Modelling Meningioma Using Organoids: A Review of Methodologies and Applications
Abstract
:1. Meningioma
2. Organoid Applications
3. Organoid Culture Techniques
4. Differences between Organoids and Spheroids
5. Advantages and Limitations of Organoid Models
6. Organoids to Model Meningioma
7. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, C.P.; van der Werf, B.; Law, A.J.J.; Bok, A.; Curtis, M.A.; Dragunow, M. The epidemiology of patients undergoing meningioma resection in Auckland, New Zealand, 2002 to 2011. J. Clin. Neurosci. 2020, 80, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Baldi, I.; Engelhardt, J.; Bonnet, C.; Bauchet, L.; Berteaud, E.; Grüber, A.; Loiseau, H. Epidemiology of meningiomas. Neurochirurgie 2018, 64, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Buerki, R.A.; Horbinski, C.M.; Kruser, T.; Horowitz, P.M.; James, C.D.; Lukas, R.V. An overview of meningiomas. Future Oncol. 2018, 14, 2161–2177. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.R.; Wani, M.A.; Kirmani, A.R.; Ramzan, A.U. Histological-subtypes and anatomical location correlated in meningeal brain tumors (meningiomas). J. Neurosci. Rural Pract. 2014, 5, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, I.; Traylor, M.D.; Kuo, J.S. American Association of Neurological Surgeons. Meningiomas. Available online: https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Meningiomas (accessed on 3 July 2023).
- Derk, J.; Jones, H.E.; Como, C.; Pawlikowski, B.; Siegenthaler, J.A. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front. Cell. Neurosci. 2021, 15, 703944. [Google Scholar] [CrossRef]
- Dasgupta, K.; Jeong, J. Developmental biology of the meninges. Genesis 2019, 57, e23288. [Google Scholar] [CrossRef]
- Merlini, A.; Haberl, M.; Strauß, J.; Hildebrand, L.; Genc, N.; Franz, J.; Chilov, D.; Alitalo, K.; Flügel-Koch, C.; Stadelmann, C.; et al. Distinct roles of the meningeal layers in CNS autoimmunity. Nat. Neurosci. 2022, 25, 887–899. [Google Scholar] [CrossRef]
- Kalamarides, M.; O Stemmer-Rachamimov, A.; Niwa-Kawakita, M.; Chareyre, F.; Taranchon, E.; Han, Z.-Y.; Martinelli, C.; A Lusis, E.; Hegedus, B.; Gutmann, D.H.; et al. Identification of a progenitor cell of origin capable of generating diverse meningioma histological subtypes. Oncogene 2011, 30, 2333–2344. [Google Scholar] [CrossRef]
- Fountain, D.M.; Smith, M.J.; O’Leary, C.; Pathmanaban, O.N.; Roncaroli, F.; Bobola, N.; King, A.T.; Evans, D.G. The spatial phenotype of genotypically distinct meningiomas demonstrate potential implications of the embryology of the meninges. Oncogene 2021, 40, 875–884. [Google Scholar] [CrossRef]
- Delgado-López, P.D.; Cubo-Delgado, E.; González-Bernal, J.J.; Martín-Alonso, J. A Practical Overview on the Molecular Biology of Meningioma. Curr. Neurol. Neurosci. Rep. 2020, 20, 62. [Google Scholar] [CrossRef]
- Mehta, B.C.; Holman, D.W.; Grzybowski, D.M.; Chalmers, J.J. Characterization of arachnoidal cells cultured on three-dimensional nonwoven PET matrix. Tissue Eng. 2007, 13, 1269–1279. [Google Scholar] [CrossRef]
- Pećina-Šlaus, N.; Kafka, A.; Lechpammer, M. Molecular Genetics of Intracranial Meningiomas with Emphasis on Canonical Wnt Signalling. Cancers 2016, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Das, D.K. Psammoma body: A product of dystrophic calcification or of a biologically active process that aims at limiting the growth and spread of tumor? Diagn. Cytopathol. 2009, 37, 534–541. [Google Scholar] [CrossRef] [PubMed]
