Uncertainty Quantification and Simulation of Wind-Tunnel-Informed Stochastic Wind Loads †
Abstract
:1. Introduction
2. Theoretical Background
2.1. Simulation of Multivariate Stochastic Wind Loads
2.2. Wind-Tunnel-Informed POD-Based SRM
3. Uncertainty Quantification
3.1. Errors Induced by Wind Tunnel Data
3.2. Errors Induced by the Model
4. Wind Tunnel Tests
4.1. Experimental Setup
4.2. Processing of the Wind Tunnel Data
5. Results
5.1. Preamble
5.2. Errors Induced by the Variability of Short-Duration Wind Tunnel Records
5.3. Model and Truncation Errors
5.3.1. Model Errors
5.3.2. Truncation Errors
6. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Standardization Scheme of Force Coefficients
References
- Zeldin, B.A.; Spanos, P.D. Random Field Representation and Synthesis Using Wavelet Bases. J. Appl. Mech. 1996, 63, 946–952. [Google Scholar] [CrossRef]
- Kitagawa, T.; Nomura, T. A wavelet-based method to generate artificial wind fluctuation data. J. Wind Eng. Ind. Aerodyn. 2003, 91, 943–964. [Google Scholar] [CrossRef]
- Li, Y.; Kareem, A. Simulation of multivariate random processes: Hybrid DFT and digital filtering approach. J. Eng. Mech. 1993, 119, 1078–1098. [Google Scholar] [CrossRef]
- Mignolet, M.P.; Spanos, P.D. Simulation of Homogeneous Two-Dimensional Random Fields: Part I—AR and ARMA Models. J. Appl. Mech. 1992, 59, S260–S269. [Google Scholar] [CrossRef]
- Shinozuka, M.; Deodatis, G. Simulation of stochastic processes by spectral representation. Appl. Mech. Rev. 1991, 44, 191–204. [Google Scholar] [CrossRef]
- Deodatis, G. Simulation of ergodic multivariate stochastic processes. J. Eng. Mech. 1996, 122, 778–787. [Google Scholar] [CrossRef]
- Cheynet, E.; Daniotti, N.; Bogunović Jakobsen, J.; Snæbjörnsson, J.; Wang, J. Unfrozen skewed turbulence for wind loading on structures. Appl. Sci. 2022, 12, 9537. [Google Scholar] [CrossRef]
- Huang, G.; Peng, L.; Kareem, A.; Song, C. Data-driven simulation of multivariate nonstationary winds: A hybrid multivariate empirical mode decomposition and spectral representation method. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104073. [Google Scholar] [CrossRef]
- López-Ibarra, A.; Pozos-Estrada, A.; Nava-González, R. Effect of Partially Correlated Wind Loading on the Response of Two-Way Asymmetric Systems: The Impact of Torsional Sensitivity and Nonlinear Effects. Appl. Sci. 2023, 13, 6421. [Google Scholar] [CrossRef]
- Wang, L.; McCullough, M.; Kareem, A. A data-driven approach for simulation of full-scale downburst wind speeds. J. Wind Eng. Ind. Aerodyn. 2013, 123, 171–190. [Google Scholar] [CrossRef]
- Shinozuka, M. Stochastic fields and their digital simulation. In Stochastic Methods in Structural Dynamics; Springer: Dordrecht, The Netherlands, 1987; pp. 93–133. [Google Scholar]
- Tamura, Y.; Suganuma, S.; Kikuchi, H.; Hibi, K. Proper orthogonal decomposition of random wind pressure field. J. Fluids Struct. 1999, 13, 1069–1095. [Google Scholar] [CrossRef]
- Carassale, L.; Piccardo, G.; Solari, G. Double modal transformation and wind engineering applications. J. Eng. Mech. 2001, 127, 432–439. [Google Scholar] [CrossRef]
- Chen, L.; Letchford, C.W. Simulation of multivariate stationary Gaussian stochastic processes: Hybrid spectral representation and proper orthogonal decomposition approach. J. Eng. Mech. 2005, 131, 801–808. [Google Scholar] [CrossRef]
- Chen, X.; Kareem, A. Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures. J. Eng. Mech. 2005, 131, 325–339. [Google Scholar] [CrossRef]
- Ouyang, Z.; Spence, S.M.J. A performance-based wind engineering framework for envelope systems of engineered buildings subject to directional wind and rain hazards. J. Struct. Eng. 2020, 146, 04020049. [Google Scholar] [CrossRef]
