Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production
Abstract
:1. Introduction
2. Phosphorus
2.1. Phosphorus in Soil and Soil Solutions
2.2. Phosphorus Availability to Plants
3. Rock Phosphate (RP)
3.1. Types
3.2. Characteristics
4. Effective Factors in Increasing the Solubility of RP
4.1. Reactivity of RP
4.2. Soil pH
4.3. Concentration of Available Phosphorus in Soil
4.4. Soil Organic Matter
4.5. Climatic Conditions
4.6. Plant Species
5. Strategies to Increase Dissolution of RP
5.1. Physical Methods
5.1.1. Reducing the Size of RP Particles
5.1.2. Mixing RP with Phosphate Fertilizers
5.2. Chemical Methods
5.3. Biological Methods
5.3.1. Mixing RP with Organic Matter
5.3.2. Phosphate Solubilizing Microbes (PSMs) in P Availability
- Bacteria
- Fungi
- Arbuscular Mycorrhizal Fungi (AMF)
- Actinomycetes or Actinobacteria
6. Mechanism of PSMs in the Release of Unavailable P
6.1. Lowering Soil pH
6.2. Chelation
6.3. Mineralization
7. Factors Affecting the Solubilization Mechanism of RP by PSMs
8. The Results of Using RP with PSMs in Agriculture
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jupp, A.R.; Beijer, S.; Narain, G.C.; Schipper, W.; Slootweg, J.C. Phosphorus recovery and recycling—Closing the loop. Chem. Soc. Rev. 2021, 50, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Renneson, M.; Barbieux, S.; Colinet, G. Indicators of phosphorus status in soils: Significance and relevance for crop soils in southern Belgium. A review. Biotechnol. Agron. Soc. Environ. 2016, 20, 801–816. [Google Scholar] [CrossRef]
- Pierzynski, G.M.; McDowell, R.W.; Sims, J.T. Chemistry, cycling, and potential movement of inorganic phosphorus in soils. In Phosphorus: Agriculture and the Environment; American Society of Agronomy: Madison, WI, USA, 2005; Volume 46, pp. 51–86. [Google Scholar] [CrossRef]
- Cordell, D.; Rosemarin, A.; Schröder, J.; Smit, A. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Sarikhani, M.R.; Khoshru, B.; Greiner, R. Isolation and identification of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World J. Microbiol. Biotechnol. 2019, 35, 126. [Google Scholar] [CrossRef]
- Walan, P.; Davidsson, S.; Johansson, S.; Höök, M. Phosphate rock production and depletion: Regional disaggregated modeling and global implications. Resour. Conserv. Recycl. 2014, 93, 178–187. [Google Scholar] [CrossRef]
- Zapata, F.; Roy, R.N. Use of Phosphate Rocks for Sustainable Agriculture; FAO Fertilizer and Plant Nutrition Bulletin; FAO: Rome, Italy, 2004; pp. 1–148. [Google Scholar]
- Chien, S.H.; Menon, R.G. Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fertil. Res. 1995, 41, 227–234. [Google Scholar] [CrossRef]
- Zapata, F. FAO/IAEA research activities on direct application of phosphate rock for sustainable crop production. In Direct Application of Phosphate Rock and Related Appropriate Technology-Latest Development and Practical Experiences, Proceedings of the International Meeting, Kuala Lumpur, Malaysia, 16–20 July 2001; IFDC—An International Center for Soil Fertility and Agricultural Development: Washington, DC, USA, 2003; pp. 100–109. [Google Scholar]
- Wahid, F.; Sharif, M.; Steinkellner, S.; Khan, M.A.; Marwat, K.B.; Khan, S.A. Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak. J. Bot. 2016, 482, 739–747. [Google Scholar]
- Khoshru, B.; Sarikhani, M.R. Inoculation Effect of phosphatic microbial fertilizers containing temperature resistant phosphate solubilizing bacteria on nutritional indices of Zea mays L. J. Crop Prod. 2019, 12, 107–122. [Google Scholar]
