Three-Dimensional Simulation of Bipolar Resistive Switching Memory with Embedded Conductive Nanocrystals in an Oxide Matrix
Abstract
:1. Introduction
2. Deoxidation–Oxidation Model of Bipolar Resistive Switching
3. Three-Dimensional Kinetic Monte Carlo Simulation
4. The Resistive State and the Simulation of the Electrical Current
5. Simulation and Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zahoor, F.; Zulkifli, T.Z.A.; Khanday, F.A. Resistive Random Access Memory (RRAM): An Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications. Nanoscale Res. Lett. 2020, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Lanza, M.; Wong, H.-S.P.; Pop, E.; Ielmini, D.; Strukov, D.; Regan, B.C.; Larcher, L.; Villena, M.A.; Yang, J.J.; Goux, L.; et al. Recommended Methods to Study Resistive Switching Devices. Adv. Electron. Mater. 2018, 5, 1800143. [Google Scholar] [CrossRef]
- Hu, C.; Wang, Q.; Bai, S.; Xu, M.; He, D.; Lyu, D.; Qi, J. The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory. Appl. Phys. Lett. 2017, 110, 2–5. [Google Scholar] [CrossRef]
- Carta, D.; Salaoru, I.; Khiat, A.; Regoutz, A.; Mitterbauer, C.; Harrison, N.M.; Prodromakis, T. Investigation of the Switching Mechanism in TiO2-Based RRAM: A Two-Dimensional EDX Approach. ACS Appl. Mater. Interfaces 2016, 8, 19605–19611. [Google Scholar] [CrossRef] [PubMed]
- Aldana, S.; García-Fernández, P.; Romero-Zaliz, R.; González, M.B.; Jimenez-Molinos, F.; Gómez-Campos, F.; Campabadal, F.; Roldan, J.B. Resistive switching in HfO2 based valence change memories, a comprehensive 3D kinetic Monte Carlo approach. J. Phys. D Appl. Phys. 2020, 53, 225106. [Google Scholar] [CrossRef]
- Rahmani, M.K.; Ismail, M.; Mahata, C.; Kim, S. Effect of interlayer on resistive switching properties of SnO2-based memristor for synaptic application. Results Phys. 2020, 18, 103325. [Google Scholar] [CrossRef]
- González-Flores, K.E.; Horley, P.; Cabañas-Tay, S.; Pérez-García, S.; Licea-Jiménez, L.; Palacios-Huerta, L.; Aceves-Mijares, M.; Moreno-Moreno, M.; Morales-Sánchez, A. Analysis of the conduction mechanisms responsible for multilevel bipolar resistive switching of SiO2/Si multilayer structures. Superlattices Microstruct. 2020, 137, 106347. [Google Scholar] [CrossRef]
- Kwon, S.; Kim, M.J.; Lim, D.H.; Jeong, K.; Chung, K.B. Controlling resistive switching behavior in the solution processed SiO2-x device by the insertion of TiO2 nanoparticles. Sci. Rep. 2022, 12, 8405. [Google Scholar] [CrossRef]
- Ramirez-Rios, J.; González-Flores, K.E.; Avilés-Bravo, J.J.; Pérez-García, S.A.; Flores-Méndez, J.; Moreno-Moreno, M.; Morales-Sánchez, A. Semiempirical Two-Dimensional Model of the Bipolar Resistive Switching Process in Si-NCs/SiO2 Multilayers. Nanomaterials 2023, 13, 2124. [Google Scholar] [CrossRef]
- Zidan, M.A.; Chen, A.; Indiveri, G.; Lu, W.D. Memristive computing devices and applications. J. Electroceram. 2017, 39, 4–20. [Google Scholar] [CrossRef]
- Sze, S.M.; Lee, M.K. Semiconductor Devices: Physics and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Marković, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for Neuromorphic Computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Yin, X.B.; Tan, Z.H.; Yang, R.; Guo, X. Single crystalline SrTiO3 as memristive model system: From materials science to neurological and psychological functions. J. Electroceramics 2017, 39, 210–222. [Google Scholar] [CrossRef]
- Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Park, S.G.; Magyari-Kope, B.; Nishi, Y. Impact of oxygen vacancy ordering on the formation of a conductive filament in TiO2 for resistive switching memory. IEEE Electron Device Lett. 2011, 32, 197–199. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.-J.; Kim, K.M.; Lee, S.R.; Chang, M.; Cho, E.; Kim, Y.-B.; Kim, C.J.; Chung, U.-I.; Yoo, I.-K. Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci. Rep. 2013, 3, 1680. [Google Scholar] [CrossRef]
