Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Effects of Gibberellin (GA3) on Reducing the Number of Seeds/Fruit in Bac Son Citrus
3.1.1. Effects of GA3 on the Fruit Set Ratio of Bac Son Citrus
3.1.2. Effect of GA3 on the Yield Parameters of Bac Son Citrus
3.1.3. Effect of GA3 on the Physiological Parameters of Bac Son Citrus
3.1.4. Effect of GA3 on the Internal Quality Parameters of Bac Son Citrus
3.2. Effect of Copper Sulfate (CuSO4·5H2O) on Reducing the Number of Seeds per Bac Son Mandarin Fruit
3.2.1. Effects of CuSO4·5H2O on the Fruit Set Ratio of Bac Son Mandarin
3.2.2. Effect of CuSO4·5H2O on the Yield Parameters of Bac Son Citrus
3.2.3. Effect of CuSO4·5H2O on the Physiological Parameters of Bac Son Citrus
3.2.4. Effect of CuSO4·5H2O on the Internal Quality Parameters of Bac Son Citrus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zang, Y.-X.; Chun, I.-J.; Zhang, L.-L.; Hong, S.-B.; Zheng, W.-W.; Xu, K. Effect of gibberellic acid application on plant growth attributes, return bloom, and fruit quality of rabbiteye blueberry. Sci. Hortic. 2016, 200, 13–18. [Google Scholar] [CrossRef]
- Garmendia, A.; Beltrán, R.; Zornoza, C.; García-Breijo, F.J.; Reig, J.; Merle, H. Gibberellic acid in Citrus spp. flowering and fruiting: A systematic review. PLoS ONE 2019, 14, e0223147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandolfini, T. Seedless Fruit Production by Hormonal Regulation of Fruit Set. Nutrients 2009, 1, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestrelli, A.; Scalzo, R.L.; Rotino, G.; Acciarri, N.; Spena, A.; Vitelli, G.; Bertolo, G. Freezing effect on some quality parameters of transgenic parthenocarpic eggplants. J. Food Eng. 2003, 56, 285–287. [Google Scholar] [CrossRef]
- Kende, H.; Zeevaart, J.A.D. The Five “Classical” Plant Hormones. Plant Cell 1997, 9, 1197–1210. [Google Scholar] [CrossRef] [Green Version]
- le Roux, S.; Barry, G.H. Vegetative Growth Responses of Citrus Nursery Trees to Various Growth Retardants. Horttechnology 2010, 20, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Bermejo, A.; Primo-Millo, E.; Agustí, M.; Mesejo, C.; Reig, C.; Iglesias, D.J. Hormonal Profile in Ovaries of Mandarin Varieties with Differing Reproductive Behaviour. J. Plant Growth Regul. 2015, 34, 584–594. [Google Scholar] [CrossRef]
- Stephenson, A.G. Flower and Fruit Abortion—A Citation-Classic Commentary on Flower and Fruit Abortion—Proximate Causes and Ultimate Functions. Cc/Agr Biol. Environ. 1992, 50, 8. [Google Scholar]
- Gambetta, G.; Gravina, A.; Fasiolo, C.; Fornero, C.; Galiger, S.; Inzaurralde, C.; Rey, F. Self-incompatibility, parthenocarpy and reduction of seed presence in ‘Afourer’ mandarin. Sci. Hortic. 2013, 164, 183–188. [Google Scholar] [CrossRef]
- Garmendia, A.; Beltrán, R.; Zornoza, C.; Breijo, F.; Reig, J.; Bayona, I.; Merle, H. Insect repellent and chemical agronomic treatments to reduce seed number in ‘Afourer’ mandarin. Effect on yield and fruit diameter. Sci. Hortic. 2018, 246, 437–447. [Google Scholar] [CrossRef]
