An Intelligent Method for Fault Location Estimation in HVDC Cable Systems Connected to Offshore Wind Farms
Abstract
:1. Introduction
2. Transmission System of Multi-Terminal VSC-HVDC Connected to OWFs
2.1. Test System
2.2. DC Cable Fault Classification
- Positive cable ground fault.
- Negative cable ground fault.
- Pole-to-pole fault (positive cable to negative cable fault).
3. The Proposed Concept
- Maximum absolute value of sampled data for sheath voltage (signal peak).
- Average of sampled data for sheath voltage.
4. Simulation Results
4.1. Simulation Results for Faults in Area A
4.2. Simulation Results for Faults in Area B
4.3. Simulation Results for Faults in Area C
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Parameters | Value |
---|---|
OWF power (in total) | 400 MW |
Line-to-line AC voltage | 400 kV |
Pole-to-ground DC voltage | 150 kV |
X/R ratio (AC grid) | 10 |
Voltage ratio of VSC transformer | 33 kV/155 kV |
Leakage reactance of converter transformer | 0.1 p.u. |
DC capacitor | 100 µF |
Radius [m] | Resistivity (ohm*m) | Relative Permittivity | Relative Permeability | |
---|---|---|---|---|
Conductor | 0.019 | 1.72 × 10−8 | - | 1 |
Main insulation | 0.039 | - | 2.5 | - |
Sheath | 0.042 | 2.2 × 10−7 | - | 1 |
Insulation A | 0.044 | - | 2.5 | - |
Armor | 0.049 | 1.8 × 10−7 | - | 100 |
Insulation B | 0.051 | - | 2.5 | - |
Appendix B. More Details and Equations of the ANN Used in the Simulation Study
References
- Morton, A.B.; Cowdroy, S.; Hill, J.R.A.; Halliday, M.; Nicholson, G.D. AC or dc economics of grid connection design for offshore wind farms. In Proceedings of the IEE International Conference on AC-DC Power Transmission (ACDC 2006), London, UK, 28–31 March 2006; pp. 236–240. [Google Scholar]
- Bresesti, P.; Kling, W.L.; Hendriks, R.L.; Vailati, R. HVDC Connection of Offshore Wind Farms to the Transmission System. IEEE Trans. Energy Convers. 2007, 22, 37–43. [Google Scholar] [CrossRef]
- Kirby, N.; Xu, L.; Luckett, M.; Siepmann, W. HVDC transmission for large offshore wind farms. Power Eng. 2002, 16, 135–141. [Google Scholar] [CrossRef]
- Koldby, E.; Hyttinen, M. Challenges on the Road to an Offshore HVDC Grid. In Proceedings of the Nordic Wind Power Conference, Bornholm, Denmark, 10–11 September 2009. [Google Scholar]
- Schettler, F.; Huang, H.; Christl, N. HVDC transmission systems using voltage sourced converters design and applications. In Proceedings of the 2000 Power Engineering Society Summer Meeting, Seattle, WA, USA, 16–20 July 2000; Volume 2, pp. 715–720. [Google Scholar]
- Tang, L.; Wu, B.; Yaramasu, V.; Chen, W.; Athab, H.S. Novel dc/dc choppers with circuit breaker functionality for HVDC transmission lines. Electr. Power Syst. Res. 2014, 116, 106–116. [Google Scholar] [CrossRef]
- Rakhshani, E.; Remon, D.; Rodriguez, P. Effects of PLL and frequency measurements on LFC problem in multi-area HVDC interconnected systems. Int. J. Electr. Power Energy Syst. 2016, 81, 140–152. [Google Scholar] [CrossRef]
- Yang, B.; Sang, Y.; Shi, K.; Yao, W.; Jiang, L.; Yu, T. Design and real-time implementation of perturbation observer based sliding-mode control for VSC-HVDC systems. Control Eng. Pract. 2016, 56, 13–26. [Google Scholar] [CrossRef]
