Chemopreventive Potential of Oils Extracted from Seeds of Three Annona Species
Abstract
:1. Introduction
2. Annona Genus
2.1. Annona muricata (Soursop)
2.2. Annona reticulata (Bullock’s Heart/Custard Apple)
2.3. Annona squamosa (Sugar Apple/Sweetsop)
3. Proximate Composition of Annona Seeds and Seed Oil Extraction
Parameter (% g/100 g Dry Weight) | A. muricata * | A. squamosa ** | A. reticulata *** |
---|---|---|---|
Moisture | 7.7 ± 0.24 | 6.7 ± 0.2 | 15.2 ± 0.02 |
Lipid | 40 ± 0.82 | 26.8 ± 0.4 | 30.34 ± 0.04 |
Protein | 8.5 ± 0.52 | 17.5 ± 0.2 | 17.12 ± 0.01 |
Ash | 9.7 ± 0.12 | 2.2 ± 0.1 | 4.5 ± 0.00 |
Fiber | 5.2 ± 0.26 | 16.8 ± 0.2 | 32.0 ± 0.01 |
Carbohydrate (By Difference) | 34.1 | 30.0 | 37.91 |
4. Chemopreventive Agents of Annona Seed Oils and Their Chemopreventive Potential
4.1. Fatty Acids in Annona Seed Oils
4.2. Phytochemicals in Annona Seed Oils
Seed Oil | Acetogenins | Reported Cytotoxic Activities |
---|---|---|
Annona reticulata seed oil * | bullatacin cis-/trans-isomurisolenin cis-/trans-bullatacinone annoreticulin annoreticulin-9-one cis-/trans-murisolinone squamocin annonacin squamocin |
|
Annona squamosa seed oil ** | 12, 15-cis-squamostatin-A bullatacin squadiolin A, squadiolin B, squadfosacin B |
|
Annona muricata Seed oil *** | muricins muricatetrocin A muricatetrocin B longifolicin corossolin corossolone annotacin A and B |
|
4.3. Antioxidant Activity of Annona Seed Oils
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Momin, K.C.; Sangma, A.N.; Suresh, S.P.; Singh, Y.S.; Rao, R. A potential nutraceutical and therapeutic fruit plant. Int. J. Minor. Fruit. Med. Aromat. Plants 2018, 4, 44–49. [Google Scholar]
- Dahanayake, N. Some neglected and underutilized fruit crops in Sri Lanka. Int. J. Sci. Res. Pub. 2015, 5, 1–7. [Google Scholar]
- Sousa, C.M.M.; Silva, H.R.; Ayres, M.C.C.; Costa, C.L.S.; Araújo, D.S.; Cavalcante, L.C.D.; Barros, E.D.S.; Araújo, P.B.D.M.; Brandão, M.S.; Chaves, M.H. Total phenolics and antioxidant activity of five medicinal plants. Quím. Nova 2007, 30, 351–355. [Google Scholar] [CrossRef]
- Kessler, P.J.A. Annonaceae. In Flowering Plants·Dicotyledons; The Families and Genera of Vascular Plants; Kubitzki, K., Rohwer, J.G., Bittrich, V., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; Volume 2, pp. 93–129. [Google Scholar] [CrossRef]
- Wahab, S.M.A.; Jantan, I.; Haque, M.A.; Arshad, L. Exploring the leaves of Annona muricata L. as a source of potential anti-inflammatory and anticancer agents. Front. Pharm. 2018, 9, 661. [Google Scholar] [CrossRef]
- Jansen, P.; Lemmens, R.; Oyen, L. Plant Resources South-East Asia: Basic List of Species Commodity Grouping; Final Version; Pudoc: Wageningen, The Netherlands, 1991. [Google Scholar]
- Pandey, N.; Barve, D. Phytochemical and Pharmacological Review on Annona squamosa Linn. Int. J. Res. Pharm. Biomed. Sci. 2011, 2, 1404–1412. [Google Scholar]
- Bele, M.Y.; Focho, D.A.; Egbe, E.A.; Chuyong, B.G. Ethnobotanical survey of the uses Annonaceae around mount Cameroon. Afr. J. Plant Sci. 2011, 5, 237–247. [Google Scholar]
- Attiq, A.; Jalil, J.; Husain, K. Annonaceae: Breaking the wall of inflammation. Front. Pharmacol. 2017, 8, 752. [Google Scholar] [CrossRef]
- Zubaidi, S.N.; Mohd Nani, H.; Ahmad Kamal, M.S.; Abdul Qayyum, T.; Maarof, S.; Afzan, A.; Mohmad Misnan, N.; Hamezah, H.S.; Baharum, S.N.; Mediani, A. Annona muricata: Comprehensive Review on the Ethnomedicinal, Phytochemistry, and Pharmacological Aspects Focusing on Antidiabetic Properties. Life 2023, 13, 353. [Google Scholar] [CrossRef]
- Morton, J.F.; Dowling, C.F. Fruits of Warm Climates (Sugar Apple); Scientific Research: Miami, FL, USA, 1987; pp. 69–72. Available online: http://www.hort.purdue.edu/newcrop/mortonne/roselle.html (accessed on 1 June 2023).
