Stem Cell-Derived Organoids, Embryoids, and Embryos: Advances in Organismic Development In Vitro Force Us to Re-Focus on Ethical and Legal Aspects of Model Choice
Abstract
:1. Introduction
2. A Recent Discussion about Ethical Guidelines and the Term “Embryo”
3. Embryoids and Organoids vs. Embryos
“The zygote which has been formed by the fusion of a male and female gamete is a single-celled organism. After a longer or shorter period this unicellular organism will become progressively transformed by the processes of cell division, cell migration, growth and differentiation into a multicellular mature member of its species. The term development is used to describe these progressive changes”.
An embryo is a biological system possessing the active potential to develop into an organism (totipotency). To realize its developmental potential, the embryo needs appropriate external conditions that are permissive, but it does not need specific morphogenetic instructions from the outside (i.e., it possesses active potentiality, developmental autonomy).
4. How to Avoid the Ethical Problem of Organismic Development in Stem Cell Research Practice
Funding
Conflicts of Interest
References
- Niethammer, M.; Burgdorf, T.; Wistorf, E.; Schönfelder, G.; Kleinsorge, M. In vitro models of human development and their potential application in developmental toxicity testing. Development 2022, 149, dev200933. [Google Scholar] [CrossRef]
- Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597. [Google Scholar] [CrossRef] [PubMed]
- Holloway, E.M.; Capeling, M.M.; Spence, J.R. Biologically inspired approaches to enhance human organoid complexity. Development 2019, 146, dev166173. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Lee, Y.S.; Oh, S.R.; Jeong, J.; Lee, D.H.; So, K.H.; Hwang, N.S. Recent advances in endocrine organoids for therapeutic application. Adv. Drug. Deliv. Rev. 2023, 199, 114959. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Koo, B.K.; Knoblich, J.A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell. Biol. 2020, 21, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.F.; Yang, X.; Lan, H.R.; Fang, X.L.; Chen, X.Y.; Jin, K.T. Preclinical tumor organoid models in personalized cancer therapy: Not Everyone Fits the Mold. Exp. Cell Res. 2021, 408, 112858. [Google Scholar] [CrossRef]
- Corsini, N.S.; Knoblich, J.A. Human organoids: New strategies and methods for analyzing human development and disease. Cell 2022, 185, P2756–P2769. [Google Scholar] [CrossRef]
- Adegunsoye, A.; Gonzales, N.M.; Gilad, Y. Induced Pluripotent Stem Cells in Disease Biology and the Evidence for Their In Vitro Utility. Ann. Rev. Genet. 2023, 57, 341–360. [Google Scholar] [CrossRef]
- Wu, Y.; Ye, W.; Gao, Y.; Yi, Z.; Chen, Z.; Qu, C.; Huang, J.; Liu, F.; Liu, Z. Application of organoids in regenerative medicine. Stem Cells 2023, sxad072. [Google Scholar] [CrossRef]
- Rivron, N.C.; Martinez-Arias, A.; Pera, M.F.; Moris, N.; Ismaili M’hamdi, H. An ethical framework for human embryology with embryo models. Cell 2023, 186, 3548–3557. [Google Scholar] [CrossRef]
- Rossant, J.; Fu, J. Why researchers should use human embryo models with caution. Nature 2023, 622, 454–456. [Google Scholar] [CrossRef]
- Boiani, M.; Duncan, F.E.; MHR-ISSCR Guidelines Working Group. A reproductive science perspective: Deliberations on the stem cell guidelines update. Mol. Hum. Reprod. 2022, 28, gaac008. [Google Scholar] [CrossRef] [PubMed]
- Denker, H.-W. Autonomy in the Development of Stem Cell-Derived Embryoids: Sprouting Blastocyst-Like Cysts, and Ethical Implications. Cells 2021, 10, 1461. [Google Scholar] [CrossRef] [PubMed]