- Backer-Grøndahl, T.; Moen, B.H.; Torp, S.H. The histopathological spectrum of human meningiomas. Int. J. Clin. Exp. Pathol. 2012, 5, 231–242. [Google Scholar] [PubMed]
- Solomon, D.A.; Pekmezci, M. Pathology of meningiomas. In Handbook of Clinical Neurology; Elselvier: Amsterdam, Netherlands, 2020; pp. 87–99. [Google Scholar]
- Perry, A. Meningiomas. In Practical Surgical Neuropathology: A Diagnostic Approach; Perry, A., Brat, D.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 259–298. [Google Scholar]
- Smith, M.J.; Wallace, A.J.; Bennett, C.; Hasselblatt, M.; Elert-Dobkowska, E.; Evans, L.T.; Hickey, W.F.; van Hoff, J.; Bauer, D.; Lee, A.; et al. Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas. J. Pathol. 2014, 234, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Aavikko, M.; Li, S.-P.; Saarinen, S.; Alhopuro, P.; Kaasinen, E.; Morgunova, E.; Li, Y.; Vesanen, K.; Smith, M.J.; Evans, D.G.R.; et al. Loss of SUFU function in familial multiple meningioma. Am. J. Hum. Genet. 2012, 91, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Kijima, C.; Miyashita, T.; Suzuki, M.; Oka, H.; Fujii, K. Two cases of nevoid basal cell carcinoma syndrome associated with meningioma caused by a PTCH1 or SUFU germline mutation. Fam. Cancer 2012, 11, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.L.; Abedalthagafi, M.; Horowitz, P.; Agarwalla, P.K.; Mei, Y.; Aizer, A.A.; Brewster, R.; Dunn, G.P.; Al-Mefty, O.; Alexander, B.M.; et al. Genomic landscape of intracranial meningiomas. J. Neurosurg. 2016, 125, 525–535. [Google Scholar] [CrossRef]
- Ahronowitz, I.; Xin, W.; Kiely, R.; Sims, K.; MacCollin, M.; Nunes, F.P. Mutational spectrum of the NF2 gene: A meta-analysis of 12 years of research and diagnostic laboratory findings. Hum. Mutat. 2007, 28, 1–12. [Google Scholar] [CrossRef]
- Lomas, J.; Bello, M.J.; Arjona, D.; Alonso, M.E.; Martinez-Glez, V.; Lopez-Marin, I.; Amiñoso, C.; de Campos, J.M.; Isla, A.; Vaquero, J.; et al. Genetic and epigenetic alteration of the NF2 gene in sporadic meningiomas. Genes Chromosomes Cancer 2005, 42, 314–319. [Google Scholar] [CrossRef]
- Riemenschneider, M.J.; Perry, A.; Reifenberger, G. Histological classification and molecular genetics of meningiomas. Lancet Neurol. 2006, 5, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Ruttledge, M.H.; Sarrazin, J.; Rangaratnam, S.; Phelan, C.M.; Twist, E.; Merel, P.; Delattre, O.; Thomas, G.; Nordenskjöld, M.; Collins, V.P.; et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat. Genet. 1994, 6, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Jeng, K.S.; Sheen, I.S.; Leu, C.M.; Tseng, P.H.; Chang, C.F. The Role of Smoothened in Cancer. Int. J. Mol. Sci. 2020, 21, 6863. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.E.; Erson-Omay, E.Z.; Serin, A.; Yin, J.; Cotney, J.; Özduman, K.; Avşar, T.; Li, J.; Murray, P.B.; Henegariu, O.; et al. Genomic Analysis of Non- NF2 Meningiomas Reveals Mutations in TRAF7, KLF4, AKT1, and SMO. Science 2013, 339, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Fruman, D.A.; Chiu, H.; Hopkins, B.D.; Bagrodia, S.; Cantley, L.C.; Abraham, R.T. The PI3K Pathway in Human Disease. Cell 2017, 170, 605–635. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, K.; Smith, R.S.; Hsieh, C.M.; Sun, J.; Chao, J.; Liao, J.K. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates nitric oxide-induced endothelial cell migration and angiogenesis. Mol. Cell. Biol. 2003, 23, 5726–5737. [Google Scholar] [CrossRef] [PubMed]