- Armandeh, M.; Mahmoudi, N.; Fallah Nosratabad, A.R. Screening and evaluation of phosphate-solubilizing bacteria isolated from aquaculture ponds in a step-by-step strategy as potential biofertilizer. J. Appl. Microbiol. 2022, 133, 1581–1596. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Khoshmanzar, E.; Myo, E.M.; Uniyal, N.; Mahakur, B.; Das Mohapatra, P.K.; Panneerselvam, P.; Boutaj, H.; Alizadeh, M.; et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: An economic valuable resource for the agriculture revival under stressful conditions. J. Plant Nutr. 2020, 43, 3062–3092. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Scervino, J.; Papinutti, V.; Godoy, M.; Rodriguez, M.; Della Monica, I.; Recchi, M.; Pettinari, M.; Godeas, A. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J. Appl. Microbiol. 2011, 110, 1215–1223. [Google Scholar] [CrossRef]
- Lambers, H. Phosphorus acquisition and utilization in plants. Annu. Rev. Plant Biol. 2022, 73, 17–42. [Google Scholar] [CrossRef]
- Kalayu, G. Phosphate Solubilizing Microorganisms: Promising Approach as Biofertilizers. Int. J. Agron. 2019, 2019, 4917256. [Google Scholar] [CrossRef]
- Amirhandeh, M.S.; Nosratabad, A.F.; Norouzi, M.; Harutyunyan, S. Response of Coker (flue-cured) tobacco (Nicotiana tabacum) to inoculation with Azotobacter chroococcum at various levels of nitrogen fertilization. Aust. J. Crop Sci. 2012, 6, 861–868. [Google Scholar]
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Dikilitas, M.; Abdel-Azeem, A.M.; Ahluwalia, A.S.; Saxena, A.K. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Reyes, I.; Valéry, A.; Valduz, Z. Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. In First International Meeting on Microbial Phosphate Solubilization; Springer: Berlin/Heidelberg, Germany, 2007; pp. 69–75. [Google Scholar] [CrossRef]
- Walpola, B.C. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. Afr. J. Microbiol. Res. 2012, 6, 6600–6605. [Google Scholar] [CrossRef]
- Gupta, A.K.; Maheshwari, A.; Khanam, R. Assessment of phosphorus fixing capacity in different soil orders of India. J. Plant Nutr. 2020, 43, 2395–2401. [Google Scholar] [CrossRef]
- Gérard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; Fixen, P.E.; Curtin, D. Chapter Five—Phosphorus: Its efficient use in agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 177–228. [Google Scholar] [CrossRef]
- Ozanne, P.G. Phosphate nutrition of plants—A general treatise. In The Role of Phosphorus in Agriculture; Khasawneh, F.E., Sample, E.C., Kamprath, E.J., Eds.; American Society of Agronomy: Madison, WI, USA, 1980. [Google Scholar]
- Prasad, R.; Power, J.F. Phosphorus. In Soil Fertility Management for Sustainable Development; CRC Lewis Publishers: Boca Raton, FL, USA, 1997. [Google Scholar]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytol. 2003, 157, 423–447. [Google Scholar] [CrossRef]
- Gyaneshwar, P.; Kumar, G.N.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Turan, M.; Ataoglu, N.; Şahιn, F. Evaluation of the Capacity of Phosphate Solubilizing Bacteria and Fungi on Different Forms of Phosphorus in Liquid Culture. J. Sustain. Agric. 2006, 28, 99–108. [Google Scholar] [CrossRef]
- Mitra, D.; Mondal, R.; Khoshru, B.; Senapati, A.; Radha, T.; Mahakur, B.; Uniyal, N.; Myo, E.M.; Boutaj, H.; Sierra, B.E.G.; et al. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere 2022, 32, 149–170. [Google Scholar] [CrossRef]
- Kratz, S.; Schick, J.; Schnug, E. Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci. Total Environ. 2016, 542, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Ditta, A.; Imtiaz, M.; Mehmood, S.; Rizwan, M.S.; Mubeen, F.; Aziz, O.; Qian, Z.; Ijaz, R.; Tu, S. Rock phosphate-enriched organic fertilizer with phosphate-solubilizing microorganisms improves nodulation, growth, and yield of legumes. Commun. Soil Sci. Plant Anal. 2018, 49, 2715–2725. [Google Scholar] [CrossRef]