- Siebra, C.A.; Nardin, J.M.; Florão, A.; Rocha, F.H.; Bastos, D.Z.; Oliveira, B.H.; Weffort-Santos, A.M. Potencial antiinflamatório de Annona glabra, Annonaceae. Rev. Bras. Farmacogn. 2009, 19, 82–88. [Google Scholar] [CrossRef]
- Biba, V.; Amily, A.; Sangeetha, S.; Remani, P. Anticancer, antioxidant and antimicrobial activity of Annonaceae family. World J. Pharm. Sci. 2014, 3, 1595–1604. [Google Scholar] [CrossRef]
- González-Trujano, M.; Navarrete, A.; Reyes, B.; Hong, E. Some pharmacological effects of the ethanol extract of leaves of Annona diversifolia on the central nervous system in mice. Phytother. Res. 1998, 12, 600–602. [Google Scholar] [CrossRef]
- Oliveira, G.N.D.S.A.; Dutra, L.M.; Paz, W.H.P.; da Silva, F.M.A.; Costa, E.V.; da Silva, A.J.R.G. Chemical constituents from the leaves and branches of Annona coriacea Mart. (Annonaceae). Biochem. Syst. Ecol. 2021, 97, 104297. [Google Scholar] [CrossRef]
- Nugraha, A.S.; Damayanti, Y.D.; Wangchuk, P.; Keller, P.A. Anti-infective and anti-cancer properties of the Annona species: Their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules 2019, 24, 4419. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Pereira, C.R.; Pimenta, L.P.; Boaventura, M.A.D.; Silva, L.G.E. Antibacterial activity of eight Brazilian Annonaceae plants. Nat. Prod. Res. 2006, 20, 21–26. [Google Scholar] [CrossRef]
- Ajaiyeoba, E.; Falade, M.; Ogbole, O.; Okpako, L.; Akinboye, D. In vivo antimalarial and cytotoxic properties of Annona senegalensis extract. J. Tradit. Complement. Med. 2006, 3, 137–141. [Google Scholar] [CrossRef]
- Afroz, N.; Hoq, M.A.; Jahan, S.; Islam, M.M.; Ahmed, F.; Shahid-Ud-Daula, A.; Hasanuzzaman, M. Methanol soluble fraction of fruits of Annona muricata possesses significant antidiarrheal activities. Heliyon 2020, 6, e03112. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Kar, A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors 2007, 31, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Rocha, R.S.; Kassuya, C.A.L.; Formagio, A.S.N.; Mauro, M.D.O.; Andrade-Silva, M.; Monreal, A.C.D.; Cunha-Laura, A.L.; Vieira, M.D.C.; Oliveira, R.J. Analysis of the anti-inflammatory and chemopreventive potential and description of the antimutagenic mode of action of the Annona crassiflora methanolic extract. Pharm. Biol. 2016, 54, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Essama, S.R.; Nyegue, M.; Foe, C.N.; Silihe, K.K.; Tamo, S.B.; Etoa, F. Antibacterial and antioxidant activities of hydro-ethanol extracts of barks, leaves and stems of Annona muricata. Am. J. Pharmacol. Sci. 2015, 3, 126–131. [Google Scholar]
- Nakano, D.; Ishitsuka, K.; Kamikawa, M.; Matsuda, M.; Tsuchihashi, R.; Okawa, M.; Okabe, H.; Tamura, K.; Kinjo, J. Screening of promising chemotherapeutic candidates from plants against human adult T-cell leukemia/lymphoma (III). J. Nat. Med. 2013, 67, 894–903. [Google Scholar] [CrossRef] [PubMed]
- Osorio, E.; Arango, G.J.; Jiménez, N.; Alzate, F.; Ruiz, G.; Gutiérrez, D.; Paco, M.A.; Giménez, A.; Robledo, S. Antiprotozoal and cytotoxic activities in vitro of Colombian Annonaceae. J. Ethnopharmacol. 2007, 111, 630–635. [Google Scholar] [CrossRef]
- Martínez-Vázquez, M.; Diana, G.; Estrada-Reyes, R.; González-Lugo, N.M.; Apan, T.R.; Heinze, G. Bio-guided isolation of the cytotoxic corytenchine and isocoreximine from roots of Annona cherimolia. Fitoterapia 2005, 76, 733–736. [Google Scholar] [CrossRef]
- Castillo-Juárez, I.; González, V.; Jaime-Aguilar, H.; Martínez, G.; Linares, E.; Bye, R.; Romero, I. Anti-helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. J. Ethnopharmacol. 2009, 122, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Rajeswari, V.; Kumar, T.S. In vitro antioxidant studies in leaves of Annona species. Indian J. Exp. Biol. 2007, 45, 480–485. [Google Scholar] [PubMed]
- Al Kazman, B.S.M.; Harnett, J.E.; Hanrahan, J.R. Traditional Uses, Phytochemistry and Pharmacological Activities of Annonacae. Molecules 2022, 27, 3462. [Google Scholar] [CrossRef] [PubMed]
- Rabelo, S.V.; Quintans, J.d.S.S.; Costa, E.V.; da Silva Almeida, J.R.G.; Júnior, L.J.Q. Annona Species (Annonaceae) Oils; Academic Press: Cambrige, MA, USA, 2015; pp. 221–229. [Google Scholar]
- Tamang, A.; Subba, S.K.; Chhetri, S. Wild edible and minor fruits of Odisha. Pharma Innov. J. 2021, 10, 609–613. [Google Scholar]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Che Man, Y.B. Physicochemical properties and bioactive compounds of selected seed oils. LWT–Food Sci. Technol. 2009, 42, 1396–1403. [Google Scholar] [CrossRef]
- Guo, L.; Wang, S.; Zhang, J.; Yang, G.; Zhao, M.; Ma, W.; Zhang, X.; Li, X.; Han, B.; Chen, N.; et al. Effects of ecological factors on secondary metabolites and inorganic elements of Scutellaria baicalensis and analysis of geo-herbalism. Sci. China Life Sci. 2013, 56, 1047–1056. [Google Scholar] [CrossRef] [PubMed]
- Madhujith, T.; Shahidi, F. Antioxidant and Antiproliferative Potential of Pearled Barley (Hordeum vulgarae.). Pharm. Biol. 2008, 46, 88–95. [Google Scholar] [CrossRef]