- Žalnierius, T.; Šveikauskas, V.; Aphalo, P.J.; Gavelienė, V.; Būda, V.; Jurkonienė, S. Gibberellic Acid (GA3) Applied to Flowering Heracleum sosnowskyi Decreases Seed Viability Even If Seed Development Is Not Inhibited. Plants 2022, 11, 314. [Google Scholar] [CrossRef]
- Chen, G.; Li, J.; Han, H.M.; Du, R.Y.; Wang, X. Physiological and Molecular Mechanisms of Plant Responses to Copper Stress. Int. J. Mol. Sci. 2022, 23, 12950. [Google Scholar] [CrossRef] [PubMed]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of Copper on Mitochondrial Function and Metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef] [PubMed]
- Agustí, M.; Zaragoza, S.; Bleiholder, H.; Buhr, L.; Hack, H.; Klose, R.; Staub, R. The BBCH scale for describing phenological stages in citrus development. In Proceedings of the International Congress of Citriculture. 9th Meeting of the International Social of Citriculture, Orlando, FL, USA, 4–7 December 2000; pp. 445–446. [Google Scholar]
- Nasiruddin, M.; Hasan, M.M.; Roy, U.; Islam, A.R.; Islam, M.B. Quantitative analysis of juice, citric acid, vitamin C content, sugar levels and sugar acid quantitative relation in some cultivated Citrus fruits. Int. J. Food Sci. Nutr. 2019, 4, 38–41. [Google Scholar]
- McDonald, H.; Arpaia, M.L.; Caporaso, F.; Obenland, D.; Were, L.; Rakovski, C.; Prakash, A. Effect of gamma irradiation treatment at phytosanitary dose levels on the quality of ‘Lane Late’ navel oranges. Postharvest Biol. Technol. 2013, 86, 91–99. [Google Scholar] [CrossRef]
- Moon, Y.-E.; Kim, Y.-H.; Kim, C.-M.; Kho, S.-O. Effects of foliar application of GA3 on flowering and fruit quality of very early-maturing satsuma mandarin. Hortic. Sci. Technol. 2003, 21, 110–113. [Google Scholar]
- Erogul, D.; Sen, F. Effects of gibberellic acid treatments on fruit thinning and fruit quality in Japanese plum (Prunus salicina Lindl.). Sci. Hortic. 2015, 186, 137–142. [Google Scholar] [CrossRef]
- Cheng, C.; Xu, X.; Singer, S.D.; Li, J.; Zhang, H.; Gao, M.; Wang, L.; Song, J.; Wang, X. Effect of GA3 Treatment on Seed Development and Seed-Related Gene Expression in Grape. PLoS ONE 2013, 8, e80044. [Google Scholar] [CrossRef] [Green Version]
- Barać, G.; Mastilović, J.; Kevrešan, Ž.; Milić, B.; Kovač, R.; Milović, M.; Kalajdžić, J.; Bajić, A.; Magazin, N.; Keserović, Z. Effects of plant growth regulators on plum (Prunus domestica L.) grown on two rootstocks at harvest and at the postharvest period. Horticulturae 2022, 8, 621. [Google Scholar] [CrossRef]
- Hifny, H.A.; Khalifa, S.M.; Hamdy, A.E.; El-Wahed, A.N.A. Effect of GA3 and NAA on growth, yield and fruit quality of Washington navel orange. Egypt. J. Hortic. 2017, 44, 33–43. [Google Scholar]
- Mesejo, C.; Martínez-Fuentes, A.; Reig, C.; Rivas, F.; Agustí, M. The inhibitory effect of CuSO4 on Citrus pollen germination and pollen tube growth and its application for the production of seedless fruit. Plant Sci. 2006, 170, 37–43. [Google Scholar] [CrossRef]
