Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae
Abstract
:1. Introduction
2. Methods and Materials
3. Data and Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. The great diversity in kinds of seed dormancy: A revision of the Nikolaeva–Baskin classification system for primary seed dormancy. Seed Sci. Res. 2021, 31, 249–277. [Google Scholar] [CrossRef]
- Willis, C.G.; Baskin, C.C.; Baskin, J.M.; Auld, J.R.; Venable, D.L.; Cavender-Bares, J.; Donohue, K.; Rubio de Casas, R.; Group, N.G.W. The evolution of seed dormancy: Environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytol. 2014, 203, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Graeber, K.; Nakabayashi, K.; Leubner-Metzger, G. Development of Dormancy. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Thomas, B., Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 483–489. [Google Scholar]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Crocker, W. Mechanics of dormancy in seeds. Am. J. Bot. 1916, 3, 99–120. [Google Scholar] [CrossRef]
- Keeley, J.E.; Pausas, J.G.; Rundel, P.W.; Bond, W.J.; Bradstock, R.A. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temple, S.A. Plant-animal mutualism: Coevolution with dodo leads to near extinction of plant. Science 1977, 197, 885–886. [Google Scholar] [CrossRef]
- Paulsen, T.R.; Colville, L.; Daws, M.I.; Eliassen, S.; Högstedt, G.; Kranner, I.; Thompson, K.; Vandvik, V. The crypsis hypothesis explained: A reply to Jayasuriya et al. (2015). Seed Sci. Res. 2015, 25, 402–408. [Google Scholar] [CrossRef]
- Paulsen, T.; Colville, L.; Kranner, I.; Daws, M.; Högstedt, G.; Vandvik, V.; Thompson, K. Physical dormancy in seeds: A game of hide and seek? New Phytol. 2013, 198, 496–503. [Google Scholar] [CrossRef]
- Brancalion, P.H.S.; Novembre, A.D.L.C.; Rodrigues, R.R.; Filho, J.M. Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal. Ann. Bot. 2010, 105, 991–998. [Google Scholar] [CrossRef] [Green Version]
- Jaganathan, G.K. Crypsis hypothesis as an explanation for evolution of impermeable coats in seeds is anecdotal. Ecol. Res. 2018, 33, 857–861. [Google Scholar] [CrossRef]
- Jaganathan, G.; Yule, K.; Liu, B. On the evolutionary and ecological value of breaking physical dormancy by endozoochory. Perspect. Plant Ecol. Evol. Syst. 2016, 22, 11–22. [Google Scholar] [CrossRef]
- Jaganathan, G.K. Are wildfires an adapted ecological cue breaking physical dormancy in the Mediterranean basin? Seed Sci. Res. 2015, 25, 120–126. [Google Scholar] [CrossRef]
- Jayasuriya, K.; Athugala, Y.S.; Wijayasinghe, M.M.; Baskin, J.M.; Baskin, C.C.; Mahadevan, N. The crypsis hypothesis: A stenopic view of the selective factors in the evolution of physical dormancy in seeds. Seed Sci. Res. 2015, 25, 127–137. [Google Scholar] [CrossRef]
- Van Staden, J.; Manning, J.C.; Kelly, K.M. Legumes seeds: The structure function equation. In Advances in Legume Biology; Stirton, C.H., Zarucchi, J.L., Eds.; Missouri Bot Garden: St. Louis, MO, USA, 1989; pp. 417–450. [Google Scholar]
- Baskin, J.M.; Baskin, C.C.; Li, X. Taxonomy, Anatomy and Evolution of Physical Dormancy in Seeds. Plant Species Biol. 2000, 15, 139–152. [Google Scholar] [CrossRef]
- Wang, Y.; Fan, G.; Liu, Y.; Sun, F.; Shi, C.; Liu, X.; Peng, J.; Chen, W.; Huang, X.; Cheng, S.; et al. The sacred lotus genome provides insights into the evolution of flowering plants. Plant J. 2013, 76, 557–567. [Google Scholar] [CrossRef]
- Shi, T.; Rahmani, R.; Gugger, P.; Wang, M.; Li, H.; Zhang, Y.; Li, Z.-Z.; Van de Peer, Y.; Marchal, K.; Chen, J. Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Mol. Biol. Evol. 2020, 37, 2394–2413. [Google Scholar] [CrossRef]