- Ranganathan, P.; Sengar, M.; Chinnaswamy, G.; Agrawal, G.; Arumugham, R.; Bhatt, R. Impact of COVID-19 on cancer care in India: A cohort study. Lancet Oncol. 2021, 22, 970–976. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.F.; Megdad, M.M.; Al-Qadi, M.H.; Al Qatrawi, M.J.; Sababa, R.Z.; Abu-Naser, S.S. A Proposed Expert System for Obstetrics & Gynecology Diseases Diagnosis. Int. J. Acad. Multidiscip. Res. 2022, 6, 305–321. [Google Scholar]
- WHO. Preventing Chronic Diseases: A Vital Investment; World Health Organiztion: Geneva, Switzerland, 2020. [CrossRef]
- Yan, Z.; Zhang, B.; Huang, Y.; Qiu, H.; Chen, P.; Guo, G. Involvement of autophagy inhibition in Brucea javanica oil emulsion induced colon cancer cell death. Oncol. Lett. 2015, 9, 1425–1431. [Google Scholar] [CrossRef] [PubMed]
- Dev, A.R.A.; Joseph, S.M. Anticancer potential of Annona genus: A detailed review. J. Indian Chem. Soc. 2021, 98, 100231. [Google Scholar] [CrossRef]
- Pinto, A.C.d.Q.; Corderio, M.C.R.; Andrade, S.R.M.; Ferreira, F.R.; Filguriras, H.A.d.C.; Alves, R.E.; Kinpara, D.I. Annona Species. In International Centre for Underutilised Crops; Williams, J.T., Ed.; University of Southampton: Southampton, UK, 2005; p. 268. [Google Scholar]
- Quílez, A.; Fernández-Arche, M.; García-Giménez, M.; De la Puerta, R. Potential therapeutic applications of the genus Annona: Local and traditional uses and pharmacology. J. Ethnopharmacol. 2018, 225, 244–270. [Google Scholar] [CrossRef] [PubMed]
- Rabêlo, S.V.; Quintans, J.S.S.; Costa, E.V.; Almeida, J.R.G.S.; Quintans-Júnior, L. Essential Oils in Food Preservation, Flavor and Safety; Elsevier: Amsterdam, The Netherlands, 2016; pp. 221–228. Available online: https://www.researchgate.net/profile/Rosa-Mourao/publication/288807775_Amazon_Rosewood_Aniba_rosaeodora_Ducke_Oils/links/5b192a92aca272021ceedc49/Amazon-Rosewood-Aniba-rosaeodora-Ducke-Oils.pdf (accessed on 13 March 2023).
- Mia, M.A.B. Digital Herbarium of Crop Plants, Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University. 2016. Available online: http://dhcrop.bsmrau.net/1879-2/ (accessed on 12 March 2022).
- Dahanayake, N.; Geurts, F. Annonaceous Fruits; Royal Tropical Institute: Amsterdam, The Netherlands, 1981; p. 16. Available online: https://assets.publishing.service.gov.uk/media/57a08c6640f0b652dd0012e6/R7187_-_Annona_monograph_-_revised.pdf (accessed on 14 July 2023).
- Dilrukshi, M.K.D.T.; Dhamadasa, R.M.; Abeysinghe, D.C.; Abhayagunasekara, A.V.C. Selection of Superior Quality Annona Species by means of Bioactive Compounds and Antioxidant Capacity. World J. Agric. Res. 2020, 8, 39–44. [Google Scholar]
- Heenkenda, H.M.S.; Pushpakumara, D.K.N.G.; Ranil, R.H.G.; Thantirige, M.J.K. Chapter 9: Annona, Annona species. In Underutilized Fruit Trees in Sri Lanka; Pushpakumara, D.K.N.G., Gunasena, H.P.M., Singh, V.P., Eds.; World Agroforestry Centre, South Asia Office: New Delhi, India, 2011; Volume 2, pp. 158–182. [Google Scholar] [CrossRef]
- Abdulrahman, H.; Kumar, R.S. Antibacterial activity of Annona squamosa and Annona reticulata L. against clinical isolates of mutans streptococci the causative agents of dental caries. Asian J. Pharm. Clin. Res. 2015, 8, 152–155. [Google Scholar]
- Encina, C.L.; Martin, E.C.; Lopez, A.A.; Padilla, I.M.G. Biotechnology applied to Annona spp.: A review. Rev. Bras. Fruticult. 2014, 36, 17–21. [Google Scholar] [CrossRef]
- Daniel, Q. Genetic Resources: Our Forgotten Treasure; Third World Network: Geneva, Switzerland, 1992. [Google Scholar]
- Jayaweera, D.M.A. Medicinal Plants in Ceylon; Part 1–5; National Science Council of Sri Lanka: Colombo, Sri Lanka, 1981. [Google Scholar]
- De Pauda, L.S.; Lugod, G.; Pancho, J.V. Handbook on Philippine Medicinal Plants; University of Philippines: Quezon City, Philippines, 1997; Volume 1. [Google Scholar]
- Okoro, C.K.; Osunde, Z.D. Physical Properties Of Soursop (Annona muricata) Seeds. Int. J. Eng. Res. Technol. 2013, 2, 1–4. [Google Scholar]
- Badrie, N.; Schauss, A. Soursop (Annona muricata L.): Composition, nutritional value, medicinal uses, and toxicology. Bioact. Food Prom. Health 2010, 39, 621–643. [Google Scholar] [CrossRef]
- Jamkhande, P.G.; Wattamwar, A.S. Annona reticulata Linn. (Bullock’s heart): Plant profile, phytochemistry and pharmacological properties. J. Tradit. Complement. Med. 2015, 5, 144–152. [Google Scholar] [CrossRef]
- Rajapaksha, U. Traditional Fruit Plants in Sri Lanka; Hector Kobbekaduwa Agrarian Research and Training Institute: Colombo, Sri Lanka, 1998; pp. 56–64. [Google Scholar]
- Handique, K.; Hazarika, D.N.; Langthasa, S.; Khanikar, H.B.; Deori, G.D. Morphological characterization of custard apple (Annona reticulata) grown in Brahmaputra valley of Assam. Pharm. Innov. J. 2022, 11, 684–688. [Google Scholar]
- Martínez, M.F.; Miranda, L.D.; Magnitskiy, S. Anatomy of Sugar Apple (Annona squamosa L.) Seeds (Annonaceae) Agronomía Colombiana; Universidad Nacional de Colombia Bogotá: Bogotá, Colombia, 2013; Volume 31, pp. 279–287. Available online: https://www.redalyc.org/articulo.oa?id=180329804003 (accessed on 14 June 2023).