- Denker, H.-W. Stem cell terminology and ‘synthetic’ embryos: A new debate on totipotency, omnipotency, and pluripotency and how it relates to recent experimental data. Cells Tissues Organs 2014, 199, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Lovell-Badge, R.; Anthony, E.; Barker, R.A.; Bubela, T.; Brivanlou, A.H.; Carpenter, M.; Charo, R.A.; Clark, A.; Clayton, E.; Cong, Y.; et al. ISSCR Guidelines for Stem Cell Research and Clinical Translation: The 2021 update. Stem Cell Rep. 2021, 16, 1398–1408. [Google Scholar] [CrossRef] [PubMed]
- Rossant, J.; Tam, P.P.L. Opportunities and Challenges with Stem Cell-Based Embryo Models. Stem Cell Rep. 2021, 16, 1031–1038. [Google Scholar] [CrossRef] [PubMed]
- Amadei, G.; Handford, C.E.; Qiu, C.; De Jonghe, J.; Greenfeld, H.; Tran, M.; Martin, B.K.; Chen, D.Y.; Aguilera-Castrejon, A.; Hanna, J.H.; et al. Embryo model completes gastrulation to neurulation and organogenesis. Nature 2022, 610, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Rossant, J.; Tam, P.P.L. Early human embryonic development: Blastocyst formation to gastrulation. Dev. Cell 2022, 57, 152–165. [Google Scholar] [CrossRef]
- Aguilera-Castrejon, A.; Oldak, B.; Shani, T.; Ghanem, N.; Itzkovich, C.; Slomovich, S.; Tarazi, S.; Bayerl, J.; Chugaeva, V.; Ayyash, M.; et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 2021, 593, 119–124. [Google Scholar] [CrossRef]
- Tarazi, S.; Aguilera-Castrejon, A.; Joubran, C.; Ghanem, N.; Ashouokhi, S.; Roncato, F.; Wildschutz, E.; Haddad, M.; Oldak, B.; Gomez-Cesar, E.; et al. Post-Gastrulation Synthetic Embryos Generated Ex Utero from Mouse Naïve ESCs. Cell 2022, 185, 3290–3306.e25. [Google Scholar] [CrossRef]
- Abel, A.; Sozen, B. Shifting early embryology paradigms: Applications of stem cell-based embryo models in bioengineering. Curr. Opin. Genet. Dev. 2023, 81, 102069. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, E.; Blau, H.; Chien, K.; Lancaster, M.A.; Tata, P.R.; Trompouki, E.; Watt, F.M.; Zeng, Y.A.; Zernicka-Goetz, M. Progress and challenges in stem cell biology. Nat. Cell. Biol. 2023, 25, 203–206. [Google Scholar] [CrossRef] [PubMed]
- De Santis, R.; Rice, E.; Croft, G.; Yang, M.; Rosado-Olivieri, E.A.; Brivanlou, A.H. The emergence of human gastrulation upon in vitro attachment. bioRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Handford, C.E.; Panda, P.; Mohammad Choudhury, I.B.; Amadei, G.; Zernicka-Goetz, M. Generation of Stem Cell-Based Mouse Embryo-Like Structures. In Methods in Molecular Biology; Springer: New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Nakatani, T.; Torres-Padilla, M.E. Regulation of mammalian totipotency: A molecular perspective from in vivo and in vitro studies. Curr. Opin. Genet. Dev. 2023, 81, 102083. [Google Scholar] [CrossRef]
- Oldak, B.; Wildschutz, E.; Bondarenko, V.; Aguilera-Castrejon, A.; Zhao, C.; Tarazi, S.; Comar, M.Y.; Ashouokhi, S.; Lokshtanov, D.; Roncato, F.; et al. Transgene-Free Ex Utero Derivation of A Human Post-Implantation Embryo Model Solely from Genetically Unmodified Naive PSCs. bioRxiv, 2023; preprint. [Google Scholar] [CrossRef]
- Pedroza, M.; Gassaloglu, S.I.; Dias, N.; Zhong, L.; Hou, T.J.; Kretzmer, H.; Smith, Z.D.; Sozen, B. Self-patterning of human stem cells into post-implantation lineages. Nature 2023, 622, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Tam, T.T.K.K.; Xu, S.; Liu, P.; De Los Angeles, A. Dawn of development: Exploring early human embryogenesis using stem cells. Cell Stem Cell 2023, 30, 1006–1007. [Google Scholar] [CrossRef]
- Weatherbee, B.A.T.; Gantner, C.W.; Iwamoto-Stohl, L.K.; Daza, R.M.; Hamazaki, N.; Shendure, J.; Zernicka-Goetz, M. Pluripotent stem cell-derived model of the post-implantation human embryo. Nature 2023, 622, 584–593. [Google Scholar] [CrossRef]
