Multifactorial Analysis to Determine the Applicability of Wind Power Technologies in Favorable Areas of the Colombian Territory
Abstract
:1. Introduction
- The real available data are analyzed, the variability conditions are characterized, and alternatives of theoretical sites with energy values comparable to each other are generated.
- The analysis is carried out not only from the technical and economic points of view but through multifactorial processing, opening the door to additional discussions and complementary issues for the Colombian wind industry.
2. Methods
2.1. Bibliographic Compilation
2.2. Geographical and Climatic Analysis
2.3. Definition and Selection of Favorable Zones
- The polygon cannot be located outside the municipality or department of the selected measurement station.
- The area for the location of the wind turbines must correspond to the surroundings of the coordinates of the station and cannot be linked to a reserve, protected land, an indigenous settlement, or archaeologically restricted areas.
- It must also be ensured that the positioning is as far away as possible from urban areas and roads.
- The recommendations associated with good practices for a micrositing process are to position the wind turbines perpendicular to the main direction of the wind, at a distance of at least three to four rotor diameters between wind turbines in the same row and at minus five (even seven if the frequency rose is multidirectional) between rows.
- For our case, the coordinates of each station were referenced, and the polygonal points were visually located using Google Earth. This is important since their topographic files were generated in .dxf using the QGIS program.
2.4. Application of Sensibilities
2.5. Mathematical Definitions
3. Results
3.1. Descriptive Statistical Analysis
- Toquilla (Aquitania, Boyacá): Coordinates, 5°31′25″ N 72°47′27,499″ W; altitude, 2.950 m.a.s.l. The time and data range corresponds to 19 August 2017 to 1 December 2021 (4.4 years).
- Santa Cruz de Siecha (Guasca, Cundinamarca): Coordinates, 4°47′3.4″ N 73°52′14,9″ W; altitude, 3.110 m.a.s.l. The time and data range corresponds to 31 December 2015 to 11 March 2019 (3.3 years).
- El Tablazo (Popayán, Cauca): Coordinates, 2°28′29,399″ N 76°34′52,656″ W; altitude, 1.700 m.a.s.l. The time and data range corresponds to 31 December 2015 to 13 August 2021 (5.8 years).
- Villa Teresa (Sumapaz, near Bogotá): Coordinates, 4°20′60″ N 74°9′0″ W; altitude, 3.624 m.a.s.l. The time and data range corresponds to 19 May 2014 to 1 April 2020 (5.9 years).
- Viento Libre (Taminango, Nariño): Coordinates, 1°37′12″ N 77°20′24″ W; altitude, 1.400 m.a.s.l. The time and data range corresponds to 23 November 2016 to 19 May 2020 (3.6 years).
3.2. Site Density Air Determination
3.3. Energy Simulations and Loss Scenario
3.4. Environmental and Economic Analysis
- Supply, transport, and assembly of wind turbines: EUR 2,000,000/MW;
- Wind farm civil works: EUR 5,500,000;
- Control tower civil works: EUR 1,000,000;
- Electrical supplies: EUR 8,200,000;
- Electrical installation: EUR 650,000;
- Development expenses in construction: EUR 1,000,000;
- Park operation and maintenance expenses: EUR 150,000/year (1% annual increase);
- Wind turbine operation and maintenance expenses: EUR 18,000/year (1% annual increase);
- Annual staff costs: EUR 45,000/year;
- Annual insurance and tax expenses: EUR 250,000/year (increments of EUR 1500 per year);
- Annual rent of land: EUR 2000/MW;
- Other expenses: EUR 15,000 per year (1% annual increase).
3.5. Selection Matrix
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Data Explorer Ember—Global Electricity Review 2021. Available online: https://ember-climate.org/global-electricity-review-2021/data-explorer/ (accessed on 21 October 2021).
- IRENA (International Renewable Energy Agency)-Renewable Capacity Statics 2021. Available online: https://www.irena.org/publications/2021/March/Renewable-Capacity-Statistics-2021 (accessed on 20 October 2021).