- Atique, A.; Iqbal, M.; Ghouse, A. Use of Annona squamosa and Piper nigrum against diabetes. Fitoterapia 1985, 56, 190–192. [Google Scholar]
- Ahmed, R.H.A.; Mariod, A.A. Annona squamosa: Phytochemical Constituents, Bioactive Compounds, Traditional and Medicinal Uses. In Wild Fruits: Composition, Nutritional Value and Products; Springer: Berlin/Heidelberg, Germany, 2019; pp. 143–155. [Google Scholar] [CrossRef]
- Onimawo, I.A. Proximate composition and selected physicochemical properties of the seed, pulp, and oil of soursop (Annona muricata). Plant Foods Hum. Nutr. 2002, 57, 165–171. [Google Scholar] [CrossRef]
- Mariod, A.A.; Elkheir, S.; Ahmed, Y.M.; Matthäus, B. Annona squamosa and Catunaregam nilotica Seeds, the effect of the extraction method on the oil composition. J. Am. Oil Chem. Soc. 2010, 87, 763–769. [Google Scholar] [CrossRef]
- Kumar, M.; Changan, S.; Tomar, M.; Prajapati, U.; Saurabh, V.; Hasan, M.; Sasi, M.; Maheshwari, C.; Singh, S.; Dhumal, S.; et al. Custard Apple (Annona squamosa L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Biological Activities. Biomolecules 2021, 11, 614. [Google Scholar] [CrossRef] [PubMed]
- Abdalbasit, A.M.; Ramlah, M.I.; Maznah, I.; Norsharina, I. Antioxidant activities of phenolic rich fractions (PRFs) obtained from black mahlab (Monechma ciliatum) and white mahlab (Prunus mahaleb) seedcakes. Food Chem. 2010, 118, 120–127. [Google Scholar] [CrossRef]
- Williams, E.T.; Luka, K.; Timothy, N. Phytochemical, Elemental, Proximate, and Antinutrient Composition of Custard Apple Seed (Annona reticulata) from Maiha Adamawa State, Nigeria. Glob. J. Med. Res. L Nutr. Food Sci. 2020, 20, 19–24. Available online: https://medicalresearchjournal.org/index.php/GJMR/article/download/2333/2222/ (accessed on 1 June 2023).
- WHO; Food and Agriculture Organization of the United Nations; Joint FAO/WHO Expert Committee on Food Additives. Evaluation of Certain Food Additives and Contaminants: Seventy-Fourth Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneva, Switzerland, 2011. Available online: https://www.who.int/publications/i/item/9789241209601 (accessed on 1 June 2023).
- Samaram, S.; Mirhosseini, H.; Tan, C.P.; Ghazali, H.M. Ultrasound-assisted extraction (UAE) and solvent extraction of papaya seed oil: Yield, fatty acid composition, and triacylglycerol profile. Molecules 2013, 18, 12474–12487. [Google Scholar] [CrossRef]
- Liu, N.; Ren, G.; Faiza, M.; Li, D.; Cui, J.; Zhang, K.; Yao, X. Comparison of conventional and green extraction methods on oil yield, physicochemical properties, and lipid compositions of pomegranate seed oil. J. Food Compos. Anal. 2022, 114, 104747. [Google Scholar] [CrossRef]
- Aremu, M.O.; Ibrahim, H.; Bamidele, T.O. Physicochemical Characteristics of the Oils Extracted from some Nigerian Plant Foods—A Review. Chem. Process Eng. Res. 2015, 32, 36–52. [Google Scholar]
- Dąbrowski, G.; Czaplicki, S.; Konopka, I. Composition and quality of poppy (Papaver somniferum L.) seed oil depending on the extraction method. LWT 2020, 134, 10167. [Google Scholar] [CrossRef]
- Ali, F.M.; Ali, B.E.; Speight, J.G. Handbook of Industrial Chemistry: Organic Chemicals; McGraw–Hill Education: New York, NY, USA, 2005. [Google Scholar]
- Patili, S.M.; Gaykar, R.D.; Kuumbhar, G.B. Manufacturing of Natural Pesticide from Custard Apple Seeds. Int. J. Innov. Res. Technol. 2022, 8, 775–779. [Google Scholar]
- Omkaresh, B.R.; Veeranna, K.; Yatish, K.V.; Ibham, V.; Pramoda, K. Optimization and kinetics analysis of biodiesel production from Annona reticulata seed oil using magnesium phosphate catalyst. Braz. J. Chem. Engin 2022, 40, 775–787. [Google Scholar] [CrossRef]
- Rana, V.S. Fatty Oil and Fatty Acid Composition of Annona squamosa Linn. Seed Kernels. Int. J. Fruit Sci. 2014, 15, 79–84. [Google Scholar] [CrossRef]
- Ansari, M.H.; Afaque, S.; Ahmad, M. Isoricinoleic acid in Annona squamosa seed oil. J. Am. Oil Chem. Soc. 1985, 62, 1514. [Google Scholar] [CrossRef]
- Ahmad, S.; Naqvi, F.; Sharmin, E.; Verma, K.L. Development of amine acid cured Annona squamosa oil epoxy anticorrosive polymeric coatings. Prog. Org. Coatings. 2006, 55, 268–275. [Google Scholar] [CrossRef]
- Ao, H.; Lu, L.; Li, M.; Han, M.; Guo, Y.; Wang, X. Enhanced Solubility and Antitumor Activity of Annona Squamosa Seed Oil via Nanoparticles Stabilized with TPGS: Preparation and In Vitro and In Vivo Evaluation. Pharmaceutics 2022, 14, 1232. [Google Scholar] [CrossRef]