- Faridian, L.; Baharlouei, J.; Fallah Nosratabad, A.; Kari Dolat Abad, H. An Exploratory Research on the Adoption of Different Phosphate-Solubilizing Fungi for Production of Phosphate Biofertilizers. Geomicrobiol. J. 2023, 40, 1–8. [Google Scholar] [CrossRef]
- Chien, S.; Prochnow, L.; Cantarella, H. Recent Developments of Fertilizer Production and Use to Improve Nutrient Efficiency and Minimize Environmental Impacts. Adv. Agron. 2009, 102, 267–322. [Google Scholar] [CrossRef]
- Le Mare, P.H. Rock Phosphates in Agriculture. Exp. Agric. 1991, 27, 413–422. [Google Scholar] [CrossRef]
- De Ridder, M.; De Jong, S.; Polchar, J.; Lingemann, S. Risks and Opportunities in the Global Phosphate Rock Market: Robust Strategies in Times of Uncertainty; The Hague Centre for Strategic Studies: The Hague, The Netherlands, 2012. [Google Scholar]
- Hellal, F.A.A.; Nagumo, F.; Zewainy, R.M. Influence of phosphocompost application on phosphorus availability and uptake by maize grown in red soil of Ishigaki Island, Japan. Agric. Sci. 2013, 4, 102–109. [Google Scholar] [CrossRef]
- Cooper, J.; Lombardi, R.; Boardman, D.; Carliell-Marquet, C. The future distribution and production of global phosphate rock reserves. Resour. Conserv. Recycl. 2011, 57, 78–86. [Google Scholar] [CrossRef]
- Roy, T.; Biswas, D.R.; Datta, S.C.; Sarkar, A. Phosphorus Release from Rock Phosphate as Influenced by Organic Acid Loaded Nanoclay Polymer Composites in an Alfisol. Proc. Natl. Acad. Sci. India Sect. B Boil. Sci. 2018, 88, 121–132. [Google Scholar] [CrossRef]
- Notholt, A.J.G.; Sheldon, R.P.; Davidson, D.F. (Eds.) Phosphate Deposits of the World: Volume 2, Phosphate Rock Resources; Cambridge University Press: Cambridge, UK, 2005; Volume 2. [Google Scholar]
- Pufahl, P.K.; Groat, L.A. Sedimentary and Igneous Phosphate Deposits: Formation and Exploration: An Invited Paper. Econ. Geol. 2017, 112, 483–516. [Google Scholar] [CrossRef]
- Benredjem, Z.; Delimi, R. Use of extracting agent for decadmiation of phosphate rock. Phys. Procedia 2009, 2, 1455–1460. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- El Bamiki, R.; Raji, O.; Ouabid, M.; Elghali, A.; Yazami, O.K.; Bodinier, J.-L. Phosphate Rocks: A Review of Sedimentary and Igneous Occurrences in Morocco. Minerals 2021, 11, 1137. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M. Biotechnological solubilization of rock phosphate on media containing agro-industrial wastes. Appl. Microbiol. Biotechnol. 2003, 61, 435–440. [Google Scholar] [CrossRef]
- Klaic, R.; Plotegher, F.; Ribeiro, C.; Zangirolami, T.; Farinas, C. A novel combined mechanical-biological approach to improve rock phosphate solubilization. Int. J. Miner. Process. 2017, 161, 50–58. [Google Scholar] [CrossRef]
- Lehr, J.R.; McClellan, G.H. A Revised Laboratory Reactivity Scale for Evaluating Phosphate Rocks for Direct Application; TVA: Muscle Shoals, AL, USA, 1972; Volume 43. [Google Scholar]
- Mendes, G.D.O.; Murta, H.M.; Valadares, R.V.; da Silveira, W.B.; da Silva, I.R.; Costa, M.D. Oxalic acid is more efficient than sulfuric acid for rock phosphate solubilization. Miner. Eng. 2020, 155, 106458. [Google Scholar] [CrossRef]
- Kaur, G.; Reddy, M.S. Effects of Phosphate-Solubilizing Bacteria, Rock Phosphate and Chemical Fertilizers on Maize-Wheat Cropping Cycle and Economics. Pedosphere 2015, 25, 428–437. [Google Scholar] [CrossRef]
- Odongo, N.E.; Hyoung-Ho, K.; Choi, H.-C.; van Straaten, P.; McBride, B.W.; Romney, D.L. Improving rock phosphate availability through feeding, mixing and processing with composting manure. Bioresour. Technol. 2007, 98, 2911–2918. [Google Scholar] [CrossRef]
- Vassilev, N.; Vassileva, M.; Azcón, R.; Medina, A. Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarowia lipolytica. Biotechnol. Lett. 2001, 23, 907–909. [Google Scholar] [CrossRef]
