Different Germination Strategies Displayed by Three Potamogeton Species: P. natans, P. lucens, and P. pectinatus
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Collection and Experimental Procedure
2.2. Statistical Analyses
3. Results
3.1. Germination
3.2. Viability
3.3. Time to Germination
4. Discussion
4.1. Germination and Seed Viability
4.2. Time to Germination
4.3. Conservation Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cronk, J.K.; Fennessy, M.S. Wetland Plants: Biology and Ecology; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Eckert, C.G.; Doken, M.E.; Barret, S.C.H. Ecological and evolutionary consequences of sexual and clonal reproduction in aquatic plants. Aquat. Bot. 2016, 135, 46–61. [Google Scholar] [CrossRef]
- Sculthorpe, C.D. The Biology of Aquatic Vascular Plants; Edward Arnold Ltd.: London, UK, 1967. [Google Scholar]
- Adamec, L. Ecophysiological characteristics of turions of aquatic plants: A review. Aquat. Bot. 2018, 148, 64–77. [Google Scholar] [CrossRef]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Hay, F.R.; Probert, R.J.; Marro, J.; Dawson, M. Towards the Ex Situ Conservation of Aquatic Angiosperms: A Review of Seed Storage Behaviour. In Seed Biology: Advances and Applications, Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, January 1999; Black, M., Bradford, K., Vazquez-Ramos, J., Eds.; CABI Publishing: Oxford, UK, 2000; pp. 161–177. [Google Scholar]
- Pammeter, N.W.; Berjak, P. A review of recalcitrant seed physiology in relation to desiccation-tolerance mechanisms. Seed Sci. Res. 1999, 9, 13–37. [Google Scholar] [CrossRef]
- Pammeter, N.W.; Berjak, P. Evolutionary and ecological aspects of recalcitrant seed biology. Seed Sci. Res. 2000, 10, 301–306. [Google Scholar] [CrossRef]
- Hay, F.R.; Probert, R.J.; Dawson, M. Laboratory germination of seeds from 10 British species of Potamogeton. Aquat. Bot. 2008, 88, 353–357. [Google Scholar] [CrossRef]
- Dudgeon, D.; Arthington, A.H.; Gessner, M.O.; Kawabata, Z.; Knowler, D.J.; Leveque, C.; Naiman, R.J.; Prieur-Richard, A.H.; Soto, D.; Stiassny, M.L.J.; et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 2006, 81, 163–182. [Google Scholar] [CrossRef]
- Davidson, N.C. Wetland Loss and the Status of Wetland-Dependent Species. In The Wetland Book: II. Distribution, Description, and Conservation; Finlayson, M., Milton, R., Prentice, C., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 369–381. [Google Scholar]
- Froend, R.H.; Horwitz, P.; Sommer, B. Groundwater Dependent Wetlands. In The Wetland Book: II. Distribution, Description, and Conservation; Finlayson, M., Milton, R., Prentice, C., Davidson, N., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 345–355. [Google Scholar]
- de Felipe, M.; Aragonés, D.; Díaz-Paniagua, C. Thirty-four years of Landsat monitoring reveal longterm effects of groundwater abstractions on a World Heritage Site wetland. Sci. Total Environ. 2023, 880, 163329. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Paniagua, C.; Ramírez-Soto, M.; Aragonés, D. Pond basin colonization by terrestrial vegetation indicates wetland deterioration. Aquat. Conserv. 2023, 33, 798–809. [Google Scholar] [CrossRef]
- García-Murillo, P.; Díaz-Paniagua, C.; Fernández-Zamudio, R. Decline of aquatic plants in an iconic European protected natural area. J. Nat. Conserv. 2025, 84, 126814. [Google Scholar] [CrossRef]
- García-Murillo, P.; Potamogeton, L. Flora Iberica; Castroviejo, S., Morales, R., Quintanar, A., Cabezas, F., Pujadas, A.J., Cirujano, S., Eds.; Real Jardín Botánico CSIC: Madrid, Spain, 2010; Volume 17, pp. 64–85. [Google Scholar]
- Wiegleb, G.; Kaplan, Z. An account of the species of Potamogeton L. (Potamogetonaceae). Folia Geobot. 1998, 33, 241–316. [Google Scholar] [CrossRef]
- Fernández-Zamudio, R.; García-Murillo, P.; Díaz-Paniagua, C. Physical and chemical features and water permanence determine aquatic plant distribution in a temporary pond network (Doñana National Park). Hydrobiologia 2016, 774, 123–135. [Google Scholar] [CrossRef]
- Díaz-Paniagua, C.; Fernandez-Zamudio, R.; Serrano, L.; Florencio, M.; Gómez-Rodríguez, C.; Sousa, A.; Sánchez Castillo, P.; García-Murillo, P.; Siljeström, P. El Sistema de Lagunas Temporales de Doñana, una Red de Hábitats Acuáticos Singulares. Organismo Autónomo de Parques Nacionales; Ministerio de Agricultura; Alimentación y Medio Ambiente: Madrid, Spain, 2015. [Google Scholar]