- Moris, N.; Sturmey, R. In preprints: Opportunities to unravel the earliest stages of human development using stem cell-based embryo models. Development 2023, 150, dev202295. [Google Scholar] [CrossRef]
- Karvas, R.M.; Zemke, J.E.; Ali, S.S.; Upton, E.; Sane, E.; Fischer, L.A.; Dong, C.; Park, K.M.; Wang, F.; Park, K.; et al. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 2023, 30, 1148–1165.e7. [Google Scholar] [CrossRef]
- Yu, L.; Logsdon, D.; Pinzon-Arteaga, C.A.; Duan, J.; Ezashi, T.; Wei, Y.; Ribeiro Orsi, A.E.; Oura, S.; Liu, L.; Wang, L.; et al. Large-scale production of human blastoids amenable to modeling blastocyst development and maternal-fetal cross talk. Cell Stem Cell 2023, 30, 1246–1261.e9. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.Y.C.; Rubinstein, H.; Gantner, C.W.; Hadas, R.; Amadei, G.; Stelzer, Y.; Zernicka-Goetz, M. Mouse embryo model derived exclusively from embryonic stem cells undergoes neurulation and heart development. Cell Stem Cell 2022, 29, 1445–1458.e8. [Google Scholar] [CrossRef] [PubMed]
- Aach, J.; Lunshof, J.; Iyer, E.; Church, G.M. Addressing the ethical issues raised by synthetic human entities with embryo-like features. eLife 2017, 6, e20674. [Google Scholar] [CrossRef]
- Veenvliet, J.V.; Lenne, P.F.; Turner, D.A.; Nachman, I.; Trivedi, V. Sculpting with stem cells: How models of embryo development take shape. Development 2021, 148, dev192914. [Google Scholar] [CrossRef] [PubMed]
- Iltis, A.S.; Koster, G.; Reeves, E.; Matthews, K.R.W. Ethical, legal, regulatory, and policy issues concerning embryoids: A systematic review of the literature. Stem Cell Res. Ther. 2023, 14, 209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Wang, W.; Zhang, L.; Zhang, J.; Sturmey, R.; Zhang, J. Dynamic metabolism during early mammalian embryogenesis. Development 2023, 150, dev202148. [Google Scholar] [CrossRef]
- Ferenc, J.; Ikmi, A. Nutritional control of developmental processes. Development 2023, 150, dev200623. [Google Scholar] [CrossRef]
- Kramer, A.C.; Jansson, T.; Bale, T.L.; Powell, T.L. Maternal-fetal cross-talk via the placenta: Influence on offspring development and metabolism. Development 2023, 150, dev202088. [Google Scholar] [CrossRef]
- Denker, H.-W. Self-Organization of Stem Cell Colonies and of Early Mammalian Embryos: Recent Experiments Shed New Light on the Role of Autonomy vs. External Instructions in Basic Body Plan Development. Cells 2016, 5, 39. [Google Scholar] [CrossRef]
- Jensen, K.B.; Little, M.H. Organoids are not organs: Sources of variation and misinformation in organoid biology. Stem Cell Rep. 2023, 18, 1255–1270. [Google Scholar] [CrossRef]
- Hamilton, W.J.; Mossman, H.W. Hamilton, Boyd and Mossman’s Human Embryology, 4th ed.; Macmillan Press Ltd.: London, UK, 1976; p. 1. [Google Scholar]
- Findlay, J.K.; Gear, M.L.; Illingworth, P.J.; Junk, S.M.; Kay, G.; Mackerras, A.H.; Pope, A.; Rothenfluh, H.S.; Wilton, L. Human embryo: A biological definition. Hum. Reprod. 2007, 22, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Blasimme, A.; Sugarman, J. Human stem cell-derived embryo models: Toward ethically appropriate regulations and policies. Cell Stem Cell 2023, 30, 1008–1012. [Google Scholar] [CrossRef] [PubMed]
- Seidel, F. Körpergrundgestalt und Keimstruktur. Eine Erörterung über die Grundlagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Überlegungen. Zoologischer Anzeiger 1960, 164, 245–305. [Google Scholar]