- El-Gioushy, S.F.; Sami, R.; Al-Mushhin, A.A.M.; El-Ghit, H.M.A.; Gawish, M.S.; Ismail, K.A.; Zewail, R.M.Y. Foliar application of ZnSO4 and CuSO4 affects the growth, productivity, and fruit quality of washington navel orange trees (Citrus sinensis L.) osbeck. Horticulturae 2021, 7, 233. [Google Scholar] [CrossRef]
- Harris, K.D.; Lavanya, L. Influence of foliar application of boron, copper and their combinations on the quality of tomato (Lycopersicon esculentum mill.). Res. J. Agric. For. Sci. 2016, 4, 1–5. [Google Scholar]
- Li, X.; Su, X. Assessment of the polychlorinated biphenyl (PCB) occurrence in copper sulfates and the influential role of pcb levels on grapes. PLoS ONE 2015, 10, e0144896. [Google Scholar] [CrossRef] [PubMed]
Index | Total Number of Flowers Monitored per Tree (Flowers) | Number of Set Fruit after 30 Days of Flower Pruning (Fruits) | Fruit Set Ratio after 30 Days of Flower Pruning (%) | Stable Fruit Set Ratio (%) | |
---|---|---|---|---|---|
GA3 Concentration | |||||
50 ppm | 13.7845 | 685.1 b | 4.97 b | 2.48 b | |
75 ppm | 13.3245 | 679.3 b | 5.10 b | 2.50 a | |
100 ppm | 13.6649 | 725.6 a | 5.31 a | 2.52 a | |
125 ppm | 13.5473 | 713.9 a | 5.27 a | 2.51 a | |
Control | 13.5642 | 655.2 b | 4.83 b | 2.38 c | |
Significance | NS | ** | ** | *** | |
50 ppm | 13.9677 | 671.4 b | 4.81 b | 2.47 | |
75 ppm | 14.3902 | 720.5 a | 5.01 a | 2.46 | |
100 ppm | 14.4578 | 758.6 a | 5.25 a | 2.49 | |
125 ppm | 14.2105 | 733.6 a | 5.16 a | 2.47 | |
Control | 13.7891 | 658.5 b | 4.78 b | 2.39 | |
Significance | NS | ** | ** | NS | |
A × B | NS | * | NS | NS |
Index | Harvested Fruit per Tree (Number) | Average Fruit Weight (g) | Yield (kg/Tree) | ||
---|---|---|---|---|---|
GA3 Concentration | Theoretical | Actual | |||
2018 | |||||
50 ppm | 342.4 | 102.7 b | 35.2 ab | 34.1 | |
75 ppm | 347.6 | 103.4 ab | 35.9 ab | 34.8 | |
100 ppm | 355.2 | 104.1 a | 37.0 a | 35.9 | |
125 ppm | 343.4 | 104.2 a | 35.8 ab | 34.7 | |
Control | 317.9 | 102.3 b | 32.5 b | 31.5 | |
Significance | NS | ** | ** | NS | |
2019 | |||||
50 ppm | 363.7 ab | 103.1 ab | 37.5 ab | 36.3 a | |
75 ppm | 367.3 ab | 102.6 b | 37.7 ab | 36.5 a | |
100 ppm | 372.8 a | 104.3 a | 38.9 a | 37.8 a | |
125 ppm | 357.1 b | 104.2 a | 37.2 ab | 36.0 a | |
Control | 338.5 c | 102.7 b | 34.8 c | 33.7 b | |
Significance | *** | * | ** | * | |
A × B | NS | * | * | NS |
Index | Fruit Height (cm) | Fruit Diameter (cm) | Number of Segments/Fruit (Segments) | Total Number of Seeds/Fruit (Seeds) | Seeds/Fruit (Seeds) | Edible Portion (%) | ||
---|---|---|---|---|---|---|---|---|
GA3 Concentration | Firm seed | Small seed | ||||||
2018 | ||||||||
50 ppm | 4.76 | 5.90 | 11.6 | 30.6 b | 26.8 b | 3.8 c | 79.7 ab | |
75 ppm | 4.86 | 6.46 | 11.2 | 29.8 b | 25.3 b | 4.5 b | 80.8 ab | |
100 ppm | 4.74 | 6.22 | 11.2 | 26.5 c | 18.7 c | 7.8 a | 81.7 a | |