- Zahid, M.; Arif, M.; Rahman, M.A.; Singh, K.; Mujahid, M. Solvent extraction and gas chromatography–mass spectrometry analysis of Annona squamosa L. seeds for determination of bioactive, fatty acid/fatty oil composition, and antioxidant activity. J. Diet. Suppl. 2018, 15, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Kimbonguila, A.; Nzikou, J.M.; Matos, L.; Loumouamou, B.; Ndangui, C.B.; Pambou-Tobi, N.P.G.; Abena, A.A.; Sliou, T.; Scher, J.; Desobry, S. Proximate Composition and Physicochemical Properties on the Seeds and Oil of Annona muricata grown In Congo-Brazzaville. Res. J. Environ. Earth Sci. 2010, 2, 13–18. [Google Scholar]
- Ma, F.; Hanna, M.A. Biodiesel production: A review. Bioresour. Technol. 1999, 70, 15. [Google Scholar] [CrossRef]
- Talpur, M.; Sherazi, S.T.; Mahesar, S.; Kandhro, A. Effects of Chicken Frying on Soybean, Sunflower and Canola Oils. Pak. J. Anal. Environ. Chem. 2009, 10, 59–66. [Google Scholar]
- Kalo, P.; Kemppinen, A. TRIGLYCERIDES|Structures and Properties. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 5857–5868. [Google Scholar] [CrossRef]
- Boelhouwer, C.; Mol, J.C. Metathesis of fatty acid esters. J. Am. Oil Chem. Soc. 1984, 61, 425–430. [Google Scholar] [CrossRef]
- Lee, S.C.; Chan, J. Evidence for DNA damage as a biological link between diabetes and cancer. Chin. Med. J. 2015, 128, 1543–1548. [Google Scholar] [CrossRef]
- Barbalho, S.; de Goulart, R.; Machado, F.V.F.; da Soares de Souza, M.; Santos Bueno, P.; Guiguer, E.; Araujo, A.; Groppo, M. Annona sp: Plants with Multiple Applications as Alternative Medicine—A Review. Curr. Bioact. Compd. 2012, 8, 277–286. [Google Scholar] [CrossRef]
- Asare, G.A.; Afriyie, D.; Ngala, R.A.; Abutiate, H.; Doku, D.; Mahmood, S.A.; Rahman, H. Antiproliferative activity of aqueous leaf extract of Annona muricata L. on the prostate, BPH-1 cells, and some target genes. Integer. Cancer Ther. 2015, 14, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Arsenak, M.; Abad, M.J.; Fernandez, A.; Milano, B.; Gonto, R.; Ruiz, M.C. Screening of Venezuelan medicinal plant extracts for cytostatic and cytotoxic activity against Tumor cell lines. Phytother. Res. 2013, 27, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Chavan, S.S.; Shamkuwar, P.B.; Damale, M.G.; Pawar, D.P. A comprehensive review on Annona reticulata. Int. J. Pharm. Sci. Res. 2014, 5, 45–50. [Google Scholar] [CrossRef]
- Mishra, S.; Ahmad, S.; Kumar, N.; Sharma, B.K. Annona muricata (the cancer killer): A Review. Glob. J. Pharm. Res. 2013, 2, 1613–1618. [Google Scholar] [CrossRef]
- Lima, L.A.R.S.; Johann, S.; Cisalpino, P.S.; Pimenta, L.P.S.; Boaventura, M.A.D. In vitro antifungal activity of fatty acid methyl esters of the seeds of Annona cornifolia A. St.-Hil. (Annonaceae) against pathogenic fungus Paracoccidioides brasiliensis. J. Braz. Trop. Med. 2011, 44, 777–780. [Google Scholar] [CrossRef]
- Chowdhury, K.; Banu, L.A.; Khan, S.; Latif, A. Studies on the fatty acid composition of edible oils. Bangladesh J. Sci. Ind. Res. 2007, 42, 311–316. [Google Scholar] [CrossRef]
- Akbar, E.; Yaakob, Z.; Kamarudin, S.K.; Smail, M.; Salimon, J. Characteristic and composition of the Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur. J. Sci. Res. 2009, 29, 39–404. [Google Scholar]
- Thang, T.D.; Kuo, P.C.; Huang, G.J.; Hung, N.H.; Huang, B.S.; Yang, M.L. Chemical Constituents from the Leaves of Annona reticulata and Their Inhibitory Effects on NO Production. Molecules 2013, 18, 4477–4486. [Google Scholar] [CrossRef]
- Valantina, S.R.; Neelamegan, P. Antioxidant potential in vegetable oil—A review paper. Res. J. Chem. Environ. 2012, 16, 87–94. [Google Scholar]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, redraspberry, and blueberry seed oils. J. Agri. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef]
- Mabaleha, M.B.; Mitei, Y.C.; Yeboah, S.O. A comparative study of the properties of selected melon seed oils as potential candidates for development into commercial edible vegetable oils. J. Am. Oil Chem. Soc. 2007, 84, 31–36. [Google Scholar] [CrossRef]
- Anhwange, B.A.; Ajibola, V.; Oniye, S.J. Chemical studies of the seeds Moringa oleifera (LAM) detarium mirocarpum. J. Bio. Sci. 2004, 4, 711–715. [Google Scholar] [CrossRef]
- Nie, Y.L.; Liu, K.X.; Mao, X.Y.; Li, Y.L.; Li, J.; Zhang, M.M. Effect of injection of Brucea javanica oil emulsion plus chemoradiotherapy for lung cancer: A review of clinical evidence. J. Evid.-Based Med. 2012, 5, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Liyanage, T.; Madhujith, T.; Wijesinghe, K.G.G. Comparative study on major chemical constituents in volatile oil of true cinnamon (Cinnamomum verum) and five wild cinnamon species grown in Sri Lanka. Trop. Agri Res. 2017, 28, 270–280. [Google Scholar] [CrossRef]
- Jiang, W.G.; Bryce, R.P.; Horrobin, D.F. Essential fatty acids: Molecular and cellular basis of their anti-cancer action and clinical implications. Crit. Rev. Oncol. Hematol. 1998, 27, 179–209. [Google Scholar] [CrossRef] [PubMed]