- Ghaleb, A.M.; Yang, V.W. Krüppel-like factor 4 (KLF4): What we currently know. Gene 2017, 611, 27–37. [Google Scholar] [CrossRef]
- Bi, W.L.; Prabhu, V.C.; Dunn, I.F. High-grade meningiomas: Biology and implications. Neurosurg. Focus 2018, 44, E2. [Google Scholar] [CrossRef]
- Go, K.O.; Kim, Y.Z. Brain Invasion and Trends in Molecular Research on Meningioma. Brain Tumor Res. Treat. 2023, 11, 47. [Google Scholar] [CrossRef]
- Clark, V.E.; Harmancı, A.S.; Bai, H.; Youngblood, M.W.; Lee, T.I.; Baranoski, J.F.; Ercan-Sencicek, A.G.; Abraham, B.J.; Weintraub, A.S.; Hnisz, D.; et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat. Genet. 2016, 48, 1253–1259. [Google Scholar] [CrossRef]
- Yang, Q.; Zhao, J.; Chen, D.; Wang, Y. E3 ubiquitin ligases: Styles, structures and functions. Mol. Biomed. 2021, 2, 1–17. [Google Scholar] [CrossRef] [PubMed]
- NIH—National Library of Medicine. SMARCB1 SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin, Subfamily b, Member 1 [Homo Sapiens (Human)]. 2023. Available online: https://www.ncbi.nlm.nih.gov/gene/6598 (accessed on 6 October 2023).
- Schmitz, U.; Mueller, W.; Weber, M.; Sévenet, N.; Delattre, O.; von Deimling, A. INI1 mutations in meningiomas at a potential hotspot in exon 9. Br. J. Cancer 2001, 84, 199–201. [Google Scholar] [CrossRef] [PubMed]
- Hoopes, L. Hox Genes in Development: The Hox Code. 2008. Available online: https://www.nature.com/scitable/topicpage/hox-genes-in-development-the-hox-code-41402/ (accessed on 6 October 2023).
- Moussalem, C.; Massaad, E.; Minassian, G.B.; Ftouni, L.; Bsat, S.; El Houshiemy, M.N.; Alomari, S.; Sarieddine, R.; Kobeissy, F.; Omeis, I. Meningioma genomics: A therapeutic challenge for clinicians. J. Integr. Neurosci. 2021, 20, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, H.; Fong, J.; Alahari, S.K. NR4A Family Genes: A Review of Comprehensive Prognostic and Gene Expression Profile Analysis in Breast Cancer. Front. Oncol. 2022, 12, 777824. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Fan, F.; Wu, L.; Zhao, Y. The nuclear receptor 4A family members: Mediators in human disease and autophagy. Cell. Mol. Biol. Lett. 2020, 25, 48. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.M.; Montoya, G.; Wu, Y.; Eddy, R.L.; Byers, M.G.; Shows, T.B. The TCF8 gene encoding a zinc finger protein (Nil-2-a) resides on human chromosome 10p11.2. Genomics 1992, 14, 194–196. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.F.; Chuang, H.C.; Tan, T.H. Regulation of Dual-Specificity Phosphatase (DUSP) Ubiquitination and Protein Stability. Int. J. Mol. Sci. 2019, 20, 2668. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Tan, T.H. DUSPs, to MAP kinases and beyond. Cell Biosci. 2012, 2, 24. [Google Scholar] [CrossRef]
- Sayagués, J.M.; Tabernero, M.D.; Maíllo, A.; Trelles, O.; Espinosa, A.B.; Sarasquete, M.E.; Merino, M.; Rasillo, A.; Vera, J.F.; Santos-Briz, A.; et al. Microarray-Based Analysis of Spinal versus Intracranial Meningiomas: Different Clinical, Biological, and Genetic Characteristics Associated with Distinct Patterns of Gene Expression. J. Neuropathol. Exp. Neurol. 2006, 65, 445–454. [Google Scholar] [CrossRef]
- Achey, R.L.; Gittleman, H.; Schroer, J.; Khanna, V.; Kruchko, C.; Barnholtz-Sloan, J.S. Nonmalignant and malignant meningioma incidence and survival in the elderly, 2005-2015, using the Central Brain Tumor Registry of the United States. Neuro Oncol. 2019, 21, 380–391. [Google Scholar] [CrossRef]