- Singh, H.; Reddy, M.S. Effect of inoculation with phosphate solubilizing fungus on growth and nutrient uptake of wheat and maize plants fertilized with rock phosphate in alkaline soils. Eur. J. Soil Biol. 2011, 47, 30–34. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhang, Z.; Ma, T.; Zhang, X.; Wang, R.; Liu, Y.; Sun, B.; Xu, T.; Ding, G.; Wei, Y.; et al. Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting. Bioresour. Technol. 2021, 337, 125433. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.; Saunders, W.; Rajan, S. Phosphorus Nutrition of Pasture Species: Phosphorus Requirement and Root Saturation Values. Soil Sci. Soc. Am. J. 1986, 50, 38–52. [Google Scholar] [CrossRef]
- Rajan, S.; Watkinson, J.; Sinclair, A. Phosphate Rocks for Direct Application to Soils. Advances in Agronomy 1996, 57, 77–159. [Google Scholar] [CrossRef]
- Nishanth, D.; Biswas, D. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresour. Technol. 2008, 99, 3342–3353. [Google Scholar] [CrossRef]
- Yadav, H.; Fatima, R.; Sharma, A.; Mathur, S. Enhancement of applicability of rock phosphate in alkaline soils by organic compost. Appl. Soil Ecol. 2017, 113, 80–85. [Google Scholar] [CrossRef]
- Baligar, V.C.; Fageria, N.K.; He, Z.L. Nutrient Use Efficiency in Plants. Commun. Soil Sci. Plant Anal. 2001, 32, 921–950. [Google Scholar] [CrossRef]
- Hocking, P.J.; Keerthisinghe, G.; Smith, F.W.; Randall, P.J. Comparison of the ability of different crop species to access poorly-available soil phosphorus. In Plant Nutrition for Sustainable Food Production and Environment, Proceedings of the XIII International Plant Nutrition Colloquium, Tokyo, Japan, 13–19 September 1997; Springer: Berlin/Heidelberg, Germany, 1997; pp. 305–308. [Google Scholar] [CrossRef]
- Silva, U.C.; Medeiros, J.D.; Leite, L.R.; Morais, D.K.; Cuadros-Orellana, S.; Oliveira, C.A.; de Paula Lana, U.G.; Gomes, E.A.; Dos Santos, V.L. Long-Term Rock Phosphate Fertilization Impacts the Microbial Communities of Maize Rhizosphere. Front. Microbiol. 2017, 8, 1266. [Google Scholar] [CrossRef]
- Nakamura, S.; Fukuda, M.; Nagumo, F.; Tobita, S. Potential Utilization of Local Phosphate Rocks to Enhance Rice Production in Sub-Saharan Africa. Jpn. Agric. Res. Q. JARQ 2013, 47, 353–363. [Google Scholar] [CrossRef]
- Kamh, M.; Horst, W.J.; Amer, F.; Mostafa, H.; Maier, P. Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil 1999, 211, 19–27. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Diels, J.; Sanginga, N.; Carsky, R.; Deckers, J.; Merckx, R. Utilization of rock phosphate by crops on a representative toposequence in the Northern Guinea savanna zone of Nigeria: Response by maize to previous herbaceous legume cropping and rock phosphate treatments. Soil Biol. Biochem. 2000, 32, 2079–2090. [Google Scholar] [CrossRef]
- Montenegro, A.; Zapata, F. Rape genotypic differences in P uptake and utilization from phosphate rocks in an Andisol of Chile. Nutr. Cycl. Agroecosyst. 2002, 63, 27–33. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Luan, M.; Wang, Y.; Zhang, C.; Zhang, B.; Shi, J.; Zhao, F.-G.; Lan, W.; Luan, S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, E6571–E6578. [Google Scholar] [CrossRef]
- El-Halim, A.A.A.; Omae, H. Examination of nanoparticulate phosphate rock as both a liming agent and phosphorus source to enhance the growth of spinach in acid soil. Soil Sci. Plant Nutr. 2019, 65, 386–392. [Google Scholar] [CrossRef]
- Rajan, S.; Upsdell, M.P. Environmentally friendly agronomically superior alternatives to chemically processed phosphate fertilizers: Phosphate rock/sulfur/Acidithiobacillus sp. combinations. Adv. Agron. 2021, 167, 183–245. [Google Scholar] [CrossRef]