- Meterissian, S.H.; Forse, R.A.; Steele, G.D.; Thomas, P. Effect of membrane free fatty acid alterations on the adhesion of human colorectal carcinoma cells to liver macrophages and extracellular matrix proteins. Cancer Lett. 1995, 89, 145–152. [Google Scholar] [CrossRef]
- Du Toit, P.J.; Van Aswegen, C.H.; Du Plessis, D.J. The effect of essential fatty acids on growth and urokinase-type plasminogen activator production in human prostate DU-145 cells, Prostaglandins Leukot. Essent. Fat. Acids. 1996, 55, 173–177. [Google Scholar] [CrossRef]
- Soto-Guzman, A.; Villegas-Comonfort, S.; Cortes-Reynosa, P.; Perez Salazar, E. Role of arachidonic acid metabolism in Stat5 activation induced by oleic acid in MDA-MB-231 breast cancer cells. Prostaglandins. Leukot. Essent. Fat. Acids. 2013, 88, 243–249. [Google Scholar] [CrossRef]
- Moon, H.S.; Batirel, S.; Mantzoros, C.S. Alpha linolenic acid and oleic acid additively down-regulate malignant potential and positively cross-regulate AMPK/S6 axis in OE19 and OE33 esophageal cancer cells. Metabolism 2014, 63, 1447–1454. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Zhang, Q.; Wang, J.; Zhan, J.; Xian, X.; Du, Z.; Wang, X.; Hao, A. Palmitic acid affects proliferation and differentiation of neural stem cells in vitro. J. Neurosci. Res. 2014, 92, 574–586. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Shi, Y.; Ma, C.; Wang, X.; Li, Y.; Miao, Y.; Chen, J.; Li, X. Antitumor activity of Annona squamosa seed oil. J. Ethnopharmacol. 2016, 193, 362–367. [Google Scholar] [CrossRef]
- Suffness, M.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry: Assays for Bioactivity; Hostettmann, K., Ed.; Academic Press: London, UK, 1990; pp. 71–133. [Google Scholar]
- Fauser, J.K.; Prisciandaro, L.D.; Cummins, A.G.; Howarth, G.S. Fatty acids as potential adjunctive colorectal chemotherapeutic agents. Cancer Biol. Ther. 2011, 11, 724–731. [Google Scholar] [CrossRef]
- Lima, L.A.R.S.; Alves, T.M.A.; Zani, C.L.; Pimenta, L.P.S.; Boaventura, M.A. Antioxidant and citotoxic potential of fatty acid methil esters from the seeds of Annona cornifolia A. ST.-Hil. (Annonaceae). Food Res. Int. 2012, 48, 873–875. [Google Scholar] [CrossRef]
- Thiviya, P.; Gunawardena, N.; Gamage, A.; Madhujith, T.; Merah, O. Apiaceae Family as a Valuable Source of Biocidal Components and their Potential Uses in Agriculture. Horticulturae 2022, 8, 614. [Google Scholar] [CrossRef]
- Adewole, S.; Ojewole, J. Protective effects of Annona muricate Linn. Leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr. J. Tradit. Complement. Altern. Med. 2009, 6, 30–41. [Google Scholar] [CrossRef]
- Kadarani, D.K.; Setyadjit, S.; Seno, D.S.H.; Sakashih, E. Total phenol & antioxidant from seed & peel of ripe and unripe of Indonesian sugar apple (Annona squamosa L.) extracted with various Pharmacyts IOSR. J. Pharm. 2013, 5, 20–25. [Google Scholar]
- Eshra, D.H.; Shehata, A.R.; Ahmed, A.N.A.; Saber, J.I. Physicochemical Properties of the Seed Kernels and the Oil of Custard Apple (Annona squamosa L.). Int. J. Food Biotech. 2019, 4, 87–93. [Google Scholar] [CrossRef]
- Sun, S.; Liu, J.; Zhou, N.; Zhu, W.; Dou, Q.P.; Zhou, K. Isolation of three new annonaceous acetogenins from Graviola fruit (Annona muricata) and their anti-proliferation on human prostate cancer cell PC-3. Bioorg. Med. Chem. Let. 2016, 26, 4382–4385. [Google Scholar] [CrossRef]
- Lannuzel, A.; Michel, P.P.; Hôglinger, G.U.; Champy, P.; Jousset, A.; Medja, F.; Ruberg, M. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 2003, 121, 287–296. [Google Scholar] [CrossRef]
- Alali, F.Q.; Xiao-Xi, L.; McLaughlin, J.L. Annonaceous acetogenins: Recent progress. J. Nat. Prod. 1999, 62, 504–540. [Google Scholar] [CrossRef]
- Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–567. [Google Scholar] [CrossRef]
- Leboeuf, M.; Cavé, A.; Bhaumik, P.; Mukherjee, B.; Mukherjee, R. The phytochemistry of the Annonaceae. Phytochemistry 1980, 21, 2783–2813. [Google Scholar] [CrossRef]
- Coria-Téllez, A.V.; Montalvo-Gónzalez, E.; Yahia, E.M.; Obledo-Vázquez, E.N. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab. J. Chem. 2016, 11, 662–691. [Google Scholar] [CrossRef]
- Galeane, M.C.; Martins, C.H.G.; Massuco, J.; Bauab, T.M.; Sacramento, L.V.S. Phytochemical screening of Azadirachta indica A. Juss for antimicrobial activity. Afr. J. Microbiol. Res. 2017, 11, 117–122. [Google Scholar] [CrossRef]
- Ramadass, N.; Subramanian, N.S. Study of phytochemical screening of neem (Azadirachta indica). Int. J. Zool. Stud. 2018, 3, 209–212. [Google Scholar]
- James, J.; Veettil, A.K.T.; Pratyush, K.; Misra, C.S.; Sagadevan, L.D.M.; Thankamani, V. Phytochemical Investigation and Antibacterial Activity of the Fruits of Alstonia Scholaris. Int. J. Phytopharm. 2012, 3, 74–77. [Google Scholar]