- Dirk Van Hertem, O.G.-B.; Liang, J. HVDC Grids: For Offshore and Supergrid of the Future; IEEE Press Series on Power Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Sano, K.; Takasaki, M. A Surgeless Solid-State DC Circuit Breaker for Voltage-Source-Converter-Based HVDC Systems. IEEE Trans. Ind. Appl. 2013, 50, 2690–2699. [Google Scholar] [CrossRef]
- Tang, L.; Ooi, B.T. Protection of VSC-multi-terminal HVDC against DC faults. In Proceedings of the 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference, Cairns, Australia, 23–27 June 2002; pp. 719–724. [Google Scholar]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Multiterminal dc wind farm collection grid internal fault analysis and protection scheme design. IEEE Trans. Power Deliv. 2010, 25, 2308–2318. [Google Scholar] [CrossRef]
- Tang, L.; Ooi, B.-T. Locating and Isolating DC Faults in Multi-Terminal DC Systems. IEEE Trans. Power Deliv. 2007, 22, 1877–1884. [Google Scholar] [CrossRef]
- Kwon, Y.-J.; Kang, S.-H.; Lee, D.-G.; Kim, H.-K. Fault location algorithm based on cross correlation method for HVDC cable lines. In Proceedings of the IET 9th International Conference Developments in Power System Protection, Glasgow, UK, 17–20 March 2008; pp. 17–20. [Google Scholar]
- Pan, Y.; Steurer, M.; Baldwin, T. Feasibility study of noise pattern analysis based ground fault locating method for ungrounded dc shipboard power distribution systems. In Proceedings of the 2009 IEEE Electric Ship Technologies Symposium ESTS, Baltimore, MD, USA, 20–22 April 2009; IEEE: Piscataway, NJ, USA, 2009. [Google Scholar]
- Christopher, E.; Sumner, M.; Thomas, D.W.; Wang, X.; de Wildt, F. Fault location in a zonal DC marine power system using active impedance estimation. In Proceedings of the Energy Conversion Congress and Exposition (ECCE), Atlanta, GA, USA, 12–16 September 2010. [Google Scholar]
- Kwon, Y.J.; Kang, S.H.; Choi, C.Y.; Ji, S.Y. A Fault Location Algorithm for VSC HVDC Cable lines. In Proceedings of the International Conference on Electrical Engineering, ICEE, Krabi, Thailand, 14–17 May 2008. [Google Scholar]
- Yang, J.; Fletcher, J.E.; O’Reilly, J. Short-circuit and ground fault analysis and location in VSC-based DC network cables. IEEE Trans. Ind. Electron. 2012, 59, 3827–3837. [Google Scholar] [CrossRef]
- Leterme, W.; Azad, S.P.; Van Hertem, D. HVDC grid protection algorithm design in phase and modal domains. IET Renew. Power Gener. 2018, 12, 1538–1546. [Google Scholar] [CrossRef]
- Jia, K.; Chen, R.; Xuan, Z.; Yang, Z.; Fang, Y.; Bi, T. Fault characteristics and protection adaptability analysis in VSC-HVDC-connected offshore wind farm integration system. IET Renew. Power Gener. 2018, 12, 1547–1554. [Google Scholar] [CrossRef]
- Marvasti, F.D.; Mirzaei, A. A Novel Method of Combined DC and Harmonic Overcurrent Protection for Rectifier Converters of Monopolar HVDC Systems. IEEE Trans. Power Deliv. 2018, 33, 892–900. [Google Scholar] [CrossRef]
- Leterme, W.; Hertem, D.V. Cable Protection in HVDC Grids Employing Distributed Sensors and Proactive HVDC Breakers. IEEE Trans. Power Deliv. 2018, 33, 1981–1990. [Google Scholar] [CrossRef]