- Maggio, I.; Franceschi, E.; Tosoni, A.; Di Nunno, V.; Gatto, L.; Lodi, R.; A Brandes, A. Meningioma: Not always a benign tumor. A review of advances in the treatment of meningiomas. CNS Oncol. 2021, 10, CNS72. [Google Scholar] [CrossRef] [PubMed]
- Muskens, I.S.; Wu, A.H.; Porcel, J.; Cheng, I.; Le Marchand, L.; Wiemels, J.L.; Setiawan, V.W. Body mass index, comorbidities, and hormonal factors in relation to meningioma in an ethnically diverse population: The Multiethnic Cohort. Neuro Oncol. 2019, 21, 498–507. [Google Scholar] [CrossRef] [PubMed]
- Wiemels, J.; Wrensch, M.; Claus, E.B. Epidemiology and etiology of meningioma. J. Neuro-Oncol. 2010, 99, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Lusis, E.A.; Scheithauer, B.W.; Yachnis, A.T.; Fischer, B.R.; Chicoine, M.R.; Paulus, W.; Perry, A. Meningiomas in pregnancy: A clinicopathologic study of 17 cases. Neurosurgery 2012, 71, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y.; Oku, Y.; Izumoto, S.; Go, J. Rapid Growth of a Meningioma during Pregnancy: Relationship with Estrogen and Progesterone Receptors. Neurol. Med. Chir. 1989, 29, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Agopiantz, M.; Carnot, M.; Denis, C.; Martin, E.; Gauchotte, G. Hormone Receptor Expression in Meningiomas: A Systematic Review. Cancers 2023, 15, 980. [Google Scholar] [CrossRef] [PubMed]
- Miyagishima, D.F.; Moliterno, J.; Claus, E.; Günel, M. Hormone therapies in meningioma-where are we? J. Neuro-Oncol. 2023, 161, 297–308. [Google Scholar] [CrossRef]
- Degeneffe, A.; De Maertelaer, V.; De Witte, O.; Lefranc, F. The Association Between Meningioma and Breast Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, E2318620. [Google Scholar] [CrossRef]
- Champeaux-Depond, C.; Weller, J.; Froelich, S.; Sartor, A. Cyproterone acetate and meningioma: A nationwide-wide population based study. J. Neurooncol. 2021, 151, 331–338. [Google Scholar] [CrossRef]
- Yamazaki, S.; Ohka, F.; Hirano, M.; Shiraki, Y.; Motomura, K.; Tanahashi, K.; Tsujiuchi, T.; Motomura, A.; Aoki, K.; Shinjo, K.; et al. Newly established patient-derived organoid model of intracranial meningioma. Neuro Oncol. 2021, 23, 1936–1948. [Google Scholar] [CrossRef]
- Corrò, C.; Novellasdemunt, L.; Li, V.S.W. A brief history of organoids. Am. J. Physiol.-Cell Physiol. 2020, 319, C151–C165. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Song, H.; Ming, G.L. Brain organoids: Advances, applications and challenges. Development 2019, 146, dev166074. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, K. Cancer research using organoid technology. J. Mol. Med. 2021, 99, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Berrio, M.; Castro, C.; Cañas, A.; Ortiz, I.; Osorio, M. Advances in Tumor Organoids for the Evaluation of Drugs: A Bibliographic Review. Pharmaceutics 2022, 14, 2709. [Google Scholar] [CrossRef] [PubMed]
- Gunti, S.; Hoke, A.T.K.; Vu, K.P.; London, N.R. Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers 2021, 13, 874. [Google Scholar] [CrossRef]
- Qian, X.; Nguyen, H.N.; Song, M.M.; Hadiono, C.; Ogden, S.C.; Hammack, C.; Yao, B.; Hamersky, G.R.; Jacob, F.; Zhong, C.; et al. Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell 2016, 165, 1238–1254. [Google Scholar] [CrossRef] [PubMed]
- Saorin, G.; Caligiuri, I.; Rizzolio, F. Microfluidic organoids-on-a-chip: The future of human models. Semin. Cell Dev. Biol. 2023, 144, 41–54. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Renner, M.; Martin, C.A.; Wenzel, D.; Bicknell, L.S.; Hurles, M.E.; Homfray, T.; Penninger, J.M.; Jackson, A.P.; Knoblich, J.A. Cerebral organoids model human brain development and microcephaly. Nature 2013, 501, 373–379. [Google Scholar] [CrossRef]