- Mussarat, M.; Ali, H.; Muhammad, D.; Mian, I.A.; Khan, S.; Adnan, M.; Fahad, S.; Wahid, F.; Dawar, K.; Ali, S.; et al. Comparing the phosphorus use efficiency of pre-treated (organically) rock phosphate with soluble P fertilizers in maize under calcareous soils. PeerJ 2021, 9, e11452. [Google Scholar] [CrossRef]
- SanthoshKumar, V.C. Suitability of Tunisia Rock Phosphate for Direct Application in Acid Rice Soils of Kerala. Ph.D. Dissertation, Department of Soil Science and Agricultural Chemistry, College of Horticulture, Kerala, India, 1997. [Google Scholar]
- Cicek, H.; Bhullar, G.S.; Mandloi, L.S.; Andres, C.; Riar, A.S. Partial Acidulation of Rock Phosphate for Increased Productivity in Organic and Smallholder Farming. Sustainability 2020, 12, 607. [Google Scholar] [CrossRef]
- Hellal, F.; El-Sayed, S.; Zewainy, R.; Amer, A. Importance of phosphate pock application for sustaining agricultural production in Egypt. Bull. Natl. Res. Cent. 2019, 43, 11. [Google Scholar] [CrossRef]
- Nordengren, S. New theories of phosphate reactions in the soil. Fert Feed. Stuffs J. 1957, 47, 345–352. [Google Scholar]
- Huang, L.; Mao, X.-Y.; Wang, J.; Chen, X.; Wang, G.-H.; Liao, Z.-W. The effect and mechanism of improved efficiency of physicochemical pro-release treatment for low grade phosphate rock. J. Soil Sci. Plant Nutr. 2014, 14, 316–331. [Google Scholar] [CrossRef]
- Ahmad, M.; Ghoneim, A.; Al-Oud, S.S.; Alotaibi, K.D.; Nadeem, M. Acidulated activation of phosphate rock enhances release, lateral transport and uptake of phosphorus and trace metals upon direct-soil application. Soil Sci. Plant Nutr. 2019, 65, 183–195. [Google Scholar] [CrossRef]
- Arora, N.K. Agricultural sustainability and food security. Environ. Sustain. 2018, 1, 217–219. [Google Scholar] [CrossRef]
- Meya, A.I.; Ndakidemi, P.A.; Mtei, K.M.; Swennen, R.; Merckx, R. Optimizing Soil Fertility Management Strategies to Enhance Banana Production in Volcanic Soils of the Northern Highlands, Tanzania. Agronomy 2020, 10, 289. [Google Scholar] [CrossRef]
- Stewart, Z.P.; Pierzynski, G.M.; Middendorf, B.J.; Prasad, P.V.V. Approaches to improve soil fertility in sub-Saharan Africa. J. Exp. Bot. 2020, 71, 632–641. [Google Scholar] [CrossRef]
- Guo, L.; Wu, G.; Li, Y.; Li, C.; Liu, W.; Meng, J.; Liu, H.; Yu, X.; Jiang, G. Effects of cattle manure compost combined with mineral fertilizer on topsoil organic matter, bulk density and earthworm activity in a wheat-maize rotation system in Eastern China. Soil Tillage Res. 2016, 156, 140–147. [Google Scholar] [CrossRef]
- Geng, Y.; Cao, G.; Wang, L.; Wang, S. Effects of equal chemical fertilizer substitutions with organic manure on yield, dry matter, and nitrogen uptake of spring maize and soil nitrogen distribution. PLoS ONE 2019, 14, e0219512. [Google Scholar] [CrossRef]
- Martínez, J.M.; Galantini, J.A.; Duval, M.E.; López, F.M. Soil quality assessment based on soil organic matter pools under long-term tillage systems and following tillage conversion in a semi-humid region. Soil Use Manag. 2020, 36, 400–409. [Google Scholar] [CrossRef]
- Zhao, Y.; Yan, Z.; Qin, J.; Xiao, Z. Effects of long-term cattle manure application on soil properties and soil heavy metals in corn seed production in Northwest China. Environ. Sci. Pollut. Res. 2014, 21, 7586–7595. [Google Scholar] [CrossRef]
- Blouin, M.; Barrere, J.; Meyer, N.; Lartigue, S.; Barot, S.; Mathieu, J. Vermicompost significantly affects plant growth. A meta-analysis. Agron. Sustain. Dev. 2019, 39, 34. [Google Scholar] [CrossRef]
- Yang, X.; Chen, X.; Yang, X. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil Tillage Res. 2019, 187, 85–91. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Q.; Gao, H.; Zhang, R.; Yang, L.; Guo, Y.; Li, H.; Awasthi, M.K.; Li, G. Long-term cover crops improved soil phosphorus availability in a rain-fed apple orchard. Chemosphere 2021, 275, 130093. [Google Scholar] [CrossRef]