- Wu, S.; Han, B.; Jiao, Y. Genetic Contribution of Paleopolyploidy to Adaptive Evolution in Angiosperms. Mol. Plant 2020, 13, 59–71. [Google Scholar] [CrossRef]
- Bolingue, W.; Vu, B.; Leprince, O.; Buitink, J. Characterization of dormancy behaviour in seeds of the model legume Medicago truncatula. Seed Sci. Res. 2010, 20, 97–107. [Google Scholar] [CrossRef]
- Smýkal, P.; Vernoud, V.; Blair, M.W.; Soukup, A.; Thompson, R.D. The role of the testa during development and in establishment of dormancy of the legume seed. Front. Plant Sci. 2014, 5, 351. [Google Scholar]
- Chen, H.; Chu, P.; Zhou, Y.-L.; Ding, Y.; Li, Y.; Liu, J.; Jiang, L.-W.; Huang, S.-Z. Ectopic expression of NnPER1, a Nelumbo nucifera 1-cysteine peroxiredoxin antioxidant, enhances seed longevity and stress tolerance in Arabidopsis. Plant J. 2016, 88, 608–619. [Google Scholar] [CrossRef]
- Al-Mssallem, I.S.; Hu, S.; Zhang, X.; Lin, Q.; Liu, W.; Tan, J.; Yu, X.; Liu, J.; Pan, L.; Zhang, T.; et al. Genome sequence of the date palm Phoenix dactylifera L. Nat. Commun. 2013, 4, 2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sano, N.; Rajjou, L.; North, H.; Debeaujon, I.; Marion-Poll, A.; Seo, M. Staying Alive: Molecular Aspects of Seed Longevity. Plant Cell Physiol. 2015, 57, pcv186. [Google Scholar] [CrossRef] [Green Version]
- Koenen, E.; Ojeda Alayon, D.; Bakker, F.; Wieringa, J.; Kidner, C.; Hardy, O.; Pennington, R.; Herendeen, P.; Bruneau, A.; Hughes, C. The Origin of the Legumes is a Complex Paleopolyploid Phylogenomic Tangle Closely Associated with the Cretaceous–Paleogene (K–Pg) Mass Extinction Event. Syst. Biol. 2021, 70, 508–526. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.; Buijs, G.; Ligterink, W.; Hilhorst, H. Evolutionary ecophysiology of seed desiccation sensitivity. Funct. Plant Biol. 2018, 45, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Lavin, M.; Herendeen, P.S.; Wojciechowski, M.F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 2005, 54, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Lyson, T.R.; Miller, I.M.; Bercovici, A.D.; Weissenburger, K.; Fuentes, A.J.; Clyde, W.C.; Hagadorn, J.W.; Butrim, M.J.; Johnson, K.R.; Fleming, R.F. Exceptional continental record of biotic recovery after the Cretaceous–Paleogene mass extinction. Science 2019, 366, 977–983. [Google Scholar] [CrossRef]
- Centeno-González, N.K.; Martínez-Cabrera, H.I.; Porras-Múzquiz, H.; Estrada-Ruiz, E. Late Campanian fossil of a legume fruit supports Mexico as a center of Fabaceae radiation. Commun. Biol. 2021, 4, 41. [Google Scholar] [CrossRef]
- Nascimento, F.F.; Reis, M.D.; Yang, Z. A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 2017, 1, 1446–1454. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.D. Using phylogenetics to detect pollinator-mediated floral evolution. New Phytol. 2010, 188, 354–363. [Google Scholar] [CrossRef] [Green Version]
- Wickett, N.J.; Mirarab, S.; Nguyen, N.; Warnow, T.; Carpenter, E.; Matasci, N.; Ayyampalayam, S.; Barker, M.S.; Burleigh, J.G.; Gitzendanner, M.A. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. USA 2014, 111, E4859–E4868. [Google Scholar] [CrossRef]
- Berry, K. The first plants to recolonize western North America following the Cretaceous/Paleogene mass extinction event. Int. J. Plant Sci. 2020, 182, 19–27. [Google Scholar] [CrossRef]
- Berry, K. Seed traits linked to differential survival of plants during the Cretaceous/Paleogene impact winter. Acta Palaeobot. 2020, 60, 307–322. [Google Scholar] [CrossRef]
