun, J.; Li, D.; Wang, N.; Wang, L.; Zhang, C.; Meng, X.; Ji, X.; Suchard, M.A.; Zhang, X.; et al. Emerging viruses: Cross-species transmission of coronaviruses, filoviruses, henipaviruses, and rotaviruses from bats. Cell Rep. 2022, 39, 110969. [Google Scholar] [CrossRef]
- Yang, Y.; Du, L.; Liu, C.; Wang, L.; Ma, C.; Tang, J.; Baric, R.S.; Jiang, S.; Li, F. Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus. Proc. Natl. Acad. Sci. USA 2014, 111, 12516–12521. [Google Scholar] [CrossRef]
- Latinne, A.; Nga, N.T.T.; Van Long, N.; Ngoc, P.T.B.; Thuy, H.B.; PREDICT Consortium; Long, P.T.; Phuong, N.T.; Quang, L.T.V.; Tung, N.; et al. One Health Surveillance Highlights Circulation of Viruses with Zoonotic Potential in Bats, Pigs, and Humans in Viet Nam. Viruses 2023, 15, 790. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S.; Merenlender, A.M. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef]
- Zhang, X.; Mei, H.; Nie, P.; Hu, X.; Feng, J. Future Climate Predicts Range Shifts and Increased Global Habitat Suitability for 29 Aedes Mosquito Species. Insects 2025, 16, 476. [Google Scholar] [CrossRef]
- Thomson, M.C.; Stanberry, L.R.; Solomon, C.G.; Salas, R.N. Climate Change and Vectorborne Diseases. N. Engl. J. Med. 2022, 387, 1969–1978. [Google Scholar] [CrossRef]
- Campbell-Lendrum, D.; Corvalán, C. Climate change and developing-country cities: Implications for environmental health and equity. J. Urban Health 2007, 84, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Laurance, W.F.; Engert, J. Sprawling cities are rapidly encroaching on Earth’s biodiversity. Proc. Natl. Acad. Sci. USA 2022, 119, e2202244119. [Google Scholar] [CrossRef] [PubMed]
- Hassell, J.M.; Begon, M.; Ward, M.J.; Fèvre, E.M. Urbanization and Disease Emergence: Dynamics at the Wildlife-Livestock-Human Interface. Trends Ecol. Evol. 2017, 32, 55–67. [Google Scholar] [CrossRef] [PubMed]
- PREDICT Consortium; Kelly, T.R.; Machalaba, C.; Karesh, W.B.; Crook, P.Z.; Gilardi, K.; Nziza, J.; Uhart, M.M.; Robles, E.A.; Saylors, K.; et al. Implementing One Health approaches to confront emerging and re-emerging zoonotic disease threats: Lessons from PREDICT. One Health Outlook 2020, 2, 1. [Google Scholar]
- One Health High-Level Expert Panel (OHHLEP); Hayman, D.T.S.; Adisasmito, W.B.; Almuhairi, S.; Behravesh, C.B.; Bilivogui, P.; Bukachi, S.A.; Casas, N.; Becerra, N.C.; Charron, D.F.; et al. Developing One Health surveillance systems. One Health 2023, 17, 100617. [Google Scholar]
- Kuiken, T. Broadening the aims of avian influenza surveillance according to the One Health approach. Mbio 2024, 15, e02111-24. [Google Scholar] [CrossRef]
- Mbabu, M.; Njeru, I.; File, S.; Osoro, E.; Kiambi, S.; Bitek, A.; Ithondeka, P.; Kairu-Wanyoike, S.; Sharif, S.; Gogstad, E.; et al. Establishing a One Health office in Kenya. Pan Afr. Med. J. 2014, 19, 106. [Google Scholar] [CrossRef]
- Munyua, P.M.; Njenga, M.K.; Osoro, E.M.; Onyango, C.O.; Bitek, A.O.; Mwatondo, A.; Muturi, M.K.; Musee, N.; Bigogo, G.; Otiang, E.; et al. Successes and challenges of the One Health approach in Kenya over the last decade. BMC Public Health 2019, 19, 465. [Google Scholar] [CrossRef]