- Yu, W.; Ding, X.; Xue, S.; Li, S.; Liao, X.; Wang, R. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. J. Soil Sci. Plant Nutr. 2013, 13, 1003–1017. [Google Scholar] [CrossRef]
- Khoshru, B.; Moharramnejad, S.; Gharajeh, N.H.; Lajayer, B.A.; Ghorbanpour, M. Plant Microbiome and Its Important in Stressful Agriculture. In Plant Microbiome Paradigm; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 13–48. [Google Scholar] [CrossRef]
- Khoshru, B.; Mitra, D.; Joshi, K.; Adhikari, P.; Rion, S.I.; Fadiji, A.E.; Alizadeh, M.; Priyadarshini, A.; Senapati, A.; Sarikhani, M.R.; et al. Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants. Heliyon 2023, 128, 169–182. [Google Scholar] [CrossRef]
- Zhao, X.R.; Lin, Q.M. A review of phosphate-dissolving microorganisms. Soil Fertil. 2001, 3, 7–11. [Google Scholar]
- Whitelaw, M.A. Growth Promotion of Plants Inoculated with Phosphate-Solubilizing Fungi. Adv. Agron. 1999, 69, 99–151. [Google Scholar] [CrossRef]
- Mitra, D.; Saritha, B.; Janeeshma, E.; Gusain, P.; Khoshru, B.; Nouh, F.A.A.; Rani, A.; Olatunbosun, A.N.; Ruparelia, J.; Rabari, A.; et al. Arbuscular mycorrhizal fungal association boosted the arsenic resistance in crops with special responsiveness to rice plant. Environ. Exp. Bot. 2022, 193, 104681. [Google Scholar] [CrossRef]
- Jacobs, H.; Boswell, G.P.; Ritz, K.; Davidson, F.A.; Gadd, G.M. Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol. Ecol. 2002, 40, 65–71. [Google Scholar] [CrossRef]
- Duponnois, R.; Kisa, M.; Plenchette, C. Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J. Plant Nutr. Soil Sci. 2006, 169, 280–282. [Google Scholar] [CrossRef]
- Gunes, A.; Pilbeam, D.J.; Inal, A. Effect of arsenic–phosphorus interaction on arsenic-induced oxidative stress in chickpea plants. Plant Soil 2009, 314, 211–220. [Google Scholar] [CrossRef]
- De Andrade, S.A.L.; Borghi, A.A.; De Oliveira, V.H.; Gouveia, L.D.M.; Martins, A.P.I.; Mazzafera, P. Phosphorus Shortage Induces an Increase in Root Exudation in Fifteen Eucalypts Species. Agronomy 2022, 12, 2041. [Google Scholar] [CrossRef]
- Rashmi, I.; Roy, T.; Kartika, K.S.; Pal, R.; Coumar, V.; Kala, S.; Shinoji, K.C. Organic and inorganic fertilizer contaminants in agriculture: Impact on soil and water resources. In Contaminants in Agriculture: Sources, Impacts and Management; Naeem, M., Ansari, A., Gill, S., Eds.; Springer: Cham, Switzerland, 2020; pp. 3–41. [Google Scholar]
- Hamdali, H.; Bouizgarne, B.; Hafidi, M.; Lebrihi, A.; Virolle, M.J.; Ouhdouch, Y. Screening for rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl. Soil Ecol. 2008, 38, 12–19. [Google Scholar] [CrossRef]
- Hamdali, H.; Hafidi, M.; Virolle, M.J.; Ouhdouch, Y. Growth promotion and protection against damping-off of wheat by two rock phosphate solubilizing actinomycetes in a P-deficient soil under greenhouse conditions. Appl. Soil Ecol. 2008, 40, 510–517. [Google Scholar] [CrossRef]
- Satyaprakash, M.; Nikitha, T.; Reddi, E.U.B.; Sadhana, B.; Vani, S.S. Phosphorous and Phosphate Solubilising Bacteria and their Role in Plant Nutrition. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 2133–2144. [Google Scholar] [CrossRef]
- Khoshru, B.; Sarikhani, M.R.; Reyhanitabar, A.; Oustan, S.; Malboobi, M.A. Evaluation of the Ability of Rhizobacterial Isolates to Solubilize Sparingly Soluble Iron Under In-vitro Conditions. Geomicrobiol. J. 2022, 39, 804–815. [Google Scholar] [CrossRef]
- Khan, M.S.; Zaidi, A.; Wani, P.A. Role of Phosphate Solubilizing Microorganisms in Sustainable Agriculture—A Review. Sustain. Agric. 2009, 551–570. [Google Scholar] [CrossRef]