- EDP en el Mundo-EDP Renováveis se Adjudica 490 MW en Colombia. Available online: https://www.edpr.com/es/news/2019/10/23/edp-renovaveis-se-adjudica-490-mw-en-colombia (accessed on 29 October 2021).
- ACOLGEN-Installed Capacity in Colombia. Available online: https://www.acolgen.org.co/ (accessed on 15 October 2021).
- The Wind Power-Wind Energy Database. Available online: https://www.thewindpower.net/index_es.php (accessed on 31 October 2021).
- EPM (Empresas Públicas de Medellín)-Jepirachi: Una Experiencia Con la Comunidad Indígena Wayuu de la Alta Guajira Colombiana. Available online: https://www.epm.com.co/site/documentos/mediosdecomunicacion/publicacionesimpresas/jepirachi/LibroJepirachienespanol.pdf (accessed on 30 October 2021).
- Betancourt Rodríguez, L.F. Aspectos Básicos Para la Operación, Control y Mantenimiento de un Parque Eólico; Universidad de Los Andes, Departamento de Ingeniería: Bogota, Colombia, 2004; p. 41. [Google Scholar]
- Google Maps: Parque Eolico Jepirachí. Available online: https://www.google.com/maps/@12.2323523,-71.9908758,6971m/data=!3m1!1e3 (accessed on 4 March 2022).
- Quiroga Bernal, L.M. Beneficios Obtenidos y Potenciales Por el Desarrollo del Proyecto del Parque Eólico Jepirachi Ubicado en el Departamento de la Guajira, Colombia; Universidad Militar Nueva Granada: Bogota, Colombia, 2007; pp. 16–17. [Google Scholar]
- EPM-El Parque Eólico Jepirachi de EPM Reactiva su Operación Hasta 2023. Available online: https://www.epm.com.co/site/el-parque-eolico-jepirachi-de-epm-reactiva-su-operacion-hasta-2023 (accessed on 1 November 2021).
- Echeverri Puerta, J.A. Results and Discussion. In Study of Wind Potential in Colombia and Its Complementary with Hydraulic Generation Sources; Universidad Nacional de Colombia Facultad de Minas, Departamento de Geociencias y Medio Ambiente, Medellín: Medellín, Colombia, 2021; pp. 15–16. [Google Scholar]
- Siabato Benavides, R.C. Introduction. In Identification of Projects with Power Generation Potential Wind Power as a Complement to Other Power Generation Sources in the Boyaca Department; National University of Colombia: Medellín, Colombia, 2018; p. 1. [Google Scholar]
- Hussain, M.; Park, S.K. Systematic Analysis of Wind Resources for Eolic Potential in Bangladesh. Appl. Sci. 2021, 11, 7924. [Google Scholar] [CrossRef]
- Ramírez-Rosado, I.J.; García-Garrido, E.; Fernández-Jiménez, L.A.; Zorzano-Santamaría, P.J.; Monteiro, C.; Miranda, V. Promotion of new wind farms based on a decision support system. Renew. Energy 2008, 33, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Hofer, T.; Sunak, Y.; Siddique, H.; Madlener, R. Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen. Appl. Energy 2016, 163, 222–243. [Google Scholar] [CrossRef]
- Schallenberg-Rodríguez, J.; del Pino, J.N. Evaluation of on-shore wind techno-economical potential in regions and islands. Appl. Energy 2014, 124, 117–129. [Google Scholar] [CrossRef]
- Talayero Navales, A.; Telmo Martínez, E. Wind Resource. In Energías Renovables. Energía Eólica, 2nd ed.; Prensas Universitarias de Zaragoza: Zaragoza, Spain, 2011; p. 29. [Google Scholar]
- Cucó, S. Origin and characteristics of the wind. In Wind Power Handbook; Universitat Politécnica de Valencia: Valencia, Spain, 2017; p. 11. [Google Scholar]