- Larcher, L.; Padovani, A. Multiscale modeling of oxide RRAM devices for memory applications: From material properties to device performance. J. Comput. Electron. 2017, 16, 1077–1084. [Google Scholar] [CrossRef]
- Padovani, A.; Larcher, L.; Pirrotta, O.; Vandelli, L.; Bersuker, G. Microscopic modeling of HfOx RRAM operations: From forming to switching. IEEE Trans. Electron Devices 2015, 62, 1998–2006. [Google Scholar] [CrossRef]
- Chen, S. Physics-Based Stochastic Three-Dimensional Modeling for Metal–Oxide Resistive Random Access Memory. IEEE Trans. Electron Devices 2021, 68, 3353–3358. [Google Scholar] [CrossRef]
- Guan, X.; Yu, S.; Wong, H.S.P. On the switching parameter variation of metal-oxide RRAM—Part I: Physical modeling and simulation methodology. IEEE Trans. Electron Devices 2012, 59, 1172–1182. [Google Scholar] [CrossRef]
- Yu, S.; Guan, X.; Wong, H.S.P. On the switching parameter variation of metal oxide RRAM—Part II: Model corroboration and device design strategy. IEEE Trans. Electron Devices 2012, 59, 1183–1188. [Google Scholar] [CrossRef]
- Omura, Y.; Mallik, A. Simulation study on physical parameters ruling unipolar resistance switching of sputter-deposited silicon oxide film on Si substrate. Solid State Electron 2023, 206, 108670. [Google Scholar] [CrossRef]
- Chua, L. Memristor-The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Chae, S.C.; Lee, J.S.; Kim, S.; Lee, S.B.; Chang, S.H.; Liu, C.; Kahng, B.; Shin, H.; Kim, D.; Jung, C.U.; et al. Random Circuit Breaker Network Model for Unipolar Resistance Switching. Adv. Mater. 2008, 20, 1154–1159. [Google Scholar] [CrossRef]
- Bocquet, M.; Deleruyelle, D.; Aziza, H.; Muller, C.; Portal, J.M. Compact modeling solutions for OxRAM memories. In Proceedings of the 2013 IEEE Faible Tension Faible Consommation, FTFC 2013, Paris, France, 20–21 June 2013; pp. 2–5. [Google Scholar] [CrossRef]
- Bocquet, M.; Deleruyelle, D.; Aziza, H.; Muller, C.; Portal, J.-M.; Cabout, T.; Jalaguier, E. Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 2014, 61, 674–681. [Google Scholar] [CrossRef]
- Roldán, J.B.; González-Cordero, G.; Picos, R.; Miranda, E.; Palumbo, F.; Jiménez-Molinos, F.; Moreno, E.; Maldonado, D.; Baldomá, S.B.; Al Chawa, M.M.; et al. On the thermal models for resistive random access memory circuit simulation. Nanomaterials 2021, 11, 1261. [Google Scholar] [CrossRef]
- Ramirez, J.F.; Perez, S.A.; Moreno, M.; Morales, A. 2D simulation of the resistive state in bipolar resistive switching memories based on oxygen vacancies. In Proceedings of the 2022 IEEE Latin America Electron Devices Conference, LAEDC 2022, Cancun, Mexico, 4–6 July 2022. [Google Scholar] [CrossRef]
- Maldonado, D.; Aguilera-Pedregosa, C.; Vinuesa, G.; García, H.; Dueñas, S.; Castán, H.; Aldana, S.; González, M.; Moreno, E.; Jiménez-Molinos, F.; et al. An experimental and simulation study of the role of thermal effects on variability in TiN/Ti/HfO2/W resistive switching nonlinear devices. Chaos Solitons Fractals 2022, 160, 112247. [Google Scholar] [CrossRef]
- Yu, S.; Wong, H.S.P. A phenomenological model for the reset mechanism of metal oxide RRAM. IEEE Electron Device Lett. 2010, 31, 1455–1457. [Google Scholar] [CrossRef]
- Voter, A.F. Introduction to the Kinetic Monte Carlo Method. In Radiation Effects in Solids; Springer: Berlin/Heidelberg, Germany, 2007; pp. 1–23. [Google Scholar] [CrossRef]
- Vineyard, G.H. Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 1957, 3, 121–127. [Google Scholar] [CrossRef]