- Ma, Y.; Li, H.; Wang, G.; Wu, J. Fault Analysis and Traveling-Wave-Based Protection Scheme for Double-Circuit LCC-HVDC Transmission Lines with Shared Towers. IEEE Trans. Power Deliv. 2018, 33, 1479–1488. [Google Scholar] [CrossRef]
- Nanayakkara, O.M.K.K.; Rajapakse, A.D.; Wachal, R. Traveling-Wave-Based Line Fault Location in Star-Connected Multiterminal HVDC Systems. IEEE Trans. Power Deliv. 2012, 27, 2286–2294. [Google Scholar] [CrossRef]
- Gao, S.-P.; Chu, X.; Shen, Q.-Y.; Jin, X.-F.; Luo, J.; Yun, Y.-Y.; Song, G.-B. A novel whole-line quick-action protection principle for HVDC transmission lines using one-end voltage. Int. J. Electr. Power Energy Syst. 2015, 65, 262–270. [Google Scholar] [CrossRef]
- Nanayakkara, O.M.K.K.; Rajapakse, A.D.; Wachal, R. Location of DC Line Faults in Conventional HVDC Systems with Segments of Cables and Overhead Lines Using Terminal Measurements. IEEE Trans. Power Deliv. 2011, 27, 279–288. [Google Scholar] [CrossRef]
- De Kerf, K.; Srivastava, K.; Reza, M.; Bekaert, D.; Cole, S.; Van Hertem, D.; Belmans, R. Wavelet-based protection strategy for DC faults in multi-terminal VSC HVDC systems. IET Gener. Transm. Distrib. 2011, 5, 496–503. [Google Scholar] [CrossRef]
- Liu, X.; Osman, A.H.; Malik, O.P. Hybrid Traveling Wave/Boundary Protection for Monopolar HVDC Line. IEEE Trans. Power Deliv. 2009, 24, 569–578. [Google Scholar] [CrossRef]
- Xiao-Dong, Z.; Neng-Ling, T.; Thorp, J.S.; Guang-Liang, Y. A transient harmonic current protection scheme for HVDC transmission line. IEEE Trans. Power Deliv. 2012, 27, 2278–2285. [Google Scholar]
- Zheng, J.; Wen, M.; Chen, Y.; Shao, X. A novel differential protection scheme for HVDC transmission lines. Int. J. Electr. Power Energy Syst. 2018, 94, 171–178. [Google Scholar] [CrossRef]
- Farshad, M.; Sadeh, J. A Novel Fault-Location Method for HVDC Transmission Lines Based on Similarity Measure of Voltage Signals. IEEE Trans. Power Deliv. 2013, 28, 2483–2490. [Google Scholar] [CrossRef]
- He, Z.-Y.; Liao, K.; Li, X.-P.; Lin, S.; Yang, J.-W.; Mai, R.-K. Natural Frequency-Based Line Fault Location in HVDC Lines. IEEE Trans. Power Deliv. 2013, 29, 851–859. [Google Scholar] [CrossRef]
- Hao, Y.; Wang, Q.; Li, Y.; Song, W. An intelligent algorithm for fault location on VSC-HVDC system. Int. J. Electr. Power Energy Syst. 2018, 94, 116–123. [Google Scholar] [CrossRef]
- Liang, J.; Jing, T.; Gomis-Bellmunt, O.; Ekanayake, J.; Jenkins, N. Operation and Control of Multiterminal HVDC Transmission for Offshore Wind Farms. IEEE Trans. Power Deliv. 2011, 26, 2596–2604. [Google Scholar] [CrossRef]
- Bahrman, M.P.; Johnson, B.K. The ABCs of HVDC transmission technologies. IEEE Power Energy Mag. 2007, 5, 32–44. [Google Scholar] [CrossRef]
- Baran, M.; Mahajan, N. DC distribution for industrial systems: Opportunities and challenges. IEEE Trans. Ind. Appl. 2003, 39, 1596–1601. [Google Scholar] [CrossRef]
- Nguefeu, S.; Rault, P.; Grieshaber, W.; Hassan, F. DEMO 3 Requirement Specifications: Detailed Specifications for a DC Network and Detailed Specifications for ALSTOM Grid’s DC Breaker. Deliverable n°11.1 of the Twenties Project. 2012. Available online: http://www.twentiesproject.eu/node/18 (accessed on 1 January 2014).