- Rodrıguez, H.; Fraga, R. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Mahidi, S.S.; Hassan, G.I.; Hussain, A.; Rasool, F. Phosphorus availability issue—Its fixation and role of phosphate solubilizing bacteria in phosphate solubilization—Case study. Agric. Sci. Res. J. 2011, 2, 174–179. [Google Scholar]
- Yousefi, A.A.; Khavazi, K.; Moezi, A.A.; Rejali, F.; Nadian, H.A. Phosphate solubilizing bacteria and arbuscular mycorrhizal fungi impacts on inorganic phosphorus fractions and wheat growth. World Appl. Sci. J. 2011, 15, 1310–1318. [Google Scholar]
- Kumar, A.; Kumar, A.; Patel, H. Role of Microbes in Phosphorus Availability and Acquisition by Plants. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1344–1347. [Google Scholar] [CrossRef]
- Aseri, G.K.; Jain, N.; Tarafdar, J.C. Hydrolysis of organic phosphate forms by phosphatases and phytase producing fungi of arid and semi-arid soils of India. Am. Eurasian J. Agric. Environ. Sci. 2009, 5, 564–570. [Google Scholar]
- Tarafdar, J.C. Efficiency of some phosphatase producing soil-fungi. Indian J. Microbiol. 2003, 43, 27–32. [Google Scholar]
- Stevenson, F.J.; Cole, M.A. The phosphorus cycle. In Cycles of Soils: Carbon, Nitrogen, Phosphorus Sulfur, Micronutrients, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1999. [Google Scholar]
- Pierzynski, G.M.; Sims, J.T.; Vance, F.G. Soil phosphorus and environmental quality. In Soils and Environmental Quality, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Parentoni, S.N.; Júnior, C.L.D.S. Phosphorus acquisition and internal utilization efficiency in tropical maize genotypes. Pesqui. Agropecu. Bras. 2008, 43, 893–901. [Google Scholar] [CrossRef]
- Kumar, P.; Thakur, S.; Dhingra, G.; Singh, A.; Pal, M.K.; Harshvardhan, K.; Dubey, R.; Maheshwari, D. Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatal. Agric. Biotechnol. 2018, 15, 264–269. [Google Scholar] [CrossRef]
- Kumar, R.; Shastri, B. Role of Phosphate-Solubilising Microorganisms in Sustainable Agricultural Development. In Agro-Environmental Sustainability: Volume 1: Managing Crop Health; Springer International Publishing: Cham, Switzerland, 2017; pp. 271–303. [Google Scholar] [CrossRef]
- Zhu, F.; Qu, L.; Hong, X.; Sun, X. Isolation and Characterization of a Phosphate-Solubilizing Halophilic Bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the Coast of Yellow Sea of China. Evid.-Based Complement. Altern. Med. 2011, 2011, 615032. [Google Scholar] [CrossRef]
- White, C.; Sayer, J.; Gadd, G. Microbial solubilization and immobilization of toxic metals: Key biogeochemical processes for treatment of contamination. FEMS Microbiol. Rev. 1997, 20, 503–516. [Google Scholar] [CrossRef]
- Timofeeva, A.; Galyamova, M.; Sedykh, S. Prospects for Using Phosphate-Solubilizing Microorganisms as Natural Fertilizers in Agriculture. Plants 2022, 11, 2119. [Google Scholar] [CrossRef]
- Rosado; Azevedo, D.; Cruz, D.; Elsas, V. Seldin Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J. Appl. Microbiol. 1998, 84, 216–226. [Google Scholar] [CrossRef]
- Nahas, E. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microbiol. Biotechnol. 1996, 12, 567–572. [Google Scholar] [CrossRef]
- Nautiyal, C.; Bhadauria, S.; Kumar, P.; Lal, H.; Mondal, R.; Verma, D. Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol. Lett. 2000, 182, 291–296. [Google Scholar] [CrossRef]
- Johri, J.K.; Surange, S.; Nautiyal, C.S. Occurrence of Salt, pH, and Temperature-tolerant, Phosphate-solubilizing Bacteria in Alkaline Soils. Curr. Microbiol. 1999, 39, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.A.; Zalba, P.; Gómez, M.A.; Sagardoy, M.A. Phosphate-solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions. Biol. Fertil. Soils 2007, 43, 805–809. [Google Scholar] [CrossRef]