- Uberuaga, B.P.; Voter, A.F. Accelerated molecular dynamics methods. In Radiation Effects in Solids; Springer: Berlin/Heidelberg, Germany, 2007; pp. 25–43. [Google Scholar] [CrossRef]
- Strukov, D.B.; Williams, R.S. Exponential ionic drift: Fast switching and low volatility of thin-film memristors. Appl. Phys. A Mater. Sci. Process. 2009, 94, 515–519. [Google Scholar] [CrossRef]
- Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A.L. Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 2009, 56, 193–200. [Google Scholar] [CrossRef]
- Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A.L. Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 2009, 56, 186–192. [Google Scholar] [CrossRef]
- Lim, E.; Ismail, R. Conduction Mechanism of Valence Change Resistive Switching Memory: A Survey. Electronics 2015, 4, 586–613. [Google Scholar] [CrossRef]
- Mott, N.F.; Davis, E.A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: Oxford, UK, 1979. [Google Scholar]
- Sahoo, S.K.; Misra, D. Interfacial layer growth condition dependent carrier transport mechanisms in HfO2/SiO2 gate stacks. Appl. Phys. Lett. 2012, 100, 232903. [Google Scholar] [CrossRef]
- Murgatroyd, P.N. Theory of space-charge-limited current enhanced by Frenkel effect. J. Phys. D Appl. Phys. 1970, 3, 151–156. [Google Scholar] [CrossRef]
- Patil, A.R.; Dongale, T.D.; Kamat, R.K.; Rajpure, K.Y. Binary metal oxide-based resistive switching memory devices: A status review. Mater. Today Commun. 2023, 34, 105356. [Google Scholar] [CrossRef]
- Morales-Sánchez, A.; González-Flores, K.E.; Pérez-García, S.A.; González-Torres, S.; Garrido-Fernández, B.; Hernández-Martínez, L.; Moreno-Moreno, M. Digital and Analog Resistive Switching Behavior in Si-NCs Embedded in a Si/SiO2 Multilayer Structure for Neuromorphic Systems. Nanomaterials 2023, 13, 986. [Google Scholar] [CrossRef]
- González, K.E.; Palacios-Márquez, B.; Alvarez-Quintana, J.; Pérez–García, S.A.; Licea–Jiménez, L.; Horley, P.P.; Morales-Sánchez, A.; Jiménez, L.L. Resistive switching control for conductive Si-nanocrystals embedded in Si/SiO2 multilayers. Nanotechnology 2018, 29, 395203. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
5 μs | |
1013 Hz | |
1 eV | |
during the SET | 3.0 |
during the RESET | 0.4 |
0.325 nm | |
M × N × P | 10 × 10 × 14 |
6 × 106 | |
5.4 | |
1 eV | |
8 | |
0.33 nm | |
7.5 × 10−15 A/V-cm | |
8.5 (8.85 × 10−14) F/cm | |
0.1 eV | |
3.5 × 10−19 A-cm/V2 | |
1 mm2 | |
8 × 103 K/W | |
4.0 | |
0.0 | |
−9.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Rios, J.; Avilés-Bravo, J.J.; Moreno-Moreno, M.; Hernández-Martínez, L.; Morales-Sánchez, A. Three-Dimensional Simulation of Bipolar Resistive Switching Memory with Embedded Conductive Nanocrystals in an Oxide Matrix. Chips 2025, 4, 11. https://doi.org/10.3390/chips4010011
Ramirez-Rios J, Avilés-Bravo JJ, Moreno-Moreno M, Hernández-Martínez L, Morales-Sánchez A. Three-Dimensional Simulation of Bipolar Resistive Switching Memory with Embedded Conductive Nanocrystals in an Oxide Matrix. Chips. 2025; 4(1):11. https://doi.org/10.3390/chips4010011
Chicago/Turabian StyleRamirez-Rios, Juan, José Juan Avilés-Bravo, Mario Moreno-Moreno, Luis Hernández-Martínez, and Alfredo Morales-Sánchez. 2025. "Three-Dimensional Simulation of Bipolar Resistive Switching Memory with Embedded Conductive Nanocrystals in an Oxide Matrix" Chips 4, no. 1: 11. https://doi.org/10.3390/chips4010011
APA StyleRamirez-Rios, J., Avilés-Bravo, J. J., Moreno-Moreno, M., Hernández-Martínez, L., & Morales-Sánchez, A. (2025). Three-Dimensional Simulation of Bipolar Resistive Switching Memory with Embedded Conductive Nanocrystals in an Oxide Matrix. Chips, 4(1), 11. https://doi.org/10.3390/chips4010011