Carignan Grape Cultivar Salt Tolerance during the Germination Phase across the Mediterranean Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Seeds and Vineyards Characteristics
2.2. Germination Tests
2.3. Data Analysis
3. Results
3.1. Seed Germination and Salt Tolerance
3.2. Seed Recovery Ability after Salt Exposure
3.3. Effect of the Distance from the Sea in the Germination and Salt Tolerance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Machado, R.M.A.; Serralheiro, R.P. Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- FAO Management of Salt Affected Soils: ‘Soil Management’ under ‘FAO SOILS PORTAL’ Food and Agriculture Organization of the ‘United Nations’. 2020 Rome. Available online: http://www.fao.org/soils-portal/soil-management/management-of-some-problem-soils/salt-affected-soils/more-information-on-salt-affected-soils/en/ (accessed on 29 April 2022).
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef] [PubMed]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- Fu, Q.Q.; Tan, Y.Z.; Zhai, H.; Du, Y.P. Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Sci. Hortic. 2019, 243, 148–158. [Google Scholar] [CrossRef]
- Haider, M.S.; Jogaiah, S.; Pervaiz, T.; Zhao, Y.X.; Khan, N.; Fang, J.G. Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environ. Exp. Bot. 2019, 162, 455–467. [Google Scholar] [CrossRef]
- Stolte, J.; Tesfai, M.; Øygarden, L.; Kværnø, S.; Keizer, J.; Verheijen, F.; Panagos, P.; Ballabio, C.; Hessel, R. Soil Threats in Europe: Status, Methods, Drivers and Effects on Ecosystem Services; A Review Report, Deliverable 2.1 of the RECARE Project; Office for Official Publications of the European Community: Luxembourg, 2015; Volume EUR 27607, p. 105. Available online: https://data.europa.eu/doi/10.2788/828742 (accessed on 29 April 2022).
- Isayenkov, S.V. Genetic sources for the development of salt tolerance in crops. Plant Growth Regul. 2019, 89, 1–17. [Google Scholar] [CrossRef]
- Ismail, A.M.; Horie, T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, R.; Jamil, S.; Shahzad, M.; Zörb, C.; Irshad, U.; Khan, N.; Younas, M.; Khan, S.A. Metabolic profiling to elucidate genetic elements due to salt stress. Clean 2017, 45, 1600574. [Google Scholar] [CrossRef]
- Moud, A.M.; Maghsoudi, K. Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J. Agric. Sci. 2008, 4, 351–358. [Google Scholar]
- Cramer, G.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Z.H.; Bi, W.L.; Chen, P.; Xu, Y.; Wang, Q.C. Abiotic stress improves in vitro biological indexing of Grapevine leafroll-associated virus-3 in red grapevine cultivars. Aust. J. Grape Wine Res. 2015, 21, 490–495. [Google Scholar] [CrossRef]
- Sohrabi, S.; Ebadi, A.; Jalali, S.; Salami, S.A. Enhanced values of various physiological traits and VvNAC1 gene expression showing better salinity stress tolerance in some grapevine cultivars as well as rootstocks. Sci. Hortic. 2017, 225, 317–326. [Google Scholar] [CrossRef]
- Santo, A.; Orrù, M.; Sarigu, M.; Ucchesu, M.; Sau, S.; Lallai, A.; D’hallewin, G.; Bacchetta, G. Salt tolerance of wild grapevine seeds during the germination phase. Sci. Hortic. 2019, 255, 115–120. [Google Scholar] [CrossRef]