- Gil-García, I.C.; García-Cascales, M.S.; Fernández-Guillamón, A.; Molina-García, A. Categorization and Analysis of Relevant Factors for Optimal Locations in Onshore and Offshore Wind Power Plants: A Taxonomic Review. J. Mar. Sci. Eng. 2019, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Lynn, P. Onshore wind farms. In Onshore and Offshore Wind Energy, 1st ed.; Imperial College: London, UK, 2012; pp. 143–177. [Google Scholar]
- Harsh, S.D.; Dipankar, D. Wake management based life enhancement of battery energy storage system for hybrid wind farms. Renew. Sustain. Energy Rev. 2020, 130, 109912. [Google Scholar] [CrossRef]
- Harsh, S.D.; Dipankar, D.; Aoife, M.F. Lidar assisted wake redirection in wind farms: A data driven approach. Renew. Energy 2020, 152, 484–493. [Google Scholar]
- Dhiman, H.S.; Deb, D.; Muresan, V.; Balas, V.E. Wake Management in Wind Farms: An Adaptive Control Approach. Energies 2019, 12, 1247. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, I. Valoración del viento como fuente de energía eólica en el estado Guerrero. Ing. Rev. Acad. 2018, 22, 30–46. [Google Scholar]
- Cancillería de Colombia-Fronteras Terrestres. Available online: https://www.cancilleria.gov.co/fronteras-terrestres (accessed on 3 March 2022).
- Worldometers-Map of Colombia (Physical). Available online: https://www.worldometers.info/maps/colombia-map/ (accessed on 1 May 2022).
- Montealegre Bocanegra, J.E. Aspectos inherentes al tema de estudio. In Actualización del Componente Meteorológico del Modelo Institucional del IDEAM Sobre el Efecto Climático de Los Fenómenos El Niño y La Niña en Colombia, Como Insumo Para el Atlas Climatológico; Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM: Bogota, Colombia, 2018; pp. 15–17. [Google Scholar]
- Montealegre Bocanegra, J.E. Los Fenómenos El Niño y La Niña-Oscilación Sur. In Actualización del Componente Meteorológico del Modelo Institucional del IDEAM Sobre el Efecto Climático de Los Fenómenos El Niño y La Niña en Colombia, Como Insumo Para el Atlas Climatológico; Instituto de Hidrología, Meteorología y Estudios Ambientales IDEAM: Bogota, Colombia, 2018; pp. 18–21. [Google Scholar]
- IDEAM—Atlas Climatológico de Colombia. Available online: http://atlas.ideam.gov.co/visorAtlasClimatologico.html (accessed on 25 October 2021).
- IGAC-Mapa Zonificación Climática. Available online: https://geoportal.igac.gov.co/contenido/mapas-nacionales (accessed on 3 March 2022).
- Maya Ochoa, C.; Hernández Betancur, J.D.; Gallego Munera, O.M. La valoración de proyectos de energía eólica en Colombia bajo el enfoque de opciones reales. Cuad. Adm. 2012, 25, 193–231. [Google Scholar]
- Guajira 360°—Energía Eólica de la Guajira Para Colombia. Available online: https://guajira360.org/energia-eolica-de-la-guajira-para-colombia/ (accessed on 27 October 2021).
- Ojeda Camargo, E.; Candelo Becerra, J.E.; Silva-Ortega, J.I. Solar and wind energy potential characterization to integrate sustainable projects in native communities in La Guajira Colombia. Rev. Espac. 2017, 38, 11. [Google Scholar]
- Convenio Interadministrativo no. 028 de 2021, Suscrito Entre la Región Administrativa y de Planeación Especial Región Central RAP-E–y la Universidad Distrital Francisco José de Caldas. Available online: https://ceri.udistrital.edu.co/index.php (accessed on 30 October 2021).