- Debnath, N.; Flora, M.S.; Shirin, T.; Kalam, A.; Kabir, J.; Sufian, A.; Alamgir, A.; Islam, R.; Husain, M.; Islam, N.; et al. Toward the Institutionalization of a One Health Agenda: What the World can Learn from Bangladesh. One Health Cases 2024. [CrossRef]
- Tangwangvivat, R.; Boonyo, K.; Toanan, W.; Muangnoichareon, S.; NA Nan, S.; Iamsirithaworn, S.; Prasarnphanich, O. Promoting the One Health concept: Thai Coordinating Unit for One Health. Rev. Sci. Tech. 2019, 38, 271–278. [Google Scholar] [CrossRef]
- Innes, G.K.; Lambrou, A.S.; Thumrin, P.; Thukngamdee, Y.; Tangwangvivat, R.; Doungngern, P.; Noradechanon, K.; Netrabukkana, P.; Meidenbauer, K.; Mehoke, T.; et al. Enhancing global health security in Thailand: Strengths and challenges of initiating a One Health approach to avian influenza surveillance. One Health 2022, 14, 100397. [Google Scholar] [CrossRef] [PubMed]
- Ferrinho, P.; Fronteira, I. Developing One Health Systems: A Central Role for the One Health Workforce. Int. J. Env. Res. Public Health 2023, 20, 4704. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Ahmed, A.N.; Coulson, T.; Crowther, T.W.; Ejotre, I.; Faust, C.L.; Frick, W.F.; Hudson, P.J.; Kingston, T.; Nameer, P.O.; et al. Ecological countermeasures to prevent pathogen spillover and subsequent pandemics. Nat. Commun. 2024, 15, 2577. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.B.; Chua, B.H.; Wang, C.W. Anthropogenic deforestation, El Niño and the emergence of Nipah virus in Malaysia. Malays. J. Pathol. 2002, 24, 15–21. [Google Scholar]
- Pulliam, J.R.C.; Epstein, J.H.; Dushoff, J.; Rahman, S.A.; Bunning, M.; Jamaluddin, A.A.; Hyatt, A.D.; Field, H.E.; Dobson, A.P.; Daszak, P. Agricultural intensification, priming for persistence and the emergence of Nipah virus: A lethal bat-borne zoonosis. J. R. Soc. Interface 2012, 9, 89–101. [Google Scholar] [CrossRef]
- Lopez-Moreno, G.; Schmitt, C.; Spronk, T.; Culhane, M.; Torremorell, M. Evaluation of internal farm biosecurity measures combined with sow vaccination to prevent influenza A virus infection in groups of due-to-wean pigs. BMC Vet. Res. 2022, 18, 393. [Google Scholar] [CrossRef]
- Zizinga, A.; Mwanjalolo, J.-G.M.; Tietjen, B.; Bedadi, B.; Gabiri, G.; Luswata, K.C. Impacts of Climate Smart Agriculture Practices on Soil Water Conservation and Maize Productivity in Rainfed Cropping Systems of Uganda. Front. Sustain. Food Syst. 2022, 6, 889830. [Google Scholar] [CrossRef]
- Aryal, J.P.; Sapkota, T.B.; Rahut, D.B.; Marenya, P.; Stirling, C.M. Climate risks and adaptation strategies of farmers in East Africa and South Asia. Sci. Rep. 2021, 11, 10489. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gass, J.D., Jr. Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic. Zoonotic Dis. 2025, 5, 18. https://doi.org/10.3390/zoonoticdis5030018
Gass JD Jr. Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic. Zoonotic Diseases. 2025; 5(3):18. https://doi.org/10.3390/zoonoticdis5030018
Chicago/Turabian StyleGass, Jonathon D., Jr. 2025. "Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic" Zoonotic Diseases 5, no. 3: 18. https://doi.org/10.3390/zoonoticdis5030018
APA StyleGass, J. D., Jr. (2025). Drivers of Zoonotic Viral Spillover: Understanding Pathways to the Next Pandemic. Zoonotic Diseases, 5(3), 18. https://doi.org/10.3390/zoonoticdis5030018