- Seshachala, U.; Tallapragada, P. Phosphate Solubilizers from the Rhizospher of Piper nigrum L. in Karnataka, India. Chil. J. Agric. Res. 2012, 72, 397–403. [Google Scholar] [CrossRef]
- Reddy, K.R.; Patrick, W.H., Jr.; Nelson, D.W.; Elrick, D.E.; Tanji, K.K. Effects of Aeration on Reactivity and Mobility of Soil Constituents. Chem. Mobil. React. Soil Syst. 1983, 11, 11–33. [Google Scholar] [CrossRef]
- Xu, J.-C.; Huang, L.-M.; Chen, C.; Wang, J.; Long, X.-X. Effective lead immobilization by phosphate rock solubilization mediated by phosphate rock amendment and phosphate solubilizing bacteria. Chemosphere 2019, 237, 124540. [Google Scholar] [CrossRef]
- Barazetti, A.R.; Simionato, A.S.; Navarro, M.O.P.; dos Santos, I.M.O.; Modolon, F.; Andreata, M.F.D.L.; Liuti, G.; Cely, M.V.T.; Chryssafidis, A.L.; Dealis, M.L.; et al. Formulations of arbuscular mycorrhizal fungi inoculum applied to soybean and corn plants under controlled and field conditions. Appl. Soil Ecol. 2019, 142, 25–33. [Google Scholar] [CrossRef]
- De Amaral Leite, A.; de Souza Cardoso, A.A.; de Almeida Leite, R.; De Oliveira-Longatti, S.M.; Lustosa Filho, J.F.; de Souza Moreira, F.M.; Melo, L.C.A. Selected bacterial strains enhance phosphorus availability from biochar-based rock phosphate fertilizer. Ann. Microbiol. 2020, 70, 6. [Google Scholar] [CrossRef]
- Khan, K.; Sharif, M.; Azeem, I.; Ibadullah; Khan, A.A.; Ali, S.; Khan, I.; Khan, A. Phosphorus Solubility from Rock Phosphate Mixed Compost with Sulphur Application and Its Effect on Yield and Phosphorus Uptake of Wheat Crop. Open J. Soil Sci. 2017, 7, 401–429. [Google Scholar] [CrossRef]
- Biswas, J.K.; Banerjee, A.; Rai, M.; Naidu, R.; Biswas, B.; Vithanage, M.; Dash, M.C.; Sarkar, S.K.; Meers, E. Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma 2018, 330, 117–124. [Google Scholar] [CrossRef]
Type of Minerals | MgO (%) | CaO (%) | P2O5 (%) | Country |
---|---|---|---|---|
A, Q | 0.37 | 48 | 29–33 | America |
A, C, D, F, M | 0.95–3.93 | 31–35 | 19–36 | China |
A, D | 0.27–2.24 | 44–52 | 27–33 | Morocco |
A, Q, M | 0.32 | 24.7 | 15 | Russia |
A, C, D, Q | 0.45–1.28 | 47–50 | 29–30 | Tunisia |
A, C, Q | 0.23–0.3 | 47–50 | 30–32 | Jordan |
A, Q, K, M | 0.21–12.7 | 27–31 | 18–37 | Brazil |
A | 0.44–1.5 | 52–54 | 36–40 | East Africa |
A, C, Q | 0.06 | 50.1 | 35.5 | Senegal |
A, Q, K | 0.1–0.29 | 39–50 | 28–36 | Togo |
A, C, Q | 0.11–0.35 | 14–52 | 11–36 | Nigeria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoshru, B.; Nosratabad, A.F.; Mitra, D.; Chaithra, M.; Danesh, Y.R.; Boyno, G.; Chattaraj, S.; Priyadarshini, A.; Anđelković, S.; Pellegrini, M.; et al. Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production. Bacteria 2023, 2, 98-115. https://doi.org/10.3390/bacteria2020008
Khoshru B, Nosratabad AF, Mitra D, Chaithra M, Danesh YR, Boyno G, Chattaraj S, Priyadarshini A, Anđelković S, Pellegrini M, et al. Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production. Bacteria. 2023; 2(2):98-115. https://doi.org/10.3390/bacteria2020008
Chicago/Turabian StyleKhoshru, Bahman, Alireza Fallah Nosratabad, Debasis Mitra, Manju Chaithra, Younes Rezaee Danesh, Gökhan Boyno, Sourav Chattaraj, Ankita Priyadarshini, Snežana Anđelković, Marika Pellegrini, and et al. 2023. "Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production" Bacteria 2, no. 2: 98-115. https://doi.org/10.3390/bacteria2020008
APA StyleKhoshru, B., Nosratabad, A. F., Mitra, D., Chaithra, M., Danesh, Y. R., Boyno, G., Chattaraj, S., Priyadarshini, A., Anđelković, S., Pellegrini, M., Guerra-Sierra, B. E., & Sinha, S. (2023). Rock Phosphate Solubilizing Potential of Soil Microorganisms: Advances in Sustainable Crop Production. Bacteria, 2(2), 98-115. https://doi.org/10.3390/bacteria2020008