- IDEAM—Consulta y Descarga de Datos Metrológicos. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 1 September 2021).
- Datos Abiertos—Velocidad Viento. Available online: https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Velocidad-Viento/sgfv-3yp8/data (accessed on 11 September 2021).
- Datos Abiertos—Dirección Viento. Available online: https://www.datos.gov.co/Ambiente-y-Desarrollo-Sostenible/Direcci-n-Viento/kiw7-v9ta/data (accessed on 12 September 2021).
- Herbert-Acero, J.F.; Probst, O.; Réthoré, P.-E.; Larsen, G.C.; Castillo-Villar, K.K. A Review of Methodological Approaches for the Design and Optimization of Wind Farms. Energies 2014, 7, 6930–7016. [Google Scholar] [CrossRef]
- Gil-García, I.C. Micrositing In Búsqueda y Selección de Emplazamientos Eólicos MICROSITING; Distance University of Madrid: Madrid, Spain, 2018. [Google Scholar]
- Wind Power Program—Estimating Mean Wind Speed. Available online: https://wind-power-program.com/windestimates.htm (accessed on 31 October 2021).
- Alcaldía Municipal de Popayán—Nuestra Ecología. Available online: http://www.popayan.gov.co/ciudadanos/popayan/nuestra-ecologia (accessed on 27 December 2021).
- COLPARQUES—Suampaz. Available online: http://www.colparques.net/SUMAPAZ (accessed on 24 December 2021).
- Corporación Autónoma Regional de Cundinamarca CAR—Plan de Ordenación y Manejo de la Cuenca Hidrográfica POMCA del Río Sumapaz. Available online: https://www.car.gov.co/vercontenido/81 (accessed on 29 December 2021).
- Delgado, M.A.M.; Ruiz, R.S.L.; Arevalo Sánchez, L.M.; Castillo, B.G. Plan de Acción en Biodiversidad 2006–2030 Nariño; Propuesta Técnica; Repositorio Institucional de Documentación Científica: Nariño, Colombia, 2007; pp. 31–208. [Google Scholar]
- Unidad Nacional Para la Gestión del Riesgo de Desastres UNGRD—Municipio de Guasca. Available online: https://repository.usta.edu.co/bitstream/handle/11634/9314/2017josegarzon.pdf?sequence=4 (accessed on 22 December 2021).
- Climate Data Org—Datos Climáticos Mundiales. Available online: https://es.climate-data.org/ (accessed on 17 December 2021).
- Cucó Pardillos, S.; Telmo Martínez, E. (Eds.) Manual de Energía Eólica. Desarrollo de Proyectos e Instalaciones; Editorial de la Universidad Politécnica de Valencia: Valencia, Spain, 2017; ISBN 978-84-9048-514-9. [Google Scholar]
- Interpolación y Extrapolación Númerica y Ajuste de Datos. Available online: https://compinformatidf.files.wordpress.com/2012/03/cap9-interpolextrapolnumer-ajustedatos3.pdf (accessed on 1 January 2022).