- Lancaster, M.A.; Knoblich, J.A. Generation of cerebral organoids from human pluripotent stem cells. Nat. Protoc. 2014, 9, 2329–2340. [Google Scholar] [CrossRef]
- Giandomenico, S.L.; Sutcliffe, M.; Lancaster, M.A. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development. Nat. Protoc. 2021, 16, 579–602. [Google Scholar] [CrossRef]
- Ashton, G.; Bernstein, N.; Buchner, J.; Chen, X.; Csányi, G.; Fowlie, A.; Feroz, F.; Griffiths, M.; Handley, W.; Habeck, M.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar]
- Białkowska, K.; Komorowski, P.; Bryszewska, M.; Miłowska, K. Spheroids as a type of three-dimensional cell cultures—Examples of methods of preparation and the most important application. Int. J. Mol. Sci. 2020, 21, 6225. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Xu, S.; Li, Y.; Shang, L.; Zhan, X.; Qin, C.; Su, J.; Zhao, Z.; He, Y.; Qin, L.; et al. Novel Human Meningioma Organoids Recapitulate the Aggressiveness of the Initiating Cell Subpopulations Identified by ScRNA-Seq. Adv. Sci. 2023, 10, 2205525. [Google Scholar] [CrossRef] [PubMed]
- Maritan, S.M.; Lian, E.Y.; Mulligan, L.M. An Efficient and Flexible Cell Aggregation Method for 3D Spheroid Production. J. Vis. Exp. 2017, 2017, e55544. [Google Scholar]
- Magill, S.T.; Vasudevan, H.N.; Seo, K.; Villanueva-Meyer, J.E.; Choudhury, A.; Liu, S.J.; Pekmezci, M.; Findakly, S.; Hilz, S.; Lastella, S.; et al. Multiplatform genomic profiling and magnetic resonance imaging identify mechanisms underlying intratumor heterogeneity in meningioma. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef]
- Matano, M.; Date, S.; Shimokawa, M.; Takano, A.; Fujii, M.; Ohta, Y.; Watanabe, T.; Kanai, T.; Sato, T. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 2015, 21, 256–262. [Google Scholar] [CrossRef]
- Puschhof, J.; Pleguezuelos-Manzano, C.; Clevers, H. Organoids and organs-on-chips: Insights into human gut-microbe interactions. Cell Host Microbe 2021, 29, 867–878. [Google Scholar] [CrossRef]
- Chan, H.S.C.; Ng, H.K.; Chan, A.K.-Y.; Cheng, S.H.; Chow, C.; Wong, N.; Wong, G.K.C. Establishment and characterization of meningioma patient-derived organoid. J. Clin. Neurosci. 2021, 94, 192–199. [Google Scholar] [CrossRef]
- Hofer, M.; Lutolf, M.P. Engineering organoids. Nat. Rev. Mater. 2021, 6, 402–420. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, N.; Liu, Y.C. An organoids biobank for recapitulating tumor heterogeneity and personalized medicine. Chin. J. Cancer Res. 2020, 32, 408–413. [Google Scholar] [CrossRef]
- Fan, H.; Demirci, U.; Chen, P. Emerging organoid models: Leaping forward in cancer research. J. Hematol. Oncol. 2019, 12, 142. [Google Scholar] [CrossRef] [PubMed]
- Jacob, F.; Salinas, R.D.; Zhang, D.Y.; Nguyen, P.T.; Schnoll, J.G.; Wong, S.Z.H.; Thokala, R.; Sheikh, S.; Saxena, D.; Prokop, S.; et al. A Patient-Derived Glioblastoma Organoid Model and Biobank Recapitulates Inter- and Intra-tumoral Heterogeneity. Cell 2020, 180, 188–204.e22. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Du, W.; Chen, X.; Zhang, Y. Organoid models of the tumor microenvironment and their applications. J. Cell. Mol. Med. 2021, 25, 5829–5841. Available online: https://onlinelibrary.wiley.com/doi/10.1111/jcmm.16578 (accessed on 3 August 2023). [CrossRef] [PubMed]
- Van der Valk, J. Fetal Bovine Serum (FBS): Past—Present—Future. ALTEX 2018, 35, 99–118. [Google Scholar] [CrossRef]
Gene | Function | Mutation Types | Changes | References |