- Al-Ashkar, I.; Ibrahim, A.; Ghazy, A.; Attia, K.; Al-Ghamdi, A.A.; Al-Dosary, M.A. Assessing the correlations and selection criteria between different traits in wheat salt-tolerant genotypes. Saudi J. Biol. Sci. 2021, 28, 5414–5427. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.K.; Yoon, I.S.; Kim, K.H.; Kwon, T.R. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Mohammadkhani, N.; Heidari, R.; Abbaspour, N.; Rahmani, F. Evaluation of salinity effects on ionic balance and compatible solute contents in nine grape (Vitis L.) genotypes. J. Plant Nutr. 2014, 37, 1817–1836. [Google Scholar] [CrossRef]
- Jogaiah, S.; Ramteke, S.D.; Sharma, J.; Upadhyay, A.K. Moisture and salinity stress induced changes in biochemical constituents and water relations of different grape rootstock cultivars. Int. J. Agron. 2014, 2014, 789087. [Google Scholar] [CrossRef] [Green Version]
- Mbarki, S.; Skalicky, M.; Vachova, P.; Hajihashemi, S.; Jouini, L.; Zivcak, M.; Tlustos, P.; Brestic, M.; Hejnak, V.; Zoghlami Khelil, A. Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 2020, 94, 526. [Google Scholar] [CrossRef] [Green Version]
- Abiala, M.A.; Abdelrahman, M.; Burritt, D.J.; Tran, L.S.P. Salt stress tolerance mechanisms and potential applications of legumes for sustainable reclamation of salt-degraded soils. Land Degrad. Dev. 2018, 29, 3812–3822. [Google Scholar] [CrossRef]
- Clarke, O.; Rand, M. Oz Clarke’s Encyclopedia of Grapes; Harcourt Books: Boston, MA, USA, 2001; p. 58. ISBN 978-0-1510-0714-1. [Google Scholar]
- Hudin, M. The Grand Carignan Tasting. Wine on VI. Available online: https://www.hudin.com/the-grand-carignan-tasting/ (accessed on 11 April 2021).
- Mercenaro, L.; Nieddu, G.; Porceddu, A.; Pezzotti, M.; Camiolo, S. Sequence polymorphisms and structural variations among four grapevine (Vitis vinifera L.) cultivars representing Sardinian agriculture. Front. Plant Sci. 2017, 8, 1279. [Google Scholar] [CrossRef] [Green Version]
- Lasram, S.; Bellí, N.; Chebil, S.; Nahla, Z.; Ahmed, M.; Sanchis, V.; Ghorbel, A. Occurrence of ochratoxigenic fungi and ochratoxin A in grapes from a Tunisian vineyard. Int. J. Food Microbiol. 2007, 114, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Conner, P.J. Effects of stratification, germination, temperature, pre-treatment with gibberellic acid and hydrogen peroxide on germination of ‘Fry’ Muscardine (Vitis rotundifolia) seed. HortScience 2008, 43, 853–856. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.Q.; Song, S.Q.; Li, S.H.; Gan, Y.Y.; Wu, J.H.; Cheng, H.Y. Seed dormancy and germination in Vitis amurensis and its variation. Seed Sci. Res. 2011, 21, 255–265. [Google Scholar] [CrossRef]
- Orrù, M.; Mattana, E.; Pritchard, H.W.; Bacchetta, G. Thermal thresholds as predictors of seed dormancy release and germination timing: Altitude-related risks from climate warming for the wild grapevine Vitis vinifera subsp. sylvestris. Ann. Bot. 2012, 110, 1651–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISTA. International Rules for Seed Testing; The International Seed Testing Association: Bassersdorf, Germany, 2008; Chapter 5; p. 8. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; The R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Hawker, J.S.; Walker, R.R. The effect of sodium chloride on the growth and fruiting of Cabernet Sauvignon vines. Am. J. Enol. Vitic. 1978, 29, 172–176. [Google Scholar]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Correll, R.L. Rootstock effects of salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana) I. Yield and vigour inter-relationships. Aust. J. Grape Wine Res. 2002, 8, 3–14. [Google Scholar] [CrossRef]