- Bello, M.A.; Bruneau, A.; Forest, F.; Hawkins, J.A. Elusive Relationships within Order Fabales: Phylogenetic Analyses Using matK and rbcL Sequence Data. Syst. Bot. 2009, 34, 102–114. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Goloboff, P.A.; Catalano, S.A. GB-to-TNT: Facilitating creation of matrices from GenBank and diagnosis of results in TNT. Cladistics 2012, 28, 503–513. [Google Scholar] [CrossRef]
- Goloboff, P.A.; Catalano, S.A. TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 2016, 32, 221–238. [Google Scholar] [CrossRef]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchêne, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [Green Version]
- Koenen, E.; Ojeda, D.; Steeves, R.; Migliore, J.; Bakker, F.; Wieringa, J.; Kidner, C.; Hardy, O.; Pennington, R.; Bruneau, A. Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies. New Phytol. 2020, 225, 1355–1369. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J. TreeView v. 1.7.2 and TreeAnnotator v. 2.6.4; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2021; Available online: https://beast.community/treeannotator (accessed on 6 August 2022).
- Maddison, W.P.; Maddison, D.R. Mesquite: A Modular System for Evolutionary Analysis. Available online: https://www.mesquiteproject.org (accessed on 6 August 2022).
- Escobar, D.F.; Silveira, F.A.; Morellato, L.P.C. Timing of seed dispersal and seed dormancy in Brazilian savanna: Two solutions to face seasonality. Ann. Bot. 2018, 121, 1197–1209. [Google Scholar] [CrossRef] [Green Version]
- Travlos, I.; Economou, G.; Karamanos, A. Seed germination and seedling emergence of Spartium junceum L. in response to heat and other pre-sowing treatments. J. Agron. 2007, 6, 152. [Google Scholar]
- Galindez, G.; Ceccato, D.V.; Malagrina, G.M.; Pidal, B.; Chilo, G.N.; Bach, H.G.; Fortunato, R.H.; Ortega Baes, F.P. Physical seed dormancy in native legume species of Argentina. Bol. Soc. Argent. Bot. 2016, 51, 73–78. [Google Scholar]
- Rodríguez-Arévalo, I.; Mattana, E.; García, L.; Liu, U.; Lira, R.; Dávila, P.; Hudson, A.; Pritchard, H.W.; Ulian, T. Conserving seeds of useful wild plants in Mexico: Main issues and recommendations. Genet. Resour. Crop Evol. 2017, 64, 1141–1190. [Google Scholar] [CrossRef] [Green Version]
- Cannon, S.B.; Ilut, D.; Farmer, A.D.; Maki, S.L.; May, G.D.; Singer, S.R.; Doyle, J.J. Polyploidy did not predate the evolution of nodulation in all legumes. PLoS ONE 2010, 5, e11630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, S.B.; McKain, M.R.; Harkess, A.; Nelson, M.N.; Dash, S.; Deyholos, M.K.; Peng, Y.; Joyce, B.; Stewart, C.N., Jr.; Rolf, M.; et al. Multiple Polyploidy Events in the Early Radiation of Nodulating and Nonnodulating Legumes. Mol. Biol. Evol. 2014, 32, 193–210. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, R.; Jiang, K.-W.; Qi, J.; Hu, Y.; Guo, J.; Zhu, R.; Zhang, T.; Egan, A.N.; Yi, T.-S. Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Mol. Plant 2021, 14, 748–773. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.-A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Huegele, I.; Manchester, S. An Early Paleocene Carpoflora from the Denver Basin of Colorado, USA, and Its Implications for Plant-Animal Interactions and Fruit Size Evolution. Int. J. Plant Sci. 2020, 181, 6. [Google Scholar] [CrossRef]
- Schulte, P.; Alegret, L.; Arenillas, I.; Arz, J.A.; Barton, P.J.; Al, E. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 2010, 327, 1214–1218. [Google Scholar] [CrossRef] [Green Version]