- Talayero Navales, A.P.; Telmo Martínez, E. (Eds.) Energía Eólica. Zaragoza; Prensas Universitarias de Zaragoza: Zaragoza, Spain, 2011; ISBN 978-84-15274-97-1. [Google Scholar]
- Gil García, I.C. (Ed.) Energía Eólica; Editorial Centro de Estudios Financieros: Madrid, Spain, 2021; ISBN 978-84-454-4313-2. [Google Scholar]
- Hennecke, D.; Croonenbroeck, C. Spatial-Economic Potential Analysis of Wind Power Plants in Germany. Wind 2021, 1, 77–89. [Google Scholar] [CrossRef]
- Ruíz Gomez, A. Energía solar fotovoltaica: Instalaciones fotovoltaicas aisladas y conectadas a red. In Energía Solar Fotovoltaica. Autoconsumo. Energía Solar Térmica; Centro de Estudios Financieros CEF: Madrid, Spain, 2011; pp. 178–179. [Google Scholar]
- Matas, A. Diseño del formato de escalas tipo Likert: Un estado de la cuestión. Rev. Electrón. Investig. Educ. 2018, 20, 38–47. [Google Scholar] [CrossRef]
- Bedoya Laguna, C.A. Escala Likert. In Diseño de un Instrumento Tipo Likert Para la Descripcion de Las Actitudes Hacia la Tecnología Por Parte de Los Profesores de un Colegio Público de Bogotá; Universidad Distrital Francisco José de Caldas: Bogota, Colombia, 2017; pp. 30–31. [Google Scholar]
- Instituto Nacional de Seguridad y Salud en el Trabajo INSST—NTP 15: Construcción de una Escala de Actitudes Tipo Likert. Available online: https://www.insst.es/documents/94886/195574/NTP+15+Construcci%C3%B3n+de+una+escala+de+actitudes+tipo+Likert.pdf/f5eee915-e80d-4c50-8f9f-5783e64f4449 (accessed on 21 March 2022).
- Dhiman, H.S.; Deb, D.; Muresan, V.; Unguresan, M.-L. Multi-Criteria Decision Making Approach for Hybrid Operation of Wind Farms. Symmetry 2019, 11, 675. [Google Scholar] [CrossRef] [Green Version]
Country/Region | Annual Variation in Wind Power Generation (%) | Annual Variation in Wind Power Generated (TWh) |
---|---|---|
Kenya | 315.7 | 1.19 |
Argentina | 88.5 | 4.4 |
Norway | 68.6 | 3.8 |
Japan | 24.5 | 2.1 |
Morocco | 22.3 | 0.86 |
South Korea | 19.4 | 0.5 |
Egypt | 18.3 | 0.4 |
China | 15.1 | 61.2 |
Australia | 15 | 3.17 |
México | 14.4 | 2.4 |
Uruguay | 14.3 | 0.7 |
United Kingdom | 14.3 | 9.3 |
United States | 14.1 | 41.6 |
Canada | 10.1 | 3.1 |
EU 27 +1 | 9.8 | 41.9 |
Perú | 9.5 | 0.2 |
EU 27 | 9 | 32.7 |
Germany | 6.8 | 8.6 |
Denmark | 3.1 | 0.5 |
Brazil | 1.2 | 0.7 |
Country/Region | Annual Variation in Wind Power Generation (%) | Annual Variation in Wind Power Generated (TWh) |
---|---|---|
Colombia | −88.7 | −0.05 |
Costa Rica | −18.2 | −0.33 |
Hungary | −13 | −0.10 |
Honduras | −12.3 | −0.11 |
Portugal | −10 | −1.37 |
Austria | −9.6 | −0.73 |
Bolivia | −8.6 | −0.01 |
Bosnia and Herzegovina | −7.2 | −0.02 |
Italy | −6.8 | −1.38 |
India | −4.6 | −2.89 |
Philippines | −3.6 | −0.04 |
Reference | Procedure/Method | Country/Region |
---|---|---|
[11] | Correlation Analysis Meteorology Cases Pearson and Spearman Correlation Maps | Colombia Andean Region |
[12] | Temporal Analysis Pearson Correlation Inverse Distance Weighting (IDW) Static Method | Colombia Boyacá |
[13] | Reanalysis of Data (ERA5, ECMWF) Polynomial Curve Fitting Simple Power Prediction Model (SPPM) | Bangladesh |
[14] | Criteria and Tolerance Maps Wasp Software Application Validation of Environmental Restrictions | Spain La Rioja |
[15] | Spatial Analytic Hierarchy Process (AHP) Multicriteria Decision Making (MCDM) | Germany |