- Chang, F.R.; Wu, Y.C.; Duh, C.Y.; Wang, S.K. Studies on the acetogenins of Formosan annonaceous plants. II. Cytotoxic acetogenins from Annona reticulata. J. Nat. Prod. 1993, 56, 1688–1694. [Google Scholar] [CrossRef]
- Yuan, S.S.; Chang, H.L.; Chen, H.W.; Yeh, Y.T.; Kao, Y.H.; Lin, K.H.; Wu, Y.C.; Su, J.H. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway. Life Sci. 2003, 72, 2853–2861. [Google Scholar] [CrossRef]
- Yuan, S.S.; Chang, H.L.; Chen, H.W.; Kuo, F.C.; Liaw, C.C.; Su, J.H.; Wu, Y.C. Selective cytotoxicity of squamocin. on T24 bladder cancer cells at the S-phase via Bax-, Bad-, and caspase-3-related pathways. Life Sci. 2006, 78, 869–874. [Google Scholar] [CrossRef]
- Kintzios, S.E. Terrestrial plant-derived anticancer agents and plant species used in anticancer research. Crit. Rev. Plant Sci. 2006, 25, 79–113. [Google Scholar] [CrossRef]
- Rahman, M.M.; Parvin, S.; Haque, M.E.; Islam, M.E.; Mosaddik, M.A. Antimicrobial and cytotoxic constituents from the seeds of Annona squamosa. Fitoterapia 2005, 76, 484–489. [Google Scholar] [CrossRef]
- Shirwaikar, A.; Rajendran, K.; Kumar, C.D. Oral antidiabetic activity of Annona squamosa leaf alcohol extract in NIDDM rats. Pharm. Biol. 2004, 42, 30–35. [Google Scholar] [CrossRef]
- Madhuri, S.; Pandey, G. Some anticancer medicinal plants of foreign origin. Curr. Sci. 2009, 96, 779–783. [Google Scholar]
- Chen, Y.; Chen, J.W.; Zhai, J.H.; Wang, Y.; Wang, S.L.; Li, X. Antitumor activity and toxicity relationship of annonaceous acetogenins. Food Chem. Toxicol. 2013, 58, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, R.; Mahendra, S. Coumarin lignans from the seeds of Annano Squamosa Linn. J. Chem. 2009, 6, 518–522. [Google Scholar] [CrossRef]
- Richmond, A.; Su, Y.J. Mouse xenograft models vs GEM models for human cancer therapeutics. Dis. Models Mech. 2008, 1, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Liaw, C.C.; Yang, Y.L.; Chen, M.; Chang, F.R.; Chen, S.L.; Wu, S.H.; Wu, Y.C. Mono-tetrahydrofuran annonaceous acetogenins from Annona squamosa as cytotoxic agents and calcium ion chelators. J. Nat. Prod. 2008, 71, 764–771. [Google Scholar] [CrossRef]
- Yang, H.J.; Zhang, N.; Chen, J.W.; Wang, M.Y. Two new cytotoxic acetogenins from Annona squamosa. J. Asian Nat. Prod. Res. 2009, 11, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Dzotam, J.K.; Voukeng, I.K.; Fankam, A.G.; Efferth, T. Cytotoxicity of methanol extracts of Annona muricata, Passiflora edulis, and nine other Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines. SpringerPlus 2016, 5, 1666. [Google Scholar] [CrossRef]
- Chang, F.R.; Wu, Y.C. Novel cytotoxic annonaceous acetogenins from Annona muricate. J. Nat. Prod. 2001, 64, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Kazman, B.S.M.; Al, J.E.; Harnett, A.; Jane, R.H. The Phytochemical Constituents and Pharmacological Activities of Annona atemoya: A Systematic Review. Pharmaceuticals 2020, 13, 269. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Gundala, S.R.; Mukkavilli, R.; Vangala, S.; Reid, M.D.; Aneja, R. Synergistic interactions among flavonoids and acetogenins in Graviola (Annona muricata) leaves confer protection against prostate cancer. Carcinogenesis 2015, 36, 656–665. [Google Scholar] [CrossRef]
- Moghadamtousi, S.Z.; Fadaeinasab, M.; Nikzad, S.; Mohan, G.; Ali, H.M.; Kadir, H.A. Annona muricata (Annonaceae): A review of its traditional uses, isolated acetogenins, and biological activities. Int. J. Mol. Sci. 2015, 16, 15625. [Google Scholar] [CrossRef]
- Hassimotto, N.M.A.; Genovese, M.E.; Lajolo, F.M. Antioxidant capacity of Brazilian fruit, vegetables and commercially-frozen fruit pulps. J. Food Comp. Anal. 2009, 22, 394–396. [Google Scholar] [CrossRef]
- Diplock, A.T.; Miller, N.J.; Rice-Evans, C.A. Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. J. Agri Food Chem. 1995, 43, 1794–1801. [Google Scholar] [CrossRef]
- Halliwell, B. Free radicals and antioxidants. Nutr. Rev. 1994, 52, 253–265. [Google Scholar] [CrossRef]
- Morris-Stiff, G.J.; Bowrey, D.J.; Oleesky, D.; Davies, M.; Clark, G.W.; Puntis, M.C. The antioxidant profiles of patients with recurrent acute and chronic pancreatitis. Am. J. Gastroenterol. 1999, 94, 2135–2140. [Google Scholar] [CrossRef]
- Bailly, C.; El-Maarouf-Bouteau, H.; Corbineau, F. From intracellular signaling networks to cell death: The dual role of reactive oxygen species in seed physiology. Comptes R. Biol. 2008, 331, 806–814. [Google Scholar] [CrossRef]
- Vikas, B.; Akhil, B.S.; Remani, P.; Sujathan, K. Free Radical Scavenging Properties of Annona squamosa. Asian Pac. J. Cancer Prev. 2017, 18, 2725–2731. [Google Scholar] [CrossRef] [PubMed]