- Gilbert, S.F.; Sarkar, S. Embracing complexity: Organicism for the 21st century. Dev. Dyn. 2000, 219, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Denker, H.-W. Early human development: New data raise important embryological and ethical questions relevant for stem cell research. Naturwissenschaften 2004, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, H. Organizer and axes formation as a self-organizing process. Int. J. Dev. Biol. 2001, 45, 177–188. [Google Scholar] [PubMed]
- Meinhardt, H. Primary body axes of vertebrates: Generation of a near-Cartesian coordinate system and the role of Spemann-type organizer. Dev. Dyn. 2006, 235, 2907–2919. [Google Scholar] [CrossRef]
- Meinhardt, H. Turing’s theory of morphogenesis of 1952 and the subsequent discovery of the crucial role of local self-enhancement and long-range inhibition. Interface Focus 2012, 2, 407–416. [Google Scholar] [CrossRef]
- Denker, H.W. Potentiality of embryonic stem cells: An ethical problem even with alternative stem cell sources. J. Med. Ethics 2006, 32, 665–671. [Google Scholar] [CrossRef]
- Stier, M.; Schoene-Seifert, B. The argument from potentiality in the embryo protection debate: Finally “depotentialized”? Am. J. Bioeth. 2013, 13, 19–27. [Google Scholar] [CrossRef]
- Denker, H.-W. Induced pluripotent stem cells: How to deal with the developmental potential. Reprod. Biomed. Online 2009, 19 (Suppl. S1), 34–37. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, Z.; Liu, S.; Yagi, H.; Zhang, X.; Yocum, L.; Romero-Lopez, M.; Rhee, C.; Makarcyzk, M.J.; Yu, I.; et al. Human Mesenchymal Stem Cell-Derived Miniature Joint System for Disease Modeling and Drug Testing. Adv. Sci. 2022, 9, e2105909. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Vries, R.G.; Snippert, H.J.; van de Wetering, M.; Barker, N.; Stange, D.E.; van Es, J.H.; Abo, A.; Kujala, P.; Peters, P.J.; et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Ishiuchi, T.; Sakamoto, M. Molecular mechanisms underlying totipotency. Life Sci. Alliance 2023, 6, e202302225. [Google Scholar] [CrossRef]
- Denker, H.-W. Time to reconsider stem cell induction strategies. Cells 2012, 1, 1293–1312. [Google Scholar] [CrossRef]
- Denker, H.-W. A quest for re-focussing stem cell induction strategies: How to deal with ethical objections and patenting problems. In Innovative Strategies in Tissue Engineering; Prasad, M., Di Nardo, P., Eds.; River Publishers: Aalborg, Denmark, 2015; pp. 117–134. Available online: https://www.riverpublishers.com/dissertations_xml/9788793237100/9788793237100.xml (accessed on 30 November 2023).
- Li, J.; Zhu, Q.; Cao, J.; Liu, Y.; Lu, Y.; Sun, Y.; Li, Q.; Huang, Y.; Shang, S.; Bian, X.; et al. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023, 30, 362–377.e7. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Denker, H.-W. Stem Cell-Derived Organoids, Embryoids, and Embryos: Advances in Organismic Development In Vitro Force Us to Re-Focus on Ethical and Legal Aspects of Model Choice. Organoids 2023, 2, 231-238. https://doi.org/10.3390/organoids2040018
Denker H-W. Stem Cell-Derived Organoids, Embryoids, and Embryos: Advances in Organismic Development In Vitro Force Us to Re-Focus on Ethical and Legal Aspects of Model Choice. Organoids. 2023; 2(4):231-238. https://doi.org/10.3390/organoids2040018
Chicago/Turabian StyleDenker, Hans-Werner. 2023. "Stem Cell-Derived Organoids, Embryoids, and Embryos: Advances in Organismic Development In Vitro Force Us to Re-Focus on Ethical and Legal Aspects of Model Choice" Organoids 2, no. 4: 231-238. https://doi.org/10.3390/organoids2040018
APA StyleDenker, H. -W. (2023). Stem Cell-Derived Organoids, Embryoids, and Embryos: Advances in Organismic Development In Vitro Force Us to Re-Focus on Ethical and Legal Aspects of Model Choice. Organoids, 2(4), 231-238. https://doi.org/10.3390/organoids2040018