[16] | Literature Review Determination of Territorial Constraints Wind Potential Based on GIS Application Use of Power Curves | Spain Canary Islands |
Present work | Micrositing Technique and Multifactorial Analysis Windographer and Wasp Software Application Likert Scale | Colombia Boyacá, Nariño, Cundinamarca, Cauca, and Sumapaz |
Element | Percentage of Consideration in Taxonomic Review (%) | Reason for Selection/Rejection |
---|---|---|
Wind Speed | 94 | Very relevant for full characterization |
Power Density | 12 | Needed for energy determination |
Wind Direction | 6 | Very relevant for full characterization |
Effective Time | 9 | Influential for turbine model selection |
Data Availability | 3 | Vital for applying sensitivities |
Natural Disasters | 12 | Desirable for selection or discarding of zones |
Air Density | 15 | Necessary to geolocate real data |
Element | Percentage of Consideration in Taxonomic Review (%) | Reason for Selection/Rejection |
---|---|---|
Slope (*) | 71 | Needed for turbine location |
Altitude (*) | 38 | Same as above and for air density calculation |
Element | Percentage of Consideration in Taxonomic Review (%) | Reason for Selection/Rejection |
---|---|---|
Protected Areas or Distance | 65 | Not only is it vital to consider, but it can also limit decisions |
Agrological Capacity | 26 | Important since it is not intended to impact this industry |
Visual Impact | 21 | Key element to avoid visual pollution |
Noise | 24 | Relevant for risk matrix |
Population | 12 | Relevant for risk matrix |
Land Use | 35 | Associated with the agrological aspect |
Flora and Fauna Impact | 35 | Relevant for risk matrix |
Element | Percentage of Consideration in Taxonomic Review (%) | Reason for Selection/Rejection |
---|---|---|
Distance/Availability of Roads | 76 | Important for zone selection |
Distant Urban Areas | 85 | Relevant for the selection matrix |
Distant to Point of Common Coupling (PCC) | 65 | Important to avoid isolated installations |
Distant Transmission Lines | 50 | Important to avoid isolated installations |
Distant Water Resources | 44 | Relevant since it includes an environmental aspect |
Distant Industrial/Military Zones | 6 | Relevant for social and regulatory issues |
Element | Percentage of Consideration in Taxonomic Review (%) | Reason for Selection/Rejection |
---|---|---|
Exploitation | 29 | Necessary in any project |
Energy Put into the Network | 26 | Necessary for selection |
Infrastructure Cost | 24 | Needed for calculations and indicators |
Energy Sale Price | 12 | Needed for calculations and indicators |
Economic Contribution | 9 | Required in all economic analyses |
Payback | 6 | |
VPN | 3 | |
IR | 3 | |
Installed Capacity | 3 | Relevant and associated with total costs |
Department | Station Name | Annual Average Speed at 10 m (m/s) |
---|---|---|
Boyacá | Toquilla | 3.41 |
Cundinamarca | Santa Cruz de Siecha | 2.5 |
Cauca | El Tablazo | 1.54 |
Nariño | Viento Libre | 3.64 |
Sumapaz (near Bogotá) | Villa Teresa | 4.7 |
Parameter | Condition | Value (m) |
---|---|---|
Distance between rows | 5 times the rotor diameter | 544 |
Distance between wind turbines | 4 times the rotor diameter | 680 |
Site altitude | Highest position of the quadrant respecting the perpendicular | Depends on the location |