- Bucher, M.K.; Franck, C.M. Contribution of Fault Current Sources in Multiterminal HVDC Cable Networks. IEEE Trans. Power Deliv. 2013, 28, 1796–1803. [Google Scholar] [CrossRef]
- Ashrafi Niaki, S.H.; Liu, Z.; Chen, Z.; Bak-Jensen, B.; Hu, S. Protection System of Multi-Terminal MMC-based HVDC Grids: A Survey. In Proceedings of the 2022 International Conference on Power Energy Systems and Applications (ICoPESA), Singapore, 25–27 February 2022; pp. 167–177. [Google Scholar]
- Marti, J. Accurate modeling of frequency dependent transmission lines in electromagnetic transients simulation. IEEE Trans. Power Appar. Syst. 1982, 101, 147–155. [Google Scholar] [CrossRef]
- Morched, A.; Gustavsen, B.; Tartibi, M. A universal model for accurate calculation of electromagnetic transients on overhead lines and underground cables. IEEE Trans. Power Deliv. 1999, 14, 1032–1038. [Google Scholar] [CrossRef]
- Suonan, J.; Gao, S.; Song, G.; Jiao, Z.; Kang, X. A Novel Fault-Location Method for HVDC Transmission Lines. IEEE Trans. Power Deliv. 2009, 25, 1203–1209. [Google Scholar] [CrossRef]
- Fayazi, M.; Joorabian, M.; Saffarian, A.; Monadi, M. A single-ended traveling wave based fault location method using DWT in hybrid parallel HVAC/HVDC overhead transmission lines on the same tower. Electr. Power Syst. Res. 2023, 220, 109302. [Google Scholar] [CrossRef]
- Zhang, X.; Tai, N.; Zheng, X.; Huang, W. Wavelet-based EMTR method for fault location of VSC-HVDC transmission lines. J. Eng. 2019, 2019, 961–966. [Google Scholar] [CrossRef]
- Farshad, M.; Karimi, M. A Signal Segmentation Approach to Identify Incident/Reflected Traveling Waves for Fault Location in Half-Bridge MMC-HVdc Grids. IEEE Trans. Instrum. Meas. 2021, 71, 1–9. [Google Scholar] [CrossRef]
- Suonan, J.; Zhang, J.; Jiao, Z.; Yang, L.; Song, G. Distance Protection for HVDC Transmission Lines Considering Frequency-Dependent Parameters. IEEE Trans. Power Deliv. 2013, 28, 723–732. [Google Scholar] [CrossRef]
- Luo, G.; Yao, C.; Liu, Y.; Tan, Y.; He, J.; Wang, K. Stacked Auto-Encoder Based Fault Location in VSC-HVDC. IEEE Access 2018, 6, 33216–33224. [Google Scholar] [CrossRef]
- Silva, A.S.; Santos, R.C.; Torres, J.A.; Coury, D.V. An accurate method for fault location in HVDC systems based on pattern recognition of DC voltage signals. Electr. Power Syst. Res. 2019, 170, 64–71. [Google Scholar] [CrossRef]
Fault Distance (km) | Fault Resistance (Ω) | Mean Absolute Error (%) | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Estimation Error (%) | ||||
10 | 0.33 | 0.49 | 0.53 | 0.45 |
20 | 0.65 | 0.32 | 0.40 | 0.456 |
30 | 0.27 | 0.38 | 0.39 | 0.346 |
40 | 0.42 | 0.69 | 0.58 | 0.563 |
50 | 0.29 | 0.48 | 0.63 | 0.466 |
Estimated Error Average | 0.392 | 0.472 | 0.506 | 0.4562 |
Fault Distance (km) | Fault Resistance (Ω) | Mean Absolute Error (%) | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Estimation Error (%) | ||||
10 | 0.45 | 0.41 | 0.73 | 0.53 |
20 | 0.55 | 0.37 | 0.46 | 0.46 |
30 | 0.16 | 0.44 | 0.64 | 0.413 |
40 | 0.52 | 0.60 | 0.71 | 0.61 |
50 | 0.21 | 0.40 | 0.59 | 0.4 |
Estimated Error Average | 0.378 | 0.444 | 0.626 | 0.4826 |
Fault Distance (km) | Fault Resistance (Ω) | Mean Absolute Error (%) | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Estimation Error (%) | ||||