- Hu, L.; Li, L.; Gu, M. Error assessment for spectral representation method in wind velocity field simulation. J. Eng. Mech. 2010, 136, 1090–1104. [Google Scholar] [CrossRef]
- Tao, T.; Wang, H.; Hu, L.; Kareem, A. Error analysis of multivariate wind field simulated by interpolation-enhanced spectral representation method. J. Eng. Mech. 2020, 146, 04020049. [Google Scholar] [CrossRef]
- Davenport, A. The response of six building shapes to turbulent wind. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 1971, 269, 385–394. [Google Scholar]
- Simiu, E. Wind spectra and dynamic alongwind response. J. Struct. Div. 1974, 100, 1897–1910. [Google Scholar] [CrossRef]
- Melbourne, W. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows. J. Wind Eng. Ind. Aerodyn. 1980, 6, 73–88. [Google Scholar] [CrossRef]
- Solari, G. Analytical estimation of the alongwind response of structures. J. Wind Eng. Ind. Aerodyn. 1983, 14, 467–477. [Google Scholar] [CrossRef]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: Oxford, UK, 1994. [Google Scholar]
- Gurley, K.; Kareem, A. Simulation of correlated non-Gaussian pressure fields. Meccanica 1998, 33, 309–317. [Google Scholar] [CrossRef]
- Suksuwan, A.; Spence, S.M.J. Optimization of uncertain structures subject to stochastic wind loads under system-level first excursion constraints: A data-driven approach. Comput. Struct. 2018, 210, 58–68. [Google Scholar] [CrossRef]
- Lin, N.; Letchford, C.; Tamura, Y.; Liang, B.; Nakamura, O. Characteristics of wind forces acting on tall buildings. J. Wind Eng. Ind. Aerodyn. 2005, 93, 217–242. [Google Scholar] [CrossRef]
- Tamura, Y.; Kareem, A. Advanced Structural Wind Engineering; Springer: Tokyo, Japan, 2013; Volume 482. [Google Scholar]
- Spence, S.M.J.; Kareem, A. Data-enabled design and optimization (DEDOpt): Tall steel building frameworks. Comput. Struct. 2013, 129, 134–147. [Google Scholar] [CrossRef]
- Gurley, K.R. Modelling and Simulation of Non-Gaussian Processes; University of Notre Dame: Notre Dame, IN, USA, 1997. [Google Scholar]
- Welch, P. The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 1967, 15, 70–73. [Google Scholar] [CrossRef]
- Solomon, O.M., Jr. PSD Computations Using Welch’s Method; Technical Report; Sandia National Labs.: Albuquerque, NM, USA, 1991. [Google Scholar]
- Tao, T.; Wang, H.; Yao, C.; He, X.; Kareem, A. Efficacy of interpolation-enhanced schemes in random wind field simulation over long-span bridges. J. Bridge Eng. 2018, 23, 04017147. [Google Scholar] [CrossRef]
- Catarelli, R.A.; Fernández-Cabán, P.L.; Phillips, B.M.; Bridge, J.A.; Masters, F.J.; Gurley, K.R.; Prevatt, D.O. Automation and new capabilities in the university of Florida NHERI Boundary Layer Wind Tunnel. Front. Built Environ. 2020, 6, 558151. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, Y.; Li, D. Error assessment of multivariate random processes simulated by a conditional-simulation method. J. Eng. Mech. 2015, 141, 04014155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, T.G.A.; Arunachalam, S.; Subgranon, A.; Spence, S.M.J. Uncertainty Quantification and Simulation of Wind-Tunnel-Informed Stochastic Wind Loads. Wind 2023, 3, 375-393. https://doi.org/10.3390/wind3030022
Duarte TGA, Arunachalam S, Subgranon A, Spence SMJ. Uncertainty Quantification and Simulation of Wind-Tunnel-Informed Stochastic Wind Loads. Wind. 2023; 3(3):375-393. https://doi.org/10.3390/wind3030022
Chicago/Turabian StyleDuarte, Thays G. A., Srinivasan Arunachalam, Arthriya Subgranon, and Seymour M. J. Spence. 2023. "Uncertainty Quantification and Simulation of Wind-Tunnel-Informed Stochastic Wind Loads" Wind 3, no. 3: 375-393. https://doi.org/10.3390/wind3030022