- Chiarenza, A.A.; Mannion, P.D.; Lunt, D.J.; Farnsworth, A.; Jones, L.A.; Kelland, S.J.; Allison, P.A. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 2019, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Chiarenza, A.A.; Farnsworth, A.; Mannion, P.D.; Lunt, D.J.; Valdes, P.J.; Morgan, J.V.; Allison, P.A. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc. Natl. Acad. Sci. USA 2020, 117, 17084–17093. [Google Scholar] [CrossRef]
- Tabor, C.R.; Bardeen, C.G.; Otto-Bliesner, B.L.; Garcia, R.R.; Toon, O.B. Causes and Climatic Consequences of the Impact Winter at the Cretaceous-Paleogene Boundary. Geophys. Res. Lett. 2020, 47, e60121. [Google Scholar] [CrossRef]
- Roberts, E.H. Predicting the Storage Life of Seeds. Seed Sci. Technol. 1973, 1, 499–514. [Google Scholar]
- Gould, S.J.; Vrba, E.S. Exaptation; a missing term in the science of form. Paleobiology 1982, 8, 4–15. [Google Scholar] [CrossRef]
- Gould, S.J. The Structure of Evolutionary Theory; Belknap Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Vanneste, K.; Maere, S.; Peer, Y. Tangled up in two: A burst of genome duplications at the end of the Cretaceous and the consequences for plant evolution. Philos. Trans. R. Soc. B Biol. Sci. 2019, 369, 5042–5050. [Google Scholar] [CrossRef] [Green Version]
- Leebens-Mack, J.; Wickett, N.; Deyholos, M.K.; Degironimo, L.; Pires, J.C. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 2019, 574, 679–685. [Google Scholar]
- Van de Peer, Y.; Ashman, T.-L.; Soltis, P.; Soltis, D. Polyploidy: An evolutionary and ecological force in stressful times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef]
- Darwin, C. On the Origin of Species; John Murray: London, UK, 1859. [Google Scholar]
- Linkies, A.; Graeber, K.; Knight, C.; Leubner-Metzger, G. The evolution of seeds. New Phytol. 2010, 186, 817–831. [Google Scholar] [CrossRef]
- Li, H.-T.; Yi, T.-S.; Gao, L.-M.; Ma, P.-F.; Zhang, T.; Yang, J.-B.; Gitzendanner, M.A.; Fritsch, P.W.; Cai, J.; Luo, Y. Origin of angiosperms and the puzzle of the Jurassic gap. Nat. Plants 2019, 5, 461–470. [Google Scholar] [CrossRef]
- Sauquet, H.; Magallón, S. Key questions and challenges in angiosperm macroevolution. New Phytol. 2018, 219, 1170–1187. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, B.F.; Herendeen, P.S. Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 213, 115–123. [Google Scholar] [CrossRef]
- Morley, R.J. Origin and Evolution of Tropical Rain Forests; John Wiley & Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Turner, S.K. Constraints on the onset duration of the Paleocene–Eocene Thermal Maximum. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tosso, F.; Hardy, O.J.; Doucet, J.-L.; Daïnou, K.; Kaymak, E.; Migliore, J. Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology. Mol. Phylogenet. Evol. 2018, 120, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cabrera, H.I.; Estrada-Ruiz, E. Wood anatomy reveals high theoretical hydraulic conductivity and low resistance to vessel implosion in a Cretaceous fossil forest from northern Mexico. PLoS ONE 2014, 9, e108866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio de Casas, R.; Willis, C.G.; Pearse, W.D.; Baskin, C.C.; Baskin, J.M.; Cavender-Bares, J. Global biogeography of seed dormancy is determined by seasonality and seed size: A case study in the legumes. New Phytol. 2017, 214, 1527–1536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manchester, S. Fruits and Seeds of the Middle Eocene Nut Beds Flora, Clarno Formation, Oregon. Palaeontogr. Am. 1994, 58, 205. [Google Scholar]
- Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 1981, 47, 1. [Google Scholar] [CrossRef]