- Shureiqi, I.; Chen, D.; Lotan, R.; Yang, P.; Newman, R.A.; Fischer, S.M.; Lippman, S.M. 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Res. 2000, 60, 6846–6850. [Google Scholar] [PubMed]
- Shehata, M.G.; Abu-Serie, M.M.; El-Aziz, A.; Mohammad, N.; El-Sohaimy, S.A. Nutritional, phytochemical, and in vitro anticancer potential of sugar apple (Annona squamosa) fruits. Sci. Rep. 2021, 11, 6224. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Chen, Y.; Chen, J.; Li, X.; Chen, Y. A Review on Annona squamosa L.: Phytochemicals and Biological Activities. Am. J. Chin. Med. 2017, 45, 933–964. [Google Scholar] [CrossRef] [PubMed]
- Chang, F.R.; Chen, J.L.; Chiu, H.F.; Wu, M.J.; Wu, Y.C. Acetogenins from seeds of Annona reticulata. Phytochemistry 1998, 47, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Meada, U.; Hara, N.; Fujimoto, Y.; Srivastava, A.; Gupta, Y.K.; Sahai, M. ‘N-fatty Acyl Tryptamines from Annona reticulata. Phytochemistry 1993, 34, 1633–1635. [Google Scholar] [CrossRef]
- Silva, A.C.; Jorge, N. Bioactive compounds of the liquid fractions of agro industrial waste. Food Res. Int. 2014, 66, 493–500. [Google Scholar] [CrossRef]
- Pathirana, C.K.; Madhujith, T.; Eeswara, J. Bael (Aegle marmelos L. Corrêa), a Medicinal Tree with Immense Economic Potentials. Adv. Agric. 2020, 2020, 8814018. [Google Scholar] [CrossRef]
- Shital, P.; Rujuta, A.; Sanjay, M. Transbronchial needle aspiration cytology (TBNA) in endobronchial lesions: A valuable technique during bronchoscopy in diagnosing lung cancer and it will decrease repeat bronchoscopy. J. Cancer Res. Clin. Oncol. 2014, 140, 809–815. [Google Scholar] [CrossRef] [PubMed]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant-derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef]
- Weerasinghe, M.G.W.K.; Dahanayake, N. A review of Annona species in Sri Lanka. Int. J. Minor. Fruits Med. Aromat. Plants 2022, 8, 1–6. [Google Scholar] [CrossRef]
- Santos, C.R.; Schulze, A. Lipid metabolism in cancer. FEBS J. 2012, 279, 2610–2623. [Google Scholar] [CrossRef] [PubMed]
- Dallavalle, S.; Dobricic, V.; Lazzarato, L.; Gazzano, E.; Machuqueiro, M.; Pajeva, I.; Tsakovska, I.; Zidar, N.; Fruttero, R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist. Updates 2020, 50, 100682. [Google Scholar] [CrossRef] [PubMed]
Botanical Name | Vernacular Name | Common Name |
---|---|---|
Annona muricata L. | Katuanoda | Soursop |
Annona reticulata L. | Welianoda | Bullock’s heart, custard apple |
Annona squamosa L. | Sinianoda | Sweetsop/sugar apple |
Annona cherimola Miller | Cherimoya | Cherimoya |
A cross of A. cherimola and A. squamosa | Atemoya | Pineapple sugar apple |
Annona glabra L. | Welatha | Pond apple, alligator apple |
Compound (%) | A. muricata seeds * | A. squamosa seeds ** | A. reticulata seeds *** | Soybean ***** | Rapeseed **** | Sunflower seed ***** |
---|---|---|---|---|---|---|
Saturated fatty acids (SFA) | ||||||
Capric acid (10:0) | Traces | 0.17 ± 0.03 | Traces | - | - | - |
Myristic acid (14:0) | Traces | 0.67 ± 0.01 | 0.35 ± 0.03 | 0.10 ± 0.001 | 0.1 | 0.10 ± 0.003 |
Palmitic acid (C16:0) | 20.41 ± 1.58 | 15.47 ± 0.17 | 14.1 ± 0.13 | 11.33 ± 0.56 | 3.49 | 6.94 ± 0.14 |
Stearic acid (C18:0) | 4.13 ± 0.29 | 8.14 ± 0.04 | 6.86 ± 0.02 | 4.55 ±0.19 | 0.85 | 5.90 ± 0.10 |
Unsaturated fatty acids (UFA) | ||||||
Monounsaturated fatty acids (MUFA) | ||||||
Palmitoleic acid (C16:1) | 1.44 ± 0.45 | 1.43 ± 0.03 | 1.41 ± 0.01 | 0.1 | 0.2 | 0.2 |
Oleic acid (C18: 1) | 41.29 ± 0.53 | 48.54 ± 0.13 | 47.4 ± 0.01 | 22.24 ± 0.28 | 64.40 | 19.49 ± 0.76 |
Polyunsaturated fatty acids (PUFA) | ||||||
Linoleic acid (C18:2) | 30.85 ± 0.34 | 23.40 ± 0.06 | 22.9 ± 0.03 | 54.67 ± 0.98 | 22.30 | 64.87 ± 1.94 |
Linolenic acid (C18:3) | 1.88 ± 0.25 | 2.18 ± 0.03 | 1.79 ± 0.03 | 6.07 ± 0.17 | 8.23 | 1.90 ± 0.06 |
Total SFAs | 24.54 | 24.45 | 24.35 | |||
Total U FAs | 75.46 | 75.55 | 75.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attanayake, P.; Rupasinghe, D.; Gamage, A.; Madhujith, T.; Merah, O. Chemopreventive Potential of Oils Extracted from Seeds of Three Annona Species. Seeds 2024, 3, 105-122. https://doi.org/10.3390/seeds3010009
Attanayake P, Rupasinghe D, Gamage A, Madhujith T, Merah O. Chemopreventive Potential of Oils Extracted from Seeds of Three Annona Species. Seeds. 2024; 3(1):105-122. https://doi.org/10.3390/seeds3010009
Chicago/Turabian StyleAttanayake, Prabash, Dinesha Rupasinghe, Ashoka Gamage, Terrence Madhujith, and Othmane Merah. 2024. "Chemopreventive Potential of Oils Extracted from Seeds of Three Annona Species" Seeds 3, no. 1: 105-122. https://doi.org/10.3390/seeds3010009
APA StyleAttanayake, P., Rupasinghe, D., Gamage, A., Madhujith, T., & Merah, O. (2024). Chemopreventive Potential of Oils Extracted from Seeds of Three Annona Species. Seeds, 3(1), 105-122. https://doi.org/10.3390/seeds3010009