- Shani, U.; Waisel, Y.; Eshel, A.; Xue, S.; Ziv, G. Responses to salinity of grapevine plants with split root systems. New Phytol. 1993, 124, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination, 2nd ed.; Academic Press: San Diego, CA, USA, 2014; ISBN 978-0-1241-6677-6. [Google Scholar]
- Gutiérrez-Gamboa, G.; Moreno-Simunovic, Y. Terroir and typicity of Carignan from Maule Valley (Chile): The resurgence of a minority variety. OENO One 2019, 53, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.J.; Zhijian, T.L.; Sadanand, A.D. Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci. 2014, 228, 3–10. [Google Scholar] [CrossRef]
- Biasi, R.; Barbera, G.; Marino, E.; Brunori, E.; Nieddu, G. Viticulture as crucial cropping system for counteracting the desertification of coastal land. Acta Hortic. 2010, 931, 71–77. [Google Scholar] [CrossRef]
- Gutiérrez-Gamboa, G.; Liu, S.Y.; Pszczólkowski, P. Resurgence of minority and autochthonous grapevine varieties in South America: A review of their oenological potential. J. Sci. Food Agric. 2020, 100, 465–482. [Google Scholar] [CrossRef] [PubMed]
Code | Country | Site | Mean Coordinates (WGS 84) | Vineyard’s Sea Distance | Date of Collection | Soil | pH | Vineyard’s Age | Rootstock |
---|---|---|---|---|---|---|---|---|---|
Tu_1 | Tunisia | Takelsa | 36.853950 N – 10.616660 E | 2 Km | 26 August 2020 | Sandy | 7 | 15 years | N/A |
Tu_2 | Tunisia | Grombalia | 36.609405 N – 10.418864 E | 12 Km | 09 September 2020 | Clay lime | 8 | 40 years | N/A |
Fr_1 | France | Gruissan | 43.144575 N – 3.132141 E | 2 Km | 11 September 2020 | Sandy clay | 8.4 | 37 years | 110 Richter |
Fr_2 | France | Portel-des-Corbières | 43.029498 N – 2.899876 E | 13 Km | 17 September 2020 | Sandy clay | 8.4 | N/A | 110 Richter |
Fr_3 | France | Cruscades | 43.191739 N – 2.793660 E | 28 Km | 25 September 2020 | Sandy clay | 8.4 | N/A | 110 Richter |
It_1 | Italy | Is Solinas-Masainas | 39.011317 N – 8.581816 E | 0.15 Km | 05 September 2020 | Sandy | 6.8 | 35 years | Ungrafted |
It_2 | Italy | Giba | 39.070874 N – 8.610685 E | 5 Km | 05 September 2020 | Clay lime | 7.8 | 12 years | 1103 Paulsen |
It_3 | Italy | Santadi | 39.111347 N – 8.703358 E | 10 Km | 05 September 2020 | Clay lime | 7.5 | 10 years | 1103 Paulsen |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuena-Lombraña, A.; Lallai, A.; Belhadj, F.; Gharbi, B.; Bacchetta, G. Carignan Grape Cultivar Salt Tolerance during the Germination Phase across the Mediterranean Basin. Seeds 2022, 1, 136-145. https://doi.org/10.3390/seeds1020012
Cuena-Lombraña A, Lallai A, Belhadj F, Gharbi B, Bacchetta G. Carignan Grape Cultivar Salt Tolerance during the Germination Phase across the Mediterranean Basin. Seeds. 2022; 1(2):136-145. https://doi.org/10.3390/seeds1020012
Chicago/Turabian StyleCuena-Lombraña, Alba, Andrea Lallai, Feten Belhadj, Boutheina Gharbi, and Gianluigi Bacchetta. 2022. "Carignan Grape Cultivar Salt Tolerance during the Germination Phase across the Mediterranean Basin" Seeds 1, no. 2: 136-145. https://doi.org/10.3390/seeds1020012
APA StyleCuena-Lombraña, A., Lallai, A., Belhadj, F., Gharbi, B., & Bacchetta, G. (2022). Carignan Grape Cultivar Salt Tolerance during the Germination Phase across the Mediterranean Basin. Seeds, 1(2), 136-145. https://doi.org/10.3390/seeds1020012