125 ppm | 4.81 | 6.18 | 12.0 | 28.7 b | 23.5 bc | 5.2 b | 81.1 a | |
Control | 4.76 | 6.14 | 11.8 | 33.4 a | 30.5 a | 2.9 c | 78.9 b | |
Significance | NS | NS | NS | ** | *** | *** | * | |
2019 | ||||||||
50 ppm | 4.80 | 5.92 | 11.5 | 29.3 b | 24.7 b | 4.6 b | 80.4 ab | |
75 ppm | 4.49 | 5.95 | 11.6 | 28.2 b | 23.3 b | 4.9 b | 80.2 ab | |
100 ppm | 4.77 | 5.96 | 11.4 | 25.8 c | 17.5 c | 8.3 a | 80.6 ab | |
125 ppm | 4.81 | 6.12 | 11.7 | 26.4 c | 21.9 bc | 4.5 b | 81.1 a | |
Control | 4.79 | 6.05 | 11.7 | 32.8 a | 30.1 a | 2.7 c | 79.8 b | |
Significance | NS | NS | NS | *** | *** | *** | ** | |
A × B | NS | NS | NS | ** | *** | ** | ** |
Index | Brix (%) | Dry Matter (%) | Total Acid (%) | Reducing Sugar (%) | Vitamin C (mg/100 g) | |
---|---|---|---|---|---|---|
GA3 Concentration | ||||||
50 ppm | 9.8 | 11.28 b | 0.871 ab | 5.14 ab | 27.29 b | |
75 ppm | 10.1 | 11.58 b | 0.771 b | 5.53 a | 29.09 a | |
100 ppm | 10.2 | 12.0 a | 0.865 ab | 5.00 b | 27.80 b | |
125 ppm | 10.2 | 11.6 b | 0.92 a | 5.20 ab | 28.00 a | |
Control | 10.0 | 11.8 ab | 0.891 a | 5.38 ab | 27.27 b | |
Significance | NS | * | * | ** | ** | |
50 ppm | 10.3 | 11.99 b | 0.845 b | 5.48 | 29.37 ab | |
75 ppm | 10.6 | 12.97 a | 0.862 b | 5.74 | 28.96 b | |
100 ppm | 10.5 | 12.78 a | 0.872 b | 5.62 | 29.09 ab | |
125 ppm | 10.4 | 12.86 a | 0.859 b | 5.24 | 28.65 b | |
Control | 9.6 | 11.75 b | 0.927 a | 5.63 | 30.85 a | |
Significance | NS | NS | ** | NS | *** | |
A × B | NS | NS | NS | NS | NS |
Index | Total Number of Flowers per Tree | Number of Fruits Set after 30 Days of Flower Pruning | Fruit Set Ratio 30 Days after Flower Pruning (%) | Stable Fruit Set Ratio (%) | |
---|---|---|---|---|---|
CuSO4·5H2O | |||||
2018 | |||||
50 ppm | 13.6814 | 663.5 b | 4.85 b | 2.46 | |
75 ppm | 13.5437 | 673.1 ab | 4.97 ab | 2.41 | |
100 ppm | 13.8334 | 690.3 a | 4.99 ab | 2.45 | |
125 ppm | 13.4793 | 678.0 ab | 5.03 a | 2.49 | |
Control | 13.4956 | 658.3 b | 4.88 b | 2.43 | |
Significance | NS | ** | * | NS | |
2019 | |||||
50 ppm | 13.7467 | 670.2 b | 4.88 | 2.39 | |
75 ppm | 14.2343 | 698.4 a | 4.91 | 2.38 | |
100 ppm | 14.0261 | 654.8 b | 4.67 | 2.41 | |
125 ppm | 14.2328 | 690.9 a | 4.85 | 2.39 | |
Control | 14.1161 | 662.1 b | 4.69 | 2.40 | |
Significance | NS | ** | NS | NS | |
A × B | NS | * | NS | NS |
Index | Harvested Fruit per Tree (Number) | Average Fruit Weight (g) | Yield (kg/tree) | ||
---|---|---|---|---|---|
CuSO4·5H2O | Theoretical | Actual | |||
2018 | |||||
50 ppm | 317.6 | 104.2 a | 33.1 a | 32.1 | |
75 ppm | 322.5 | 103.5 ab | 33.4 a | 32.4 | |
100 ppm | 323.4 | 102.6 b | 33.2 a | 32.2 | |
125 ppm | 322.9 | 102.1 b | 33.0 a | 32.0 | |
Control | 316.2 | 102.9 b | 32.5 b | 31.5 | |
Significance | NS | ** | * | NS | |
2019 | |||||
50 ppm | 340.7 a | 102.5 ab | 34.9 | 33.8 | |
75 ppm | 335.2 b | 103.1 a | 34.6 | 33.5 | |
100 ppm | 337.5 b | 101.1 b | 34.1 | 33.0 | |
125 ppm | 338.2 b | 101.3 b | 34.3 | 33.2 | |