Distance to roads | The largest possible that fits the other conditions | 1.000 |
Distance to urban zones | The largest possible that fits in the polygon | 1.500 |
Environmental [41,42,43,44,45,46] | Excludes reserve areas, productive agricultural land, bodies of water, and indigenous reservations | Depends on the polygon |
Department | Station Name | Medium Temperature (°C) | Medium Altitude (m) | Total Height (m) | Site Density (kg/m3) |
---|---|---|---|---|---|
Boyacá | Toquilla | 9.6 | 2.800 | 2.920 | 0.887 |
Cundinamarca | Santa Cruz de Siecha | 12.9 | 3.120 | 3.240 | 0.850 |
Cauca | El Tablazo | 15.7 | 1.600 | 1.720 | 1.001 |
Nariño | Viento Libre | 17.8 | 1.250 | 1.370 | 1.035 |
Bogotá | Villa Teresa | 13.4 | 3.555 | 3.675 | 0.809 |
Station Name | Total Production (GWh) | Net Production (GWh) | Wake Loss (%) | Capacity Factor (%) | Maximum RIX (%) |
---|---|---|---|---|---|
Toquilla | 16.05 | 15.73 | 2 | 17.7 | 0 |
Santa Cruz de Siecha | 10.33 | 9.93 | 3.79 | 8.5 | 0.2 |
El Tablazo | 2.15 | 2.09 | 3.16 | 1.4 | 2.7 |
Viento Libre | 93.53 | 91.96 | 1.68 | 28.1 | 13.3 |
Villa Teresa | 131.48 | 129.79 | 1.29 | 29.5 | 7 |
Station Name | Net Production (GWh) | Time at Rated Power (h) | Capacity Factor (%) |
---|---|---|---|
Toquilla | 13.76 | 1.329 | 15.17 |
Santa Cruz de Siecha | 8.69 | 629 | 7.18 |
El Tablazo | 1.82 | 105.5 | 1.20 |
Viento Libre | 80.47 | 1120.42 | 24.20 |
Villa Teresa | 113.56 | 2992.35 | 34.16 |
Station Name | Flora and Fauna | Soil and Water | Landscape | Urban Population and Infrastructure |
---|---|---|---|---|
Toquilla | Very high | Very high | High | High |
Santa Cruz de Siecha | High | High | High | Medium |
El Tablazo | High | High | Very High | Very High |
Viento Libre | High | Medium | High | Low |
Villa Teresa | Very high | Very high | Very High | Medium |
Factor | Toquilla | Santa Cruz | El Tablazo | Viento Libre | Villa Teresa |
---|---|---|---|---|---|
Availability and Representativeness of Data | 4 | 3 | 5 | 5 | 3 |
Measurement Campaign Feasibility | 2 | 4 | 1 | 5 | 3 |
Site Altitude | 3 | 4 | 2 | 1 | 5 |
Location | 3 | 4 | 1 | 5 | 2 |
Possibility of Inclement Weather | 4 | 1 | 3 | 5 | 2 |
Energy Discharged to Network | 3 | 2 | 1 | 4 | 5 |
Economic Profitability | 3 | 2 | 1 | 4 | 5 |
Environmental Impact | 1 | 2 | 1 | 3 | 1 |
Access to National Interconnected System (SIN) | 3 | 1 | 5 | 4 | 2 |
Wind Speed | 3 | 2 | 1 | 4 | 5 |
Capacity Factor | 3 | 2 | 1 | 4 | 5 |
% RIX Maximum | 5 | 4 | 3 | 1 | 2 |
Power Density | 4 | 2 | 1 | 3 | 5 |
Site Loss Percentage | 3 | 1 | 2 | 4 | 5 |
Final Score | 44 | 34 | 28 | 52 | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Caviedes, A.; Gil-García, I.C. Multifactorial Analysis to Determine the Applicability of Wind Power Technologies in Favorable Areas of the Colombian Territory. Wind 2022, 2, 357-393. https://doi.org/10.3390/wind2020020
Rodriguez-Caviedes A, Gil-García IC. Multifactorial Analysis to Determine the Applicability of Wind Power Technologies in Favorable Areas of the Colombian Territory. Wind. 2022; 2(2):357-393. https://doi.org/10.3390/wind2020020
Chicago/Turabian StyleRodriguez-Caviedes, Andrés, and Isabel C. Gil-García. 2022. "Multifactorial Analysis to Determine the Applicability of Wind Power Technologies in Favorable Areas of the Colombian Territory" Wind 2, no. 2: 357-393. https://doi.org/10.3390/wind2020020