10 | 0.13 | 0.22 | 0.44 | 0.263 |
20 | 0.32 | 0.31 | 0.64 | 0.423 |
30 | 0.54 | 0.66 | 0.60 | 0.6 |
40 | 0.37 | 0.51 | 0.75 | 0.453 |
50 | 0.74 | 0.53 | 0.55 | 0.606 |
60 | 0.36 | 0.77 | 0.61 | 0.58 |
70 | 0.48 | 0.39 | 0.57 | 0.48 |
Estimated Error Average | 0.420 | 0.484 | 0.594 | 0.486 |
Fault Distance (km) | Fault Resistance (Ω) | Mean Absolute Error (%) | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Estimation Error (%) | ||||
10 | 0.17 | 0.64 | 0.49 | 0.433 |
20 | 0.56 | 0.85 | 0.55 | 0.653 |
30 | 0.50 | 0.52 | 0.60 | 0.54 |
40 | 0.47 | 0.30 | 0.73 | 0.5 |
50 | 0.64 | 0.74 | 0.67 | 0.683 |
60 | 0.30 | 0.31 | 0.53 | 0.38 |
70 | 0.71 | 0.87 | 0.50 | 0.693 |
Estimated Error Average | 0.478 | 0.604 | 0.581 | 0.554 |
Fault Distance (km) | Fault Resistance (Ω) | Mean Absolute Error (%) | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Estimation Error (%) | ||||
10 | 0.50 | 0.42 | 0.54 | 0.486 |
20 | 0.11 | 0.31 | 0.43 | 0.283 |
30 | 0.44 | 0.48 | 0.59 | 0.503 |
40 | 0.57 | 0.66 | 0.85 | 0.693 |
50 | 0.36 | 0.50 | 0.73 | 0.53 |
60 | 0.41 | 0.31 | 0.60 | 0.44 |
70 | 0.48 | 0.63 | 0.88 | 0.663 |
80 | 0.57 | 0.62 | 0.55 | 0.58 |
90 | 0.59 | 0.71 | 0.73 | 0.676 |
Estimated Error Average | 0.447 | 0.515 | 0.655 | 0.539 |
Fault Distance (km) | Fault Resistance (Ω) | Mean Absolute Error (%) | ||
---|---|---|---|---|
0 | 10 | 100 | ||
Estimation Error (%) | ||||
10 | 0.52 | 0.79 | 0.50 | 0.603 |
20 | 0.25 | 0.21 | 0.62 | 0.36 |
30 | 0.34 | 0.43 | 0.51 | 0.426 |
40 | 0.64 | 0.69 | 0.74 | 0.69 |
50 | 0.30 | 0.68 | 0.79 | 0.59 |
60 | 0.48 | 0.55 | 0.66 | 0.563 |
70 | 0.43 | 0.63 | 0.80 | 0.62 |
80 | 0.50 | 0.42 | 0.45 | 0.456 |
90 | 0.67 | 0.60 | 0.77 | 0.68 |
Estimated Error Average | 0.458 | 0.555 | 0.648 | 0.554 |
Reference | Algorithm | Signal Used | Sampling Frequency (kHz) | Communication Required | Max. Error (%) |
---|---|---|---|---|---|
[42] | Voltage distribution | Current and voltage | 100 | Yes (double-ended) | 0.78 |
[43] | DWT * | Voltage | 100 | No (single-ended) | 0.85 |
[44] | Wavelet | Current | 50–200 | Yes (double-ended) | 0.965 |
[45] | SSA * | Voltage | 250 | No (single-ended) | 2.12 |
[46] | Distance relay | Current and voltage | 80 | No (single-ended) | 3.6 |
[47] | SAE * | Current | 5 | No (single-ended) | 1.23 |
[48] | ANN | Voltage | 20 | No (single-ended) | 5.69 |
Proposed method | ANN | Sheath voltage | 2.5 | No (single-ended) | 0.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashrafi Niaki, S.H.; Sahebkar Farkhani, J.; Chen, Z.; Bak-Jensen, B.; Hu, S. An Intelligent Method for Fault Location Estimation in HVDC Cable Systems Connected to Offshore Wind Farms. Wind 2023, 3, 361-374. https://doi.org/10.3390/wind3030021
Ashrafi Niaki SH, Sahebkar Farkhani J, Chen Z, Bak-Jensen B, Hu S. An Intelligent Method for Fault Location Estimation in HVDC Cable Systems Connected to Offshore Wind Farms. Wind. 2023; 3(3):361-374. https://doi.org/10.3390/wind3030021
Chicago/Turabian StyleAshrafi Niaki, Seyed Hassan, Jalal Sahebkar Farkhani, Zhe Chen, Birgitte Bak-Jensen, and Shuju Hu. 2023. "An Intelligent Method for Fault Location Estimation in HVDC Cable Systems Connected to Offshore Wind Farms" Wind 3, no. 3: 361-374. https://doi.org/10.3390/wind3030021