Control | 334.9 b | 101.2 b | 33.9 | 32.8 | |
Significance | * | ** | NS | NS | |
A × B | NS | * | NS | NS |
Index | Fruit Height (cm) | Fruit Diameter (cm) | Number of Segments/Fruit (Segments) | Total Number of Seeds/Fruit (Seeds) | Seeds/Fruit (Seeds) | Edible Portion (%) | ||
---|---|---|---|---|---|---|---|---|
CuSO4·5H2O | Firm Seed | Small Seed | ||||||
2018 | ||||||||
50 ppm | 4.62 | 6.58 | 11.8 ab | 26.6 b | 23.2 b | 3.4 b | 81.0 | |
75 ppm | 4.64 | 6.44 | 11.2 ab | 25.5 b | 19.8 b | 5.7 a | 81.1 | |
100 ppm | 4.52 | 6.26 | 10.2 b | 26.5 b | 22.3 b | 4.2 a | 80.6 | |
125 ppm | 4.52 | 6.28 | 12.6 a | 18.8 c | 17.4 c | 1.4 c | 81.2 | |
Control | 4.60 | 6.24 | 11.8 ab | 33.6 a | 30.8 a | 2.8 b | 80.7 | |
Significance | NS | NS | ** | *** | *** | * | NS | |
2019 | ||||||||
50 ppm | 4.41 | 6.47 | 10.8 | 26.8 b | 16.6 b | 10.2 a | 80.3 | |
75 ppm | 4.51 | 6.34 | 10.3 | 18.7 c | 12.9 b | 5.8 b | 80.4 | |
100 ppm | 4.52 | 6.44 | 10.4 | 18.3 c | 12.1 b | 6.2 b | 80.5 | |
125 ppm | 4.50 | 6.30 | 10.6 | 11.6 c | 5.2 c | 6.4 b | 81.2 | |
Control | 4.56 | 5.95 | 10.5 | 31.2 a | 25.7 a | 5.5 b | 80.4 | |
Significance | NS | NS | NS | NS | *** | ** | NS | |
A × B | NS | NS | NS | NS | ** | * | NS |
Index | Brix (%) | Dry Matter (%) | Total Acid (%) | Reducing Sugar (%) | Vitamin C (mg/100 g) | |
---|---|---|---|---|---|---|
CuSO4·5H2O | ||||||
50 ppm | 10.3 | 12.65 a | 0.900 a | 5.52 | 30.00 b | |
75 ppm | 9.9 | 11.30 b | 0.932 a | 5.00 | 27.30 b | |
100 ppm | 10.0 | 11.52 b | 0.830 ab | 5.52 | 29.00 b | |
125 ppm | 10.2 | 11.52 b | 0.790 b | 5.56 | 27.92 b | |
Control | 10.1 | 12.62 a | 0.911 a | 5.46 | 32.73 a | |
Significance | NS | * | * | NS | ** | |
50 ppm | 10.4 | 12.04 | 0.713 c | 6.02 a | 31.86 b | |
75 ppm | 10.1 | 11.26 | 0.962 a | 5.75 b | 34.86 a | |
100 ppm | 10.3 | 12.72 | 0.854 ab | 5.78 b | 38.91 a | |
125 ppm | 10.3 | 12.04 | 0.912 a | 5.52 b | 32.53 b | |
Control | 10.0 | 11.86 | 0.869 ab | 6.20 a | 28.90 c | |
Significance | NS | NS | ** | *** | ** | |
A × B | NS | NS | * | NS | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, N.Q.; My Ha, L.T.; Hieu, N.Q.; Tu, P.T.T.; Lam, V.P. Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit. Seeds 2023, 2, 318-330. https://doi.org/10.3390/seeds2030024
Hung NQ, My Ha LT, Hieu NQ, Tu PTT, Lam VP. Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit. Seeds. 2023; 2(3):318-330. https://doi.org/10.3390/seeds2030024
Chicago/Turabian StyleHung, Nguyen Quoc, Le Thi My Ha, Nguyen Quoc Hieu, Pham Thi Thanh Tu, and Vu Phong Lam. 2023. "Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit" Seeds 2, no. 3: 318-330. https://doi.org/10.3390/seeds2030024
APA StyleHung, N. Q., My Ha, L. T., Hieu, N. Q., Tu, P. T. T., & Lam, V. P. (2023). Gibberellin (GA3) and Copper Sulfate Pentahydrate (CuSO4·5H2O) Reduce Seeds per Fruit and Increase Fruit Quality in Bac Son Mandarin Fruit. Seeds, 2(3), 318-330. https://doi.org/10.3390/seeds2030024