- Porter, R.; Durrell, M.; Romm, H. The use of 2,3,5-triphenyl-tetrazolium chlorid as a measure of seed germinability. Plant Physiol. 1947, 22, 149–159. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Fox, J.; Carvalho, M.S. The RcmdrPlugin.survival Package: Extending the R Commander Interface to Survival Analysis. J. Stat. Softw. 2012, 49, 1–32. [Google Scholar] [CrossRef]
- Pollux, B.J.A.; Jong, M.D.E.; Steegh, A.; Verbruggen, E.; Van Groenendael, J.M.; Ouborg, N.J. Reproductive strategy, clonal structure and genetic diversity in populations of the aquatic macrophyte Sparganium emersum in river systems. Mol. Ecol. 2007, 16, 313–325. [Google Scholar] [CrossRef]
- Okada, M.; Grewell, B.J.; Jasieniuk, M. Clonal spread of invasive Ludwigia hexapetala and L. grandiflora in freshwater wetlands of California. Aquat. Bot. 2009, 91, 123–129. [Google Scholar] [CrossRef]
- Wiegleb, G.; Brux, H.; Herr, W. Human impact on the ecological performance of Potamogeton species in northwestern Germany. Vegetatio 1991, 97, 161–172. Available online: http://www.jstor.org/stable/20046095 (accessed on 5 October 2024). [CrossRef]
- Van Wijk, R.J. Ecological studies on Potamogeton pectinatus L.I. General characteristics, biomass production and life cycles under field conditions. Aquat. Bot. 1988, 31, 211–258. [Google Scholar] [CrossRef]
- Van Wijk, R.J. Ecological studies on Potamogeton pectinatus L. III. Reproductive strategies and germination ecology. Aquat. Bot. 1989, 33, 271–299. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Calero, S. Phenology of macrophytes in coastal environments: Utricularia australis (R. Br.) and Stuckenia pectinata (L.) Börner in an interdunal pond within the Albufera de València Natural Park. Limnetica 2019, 38, 317–334. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, R.; Liu, Y.; Yin, L.; Wang, C.; Li, W. The effect of storage condition on seed germination of six Hydrocharitaceae and Potamogetonaceae species. Aquat. Bot. 2017, 143, 49–53. [Google Scholar] [CrossRef]
- Clausen, P.; Nolet, B.A.; Fox, A.D.; Klaassen, M. Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe—A critical review of possibilities and limitations. Acta Oecologica 2002, 23, 191–203. [Google Scholar] [CrossRef]
- Santamaría, L.; Charalambidou, I.; Figuerola, J.; Green, A.J. Effect of passage through duck gut on germination of fennel pondweed seeds. Arch. Hydrobiol. 2002, 156, 11–22. [Google Scholar] [CrossRef]
- Figuerola, J.; Charalambidou, I.; Santamaria, L.; Green, A.J. Internal dispersal of seeds by waterfowl: Effect of seed size on gut passage time and germination patterns. Naturwissenschaften 2010, 97, 555–565. [Google Scholar] [CrossRef]
- Mader, E.; van Vierssen, W.; Schwenk, K. Clonal diversity in the submerged macrophyte Potamogeton pectinatus L. inferred from nuclear and cytoplasmic variation. Aquat. Bot. 1998, 62, 147–160. [Google Scholar] [CrossRef]
- Tóth, P.; Green, A.J.; Wilkinson, D.M.; Brides, K.; Lovas-Kiss, Á. Plant traits associated with seed dispersal by ducks and geese in urban and natural habitats. Ecol. Evol. 2023, 13, e10677. [Google Scholar] [CrossRef]
- Tweddle, J.C.; Dickie, J.B.; Baskin, C.C.; Baskin, J.M. Ecological aspects of seed desiccation sensitivity. J. Ecol. 2003, 91, 294–304. Available online: http://www.jstor.org/stable/3599764 (accessed on 3 December 2024). [CrossRef]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Paniagua, C.; Fernández-Zamudio, R. Different Germination Strategies Displayed by Three Potamogeton Species: P. natans, P. lucens, and P. pectinatus. Seeds 2025, 4, 45. https://doi.org/10.3390/seeds4030045
Díaz-Paniagua C, Fernández-Zamudio R. Different Germination Strategies Displayed by Three Potamogeton Species: P. natans, P. lucens, and P. pectinatus. Seeds. 2025; 4(3):45. https://doi.org/10.3390/seeds4030045
Chicago/Turabian StyleDíaz-Paniagua, Carmen, and Rocío Fernández-Zamudio. 2025. "Different Germination Strategies Displayed by Three Potamogeton Species: P. natans, P. lucens, and P. pectinatus" Seeds 4, no. 3: 45. https://doi.org/10.3390/seeds4030045
APA StyleDíaz-Paniagua, C., & Fernández-Zamudio, R. (2025). Different Germination Strategies Displayed by Three Potamogeton Species: P. natans, P. lucens, and P. pectinatus. Seeds, 4(3), 45. https://doi.org/10.3390/seeds4030045