---|---|---|---|---|
NF2 | Codes for the merlin protein that connects membrane proteins to the cytoskeleton | Point mutations, exon deletions, 22q LOH, monosomy 22 | Occur at various sites, especially exons 2, 6, 7, 8, 11 & 13; point mutations predominantly C>T and can occur throughout the gene | [10,21,22,23,24,25] |
KLF4 | Cell proliferation, growth and differentiation | Point mutation | K409Q | [27,30] |
AKT1 | Proto-oncogene encoding a serine-threonine kinase | Point mutation | E17K | [27,28,29] |
SMO | Member of Hedgehog signalling pathway | Point mutations | Various, including L412F & W535L | [26,27] |
TRAF7 | Encodes an E3 ubiquitin ligase | Point mutations | Numerous reported mutations, but many are located in the C-terminal WD40 domains | [27,34] |
SMARCB1 | Modifies chromatin structure to facilitate transcription | Frameshift, missense, 22q LOH, monosomy 22 | P48L; R368H; numerous mutations in exons 4, 7, 8 & 9, and intron 5 | [35,36] |
POLR2A | RNA polymerase II subunit | Inframe codon loss | 437-439 DLH/D | [31,32,33] |
SUFU | Member of Hedgehog signalling pathway | Point mutation | R123C | [19,20] |
Advantages | Limitations |
---|---|
Reproduce complex organisation of organs/tumours | No accurate reproduction of the microenvironment |
Recapitulates cell heterogeneity | No standardised protocols |
Maintain cell-cell contact | High use of resources |
Time-consuming | |
High number of applications: drug discovery, in-depth studies of diseases, biobank establishment, personalised treatments, among others | Use of animal-derived resources |
Low reproducibility |
Yamazaki et al. [55] | Chan et al. [73] | Huang et al. [68] |
---|---|---|
From IOMM-LEE cells and patient-derived tissue | From patient-derived tissue | From patient-derived tissue |
Single cells | Single cells | Pieces of tissue 1 mm3 |
Media: Neurobasal Medium, N-2, B-27, 50 ng/mL FGF and 50 ng/mL EGF | Media: DMEM, 10% FBS, 1% penicillin/streptomycin, 1× B-27, 1× N-2, 1% HEPES buffer, 1% glutamine, 20 ng/mL EGF, and 20 ng/mL FGF | Media: DMEM, 10% FBS, 1% Pen/Strep, 1× GlutaMax, 1× non-essential amino acids, and 0.25 uL/mL insulin |
Cells seeded in Matrigel | Cells seeded in Matrigel | Pieces seeded in Media |
11 Grade I, 4 Grade II and 1 Grade III | 4 Grade I and 1 Grade II | 12 Grade I and 4 Grade II. |
Studies: RNA interference, RT-PCR, Cell proliferation assay. | Studies: Cell viability assays, immunostaining and haematoxilin and eosin staining. | Studies: sc-RNA-seq, immunostaining, murine orthotopic xenograft model. (SULT1E1 subpopulation detected) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López Vásquez, C.E.; Gray, C.; Henry, C.; Munro, M.J. Modelling Meningioma Using Organoids: A Review of Methodologies and Applications. Organoids 2023, 2, 218-230. https://doi.org/10.3390/organoids2040017
López Vásquez CE, Gray C, Henry C, Munro MJ. Modelling Meningioma Using Organoids: A Review of Methodologies and Applications. Organoids. 2023; 2(4):218-230. https://doi.org/10.3390/organoids2040017
Chicago/Turabian StyleLópez Vásquez, Clara Elena, Clint Gray, Claire Henry, and Matthew J. Munro. 2023. "Modelling Meningioma Using Organoids: A Review of Methodologies and Applications" Organoids 2, no. 4: 218-230. https://doi.org/10.3390/organoids2040017
APA StyleLópez Vásquez, C. E., Gray, C., Henry, C., & Munro, M. J. (2023). Modelling Meningioma Using Organoids: A Review of Methodologies and Applications. Organoids, 2(4), 218-230. https://doi.org/10.3390/organoids2040017