- Endress, P.K. Reproductive structures and phylogenetic significance of extant primitive angiosperms. Plant Syst. Evol. 1986, 152, 1–28. [Google Scholar] [CrossRef]
- Chai, M.; Zhou, C.; Molina, I.; Fu, C.; Nakashima, J.; Li, G.; Zhang, W.; Park, J.; Tang, Y.; Jiang, Q.; et al. A class II KNOX gene, KNOX4, controls seed physical dormancy. Proc. Natl. Acad. Sci. USA 2016, 113, 6997–7002. [Google Scholar] [CrossRef]
- Lomax, B.H.; Hilton, J.; Bateman, R.M.; Upchurch, G.R.; Lake, J.A.; Leitch, I.J.; Cromwell, A.; Knight, C.A. Reconstructing relative genome size of vascular plants through geological time. New Phytol. 2014, 201, 636–644. [Google Scholar] [CrossRef]
- Clark, J.; Donoghue, P. Whole-Genome Duplication and Plant Macroevolution. Trends Plant Sci. 2018, 23, 933–945. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, J.A.; Maere, S.; Van de Peer, Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc. Natl. Acad. Sci. USA 2009, 106, 5737–5742. [Google Scholar] [CrossRef]
- Gasper, A.L.; Almeida, T.; Dittrich, V.; Smith, A.; Salino, A. Molecular phylogeny of the fern family Blechnaceae (Polypodiales) with a revised genus-level treatment. Cladistics 2017, 33, 429–446. [Google Scholar] [CrossRef]
- Li, Z.-Z. Evolution by Ancient Gene and Genome Duplication in Hexapods and Land Plants. Ph.D. Dissertation, University of Arizona, Tucson, AZ, USA, 2020. [Google Scholar]
- Luo, M.-C.; You, F.M.; Li, P.; Wang, J.-R.; Zhu, T.; Dandekar, A.M.; Leslie, C.A.; Aradhya, M.; McGuire, P.E.; Dvorak, J. Synteny analysis in Rosids with a walnut physical map reveals slow genome evolution in long-lived woody perennials. BMC Genom. 2015, 16, 707. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, J.A.; Upchurch, G.R. Leaf assemblages across the Cretaceous-Tertiary boundary in the Raton Basin, New Mexico and Colorado. Proc. Natl. Acad. Sci. USA 1987, 84, 5096–5100. [Google Scholar] [CrossRef]
- Shimada, N. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 2003, 131, 941–951. [Google Scholar] [CrossRef] [Green Version]
- Przysiecka, Ł.; Książkiewicz, M.; Wolko, B.; Naganowska, B. Structure, expression profile and phylogenetic inference of chalcone isomerase-like genes from the narrow-leafed lupin (Lupinus angustifolius L.) genome. Front. Plant Sci. 2015, 6, 268. [Google Scholar] [CrossRef]
- Cheng, A.-X.; Zhang, X.; Han, X.-J.; Zhang, Y.-Y.; Gao, S.; Liu, C.-J.; Lou, H.-X. Identification of chalcone isomerase in the basal land plants reveals an ancient evolution of enzymatic cyclization activity for synthesis of flavonoids. New Phytol. 2018, 217, 909–924. [Google Scholar] [CrossRef] [Green Version]
- Ni, R.; Zhu, T.-T.; Zhang, X.-S.; Wang, P.-Y.; Sun, C.-J.; Qiao, Y.-N.; Lou, H.-X.; Cheng, A.-X. Identification and evolutionary analysis of chalcone isomerase fold proteins in ferns. J. Exp. Bot. 2019, 71, 290–304. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaganathan, G.K.; Berry, K. Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae. Seeds 2023, 2, 309-317. https://doi.org/10.3390/seeds2030023
Jaganathan GK, Berry K. Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae. Seeds. 2023; 2(3):309-317. https://doi.org/10.3390/seeds2030023
Chicago/Turabian StyleJaganathan, Ganesh K., and Keith Berry. 2023. "Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae" Seeds 2, no. 3: 309-317. https://doi.org/10.3390/seeds2030023
APA StyleJaganathan, G. K., & Berry, K. (2023). Climate Change during Cretaceous/Paleogene as a Driving Force for the Evolutionary Radiation of Physical Dormancy in Fabaceae. Seeds, 2(3), 309-317. https://doi.org/10.3390/seeds2030023